tsc.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/init.h>
  5. #include <linux/export.h>
  6. #include <linux/timer.h>
  7. #include <linux/acpi_pmtmr.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <linux/static_key.h>
  14. #include <asm/hpet.h>
  15. #include <asm/timer.h>
  16. #include <asm/vgtod.h>
  17. #include <asm/time.h>
  18. #include <asm/delay.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/nmi.h>
  21. #include <asm/x86_init.h>
  22. #include <asm/geode.h>
  23. #include <asm/apic.h>
  24. #include <asm/intel-family.h>
  25. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  26. EXPORT_SYMBOL(cpu_khz);
  27. unsigned int __read_mostly tsc_khz;
  28. EXPORT_SYMBOL(tsc_khz);
  29. /*
  30. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  31. */
  32. static int __read_mostly tsc_unstable;
  33. /* native_sched_clock() is called before tsc_init(), so
  34. we must start with the TSC soft disabled to prevent
  35. erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  36. static int __read_mostly tsc_disabled = -1;
  37. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  38. int tsc_clocksource_reliable;
  39. static u32 art_to_tsc_numerator;
  40. static u32 art_to_tsc_denominator;
  41. static u64 art_to_tsc_offset;
  42. struct clocksource *art_related_clocksource;
  43. /*
  44. * Use a ring-buffer like data structure, where a writer advances the head by
  45. * writing a new data entry and a reader advances the tail when it observes a
  46. * new entry.
  47. *
  48. * Writers are made to wait on readers until there's space to write a new
  49. * entry.
  50. *
  51. * This means that we can always use an {offset, mul} pair to compute a ns
  52. * value that is 'roughly' in the right direction, even if we're writing a new
  53. * {offset, mul} pair during the clock read.
  54. *
  55. * The down-side is that we can no longer guarantee strict monotonicity anymore
  56. * (assuming the TSC was that to begin with), because while we compute the
  57. * intersection point of the two clock slopes and make sure the time is
  58. * continuous at the point of switching; we can no longer guarantee a reader is
  59. * strictly before or after the switch point.
  60. *
  61. * It does mean a reader no longer needs to disable IRQs in order to avoid
  62. * CPU-Freq updates messing with his times, and similarly an NMI reader will
  63. * no longer run the risk of hitting half-written state.
  64. */
  65. struct cyc2ns {
  66. struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
  67. struct cyc2ns_data *head; /* 48 + 8 = 56 */
  68. struct cyc2ns_data *tail; /* 56 + 8 = 64 */
  69. }; /* exactly fits one cacheline */
  70. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  71. struct cyc2ns_data *cyc2ns_read_begin(void)
  72. {
  73. struct cyc2ns_data *head;
  74. preempt_disable();
  75. head = this_cpu_read(cyc2ns.head);
  76. /*
  77. * Ensure we observe the entry when we observe the pointer to it.
  78. * matches the wmb from cyc2ns_write_end().
  79. */
  80. smp_read_barrier_depends();
  81. head->__count++;
  82. barrier();
  83. return head;
  84. }
  85. void cyc2ns_read_end(struct cyc2ns_data *head)
  86. {
  87. barrier();
  88. /*
  89. * If we're the outer most nested read; update the tail pointer
  90. * when we're done. This notifies possible pending writers
  91. * that we've observed the head pointer and that the other
  92. * entry is now free.
  93. */
  94. if (!--head->__count) {
  95. /*
  96. * x86-TSO does not reorder writes with older reads;
  97. * therefore once this write becomes visible to another
  98. * cpu, we must be finished reading the cyc2ns_data.
  99. *
  100. * matches with cyc2ns_write_begin().
  101. */
  102. this_cpu_write(cyc2ns.tail, head);
  103. }
  104. preempt_enable();
  105. }
  106. /*
  107. * Begin writing a new @data entry for @cpu.
  108. *
  109. * Assumes some sort of write side lock; currently 'provided' by the assumption
  110. * that cpufreq will call its notifiers sequentially.
  111. */
  112. static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
  113. {
  114. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  115. struct cyc2ns_data *data = c2n->data;
  116. if (data == c2n->head)
  117. data++;
  118. /* XXX send an IPI to @cpu in order to guarantee a read? */
  119. /*
  120. * When we observe the tail write from cyc2ns_read_end(),
  121. * the cpu must be done with that entry and its safe
  122. * to start writing to it.
  123. */
  124. while (c2n->tail == data)
  125. cpu_relax();
  126. return data;
  127. }
  128. static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
  129. {
  130. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  131. /*
  132. * Ensure the @data writes are visible before we publish the
  133. * entry. Matches the data-depencency in cyc2ns_read_begin().
  134. */
  135. smp_wmb();
  136. ACCESS_ONCE(c2n->head) = data;
  137. }
  138. /*
  139. * Accelerators for sched_clock()
  140. * convert from cycles(64bits) => nanoseconds (64bits)
  141. * basic equation:
  142. * ns = cycles / (freq / ns_per_sec)
  143. * ns = cycles * (ns_per_sec / freq)
  144. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  145. * ns = cycles * (10^6 / cpu_khz)
  146. *
  147. * Then we use scaling math (suggested by george@mvista.com) to get:
  148. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  149. * ns = cycles * cyc2ns_scale / SC
  150. *
  151. * And since SC is a constant power of two, we can convert the div
  152. * into a shift. The larger SC is, the more accurate the conversion, but
  153. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  154. * (64-bit result) can be used.
  155. *
  156. * We can use khz divisor instead of mhz to keep a better precision.
  157. * (mathieu.desnoyers@polymtl.ca)
  158. *
  159. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  160. */
  161. static void cyc2ns_data_init(struct cyc2ns_data *data)
  162. {
  163. data->cyc2ns_mul = 0;
  164. data->cyc2ns_shift = 0;
  165. data->cyc2ns_offset = 0;
  166. data->__count = 0;
  167. }
  168. static void cyc2ns_init(int cpu)
  169. {
  170. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  171. cyc2ns_data_init(&c2n->data[0]);
  172. cyc2ns_data_init(&c2n->data[1]);
  173. c2n->head = c2n->data;
  174. c2n->tail = c2n->data;
  175. }
  176. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  177. {
  178. struct cyc2ns_data *data, *tail;
  179. unsigned long long ns;
  180. /*
  181. * See cyc2ns_read_*() for details; replicated in order to avoid
  182. * an extra few instructions that came with the abstraction.
  183. * Notable, it allows us to only do the __count and tail update
  184. * dance when its actually needed.
  185. */
  186. preempt_disable_notrace();
  187. data = this_cpu_read(cyc2ns.head);
  188. tail = this_cpu_read(cyc2ns.tail);
  189. if (likely(data == tail)) {
  190. ns = data->cyc2ns_offset;
  191. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  192. } else {
  193. data->__count++;
  194. barrier();
  195. ns = data->cyc2ns_offset;
  196. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  197. barrier();
  198. if (!--data->__count)
  199. this_cpu_write(cyc2ns.tail, data);
  200. }
  201. preempt_enable_notrace();
  202. return ns;
  203. }
  204. static void set_cyc2ns_scale(unsigned long khz, int cpu)
  205. {
  206. unsigned long long tsc_now, ns_now;
  207. struct cyc2ns_data *data;
  208. unsigned long flags;
  209. local_irq_save(flags);
  210. sched_clock_idle_sleep_event();
  211. if (!khz)
  212. goto done;
  213. data = cyc2ns_write_begin(cpu);
  214. tsc_now = rdtsc();
  215. ns_now = cycles_2_ns(tsc_now);
  216. /*
  217. * Compute a new multiplier as per the above comment and ensure our
  218. * time function is continuous; see the comment near struct
  219. * cyc2ns_data.
  220. */
  221. clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
  222. NSEC_PER_MSEC, 0);
  223. /*
  224. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  225. * not expected to be greater than 31 due to the original published
  226. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  227. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  228. */
  229. if (data->cyc2ns_shift == 32) {
  230. data->cyc2ns_shift = 31;
  231. data->cyc2ns_mul >>= 1;
  232. }
  233. data->cyc2ns_offset = ns_now -
  234. mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
  235. cyc2ns_write_end(cpu, data);
  236. done:
  237. sched_clock_idle_wakeup_event(0);
  238. local_irq_restore(flags);
  239. }
  240. /*
  241. * Scheduler clock - returns current time in nanosec units.
  242. */
  243. u64 native_sched_clock(void)
  244. {
  245. if (static_branch_likely(&__use_tsc)) {
  246. u64 tsc_now = rdtsc();
  247. /* return the value in ns */
  248. return cycles_2_ns(tsc_now);
  249. }
  250. /*
  251. * Fall back to jiffies if there's no TSC available:
  252. * ( But note that we still use it if the TSC is marked
  253. * unstable. We do this because unlike Time Of Day,
  254. * the scheduler clock tolerates small errors and it's
  255. * very important for it to be as fast as the platform
  256. * can achieve it. )
  257. */
  258. /* No locking but a rare wrong value is not a big deal: */
  259. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  260. }
  261. /*
  262. * Generate a sched_clock if you already have a TSC value.
  263. */
  264. u64 native_sched_clock_from_tsc(u64 tsc)
  265. {
  266. return cycles_2_ns(tsc);
  267. }
  268. /* We need to define a real function for sched_clock, to override the
  269. weak default version */
  270. #ifdef CONFIG_PARAVIRT
  271. unsigned long long sched_clock(void)
  272. {
  273. return paravirt_sched_clock();
  274. }
  275. #else
  276. unsigned long long
  277. sched_clock(void) __attribute__((alias("native_sched_clock")));
  278. #endif
  279. int check_tsc_unstable(void)
  280. {
  281. return tsc_unstable;
  282. }
  283. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  284. #ifdef CONFIG_X86_TSC
  285. int __init notsc_setup(char *str)
  286. {
  287. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  288. tsc_disabled = 1;
  289. return 1;
  290. }
  291. #else
  292. /*
  293. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  294. * in cpu/common.c
  295. */
  296. int __init notsc_setup(char *str)
  297. {
  298. setup_clear_cpu_cap(X86_FEATURE_TSC);
  299. return 1;
  300. }
  301. #endif
  302. __setup("notsc", notsc_setup);
  303. static int no_sched_irq_time;
  304. static int __init tsc_setup(char *str)
  305. {
  306. if (!strcmp(str, "reliable"))
  307. tsc_clocksource_reliable = 1;
  308. if (!strncmp(str, "noirqtime", 9))
  309. no_sched_irq_time = 1;
  310. return 1;
  311. }
  312. __setup("tsc=", tsc_setup);
  313. #define MAX_RETRIES 5
  314. #define SMI_TRESHOLD 50000
  315. /*
  316. * Read TSC and the reference counters. Take care of SMI disturbance
  317. */
  318. static u64 tsc_read_refs(u64 *p, int hpet)
  319. {
  320. u64 t1, t2;
  321. int i;
  322. for (i = 0; i < MAX_RETRIES; i++) {
  323. t1 = get_cycles();
  324. if (hpet)
  325. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  326. else
  327. *p = acpi_pm_read_early();
  328. t2 = get_cycles();
  329. if ((t2 - t1) < SMI_TRESHOLD)
  330. return t2;
  331. }
  332. return ULLONG_MAX;
  333. }
  334. /*
  335. * Calculate the TSC frequency from HPET reference
  336. */
  337. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  338. {
  339. u64 tmp;
  340. if (hpet2 < hpet1)
  341. hpet2 += 0x100000000ULL;
  342. hpet2 -= hpet1;
  343. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  344. do_div(tmp, 1000000);
  345. do_div(deltatsc, tmp);
  346. return (unsigned long) deltatsc;
  347. }
  348. /*
  349. * Calculate the TSC frequency from PMTimer reference
  350. */
  351. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  352. {
  353. u64 tmp;
  354. if (!pm1 && !pm2)
  355. return ULONG_MAX;
  356. if (pm2 < pm1)
  357. pm2 += (u64)ACPI_PM_OVRRUN;
  358. pm2 -= pm1;
  359. tmp = pm2 * 1000000000LL;
  360. do_div(tmp, PMTMR_TICKS_PER_SEC);
  361. do_div(deltatsc, tmp);
  362. return (unsigned long) deltatsc;
  363. }
  364. #define CAL_MS 10
  365. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  366. #define CAL_PIT_LOOPS 1000
  367. #define CAL2_MS 50
  368. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  369. #define CAL2_PIT_LOOPS 5000
  370. /*
  371. * Try to calibrate the TSC against the Programmable
  372. * Interrupt Timer and return the frequency of the TSC
  373. * in kHz.
  374. *
  375. * Return ULONG_MAX on failure to calibrate.
  376. */
  377. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  378. {
  379. u64 tsc, t1, t2, delta;
  380. unsigned long tscmin, tscmax;
  381. int pitcnt;
  382. /* Set the Gate high, disable speaker */
  383. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  384. /*
  385. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  386. * count mode), binary count. Set the latch register to 50ms
  387. * (LSB then MSB) to begin countdown.
  388. */
  389. outb(0xb0, 0x43);
  390. outb(latch & 0xff, 0x42);
  391. outb(latch >> 8, 0x42);
  392. tsc = t1 = t2 = get_cycles();
  393. pitcnt = 0;
  394. tscmax = 0;
  395. tscmin = ULONG_MAX;
  396. while ((inb(0x61) & 0x20) == 0) {
  397. t2 = get_cycles();
  398. delta = t2 - tsc;
  399. tsc = t2;
  400. if ((unsigned long) delta < tscmin)
  401. tscmin = (unsigned int) delta;
  402. if ((unsigned long) delta > tscmax)
  403. tscmax = (unsigned int) delta;
  404. pitcnt++;
  405. }
  406. /*
  407. * Sanity checks:
  408. *
  409. * If we were not able to read the PIT more than loopmin
  410. * times, then we have been hit by a massive SMI
  411. *
  412. * If the maximum is 10 times larger than the minimum,
  413. * then we got hit by an SMI as well.
  414. */
  415. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  416. return ULONG_MAX;
  417. /* Calculate the PIT value */
  418. delta = t2 - t1;
  419. do_div(delta, ms);
  420. return delta;
  421. }
  422. /*
  423. * This reads the current MSB of the PIT counter, and
  424. * checks if we are running on sufficiently fast and
  425. * non-virtualized hardware.
  426. *
  427. * Our expectations are:
  428. *
  429. * - the PIT is running at roughly 1.19MHz
  430. *
  431. * - each IO is going to take about 1us on real hardware,
  432. * but we allow it to be much faster (by a factor of 10) or
  433. * _slightly_ slower (ie we allow up to a 2us read+counter
  434. * update - anything else implies a unacceptably slow CPU
  435. * or PIT for the fast calibration to work.
  436. *
  437. * - with 256 PIT ticks to read the value, we have 214us to
  438. * see the same MSB (and overhead like doing a single TSC
  439. * read per MSB value etc).
  440. *
  441. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  442. * them each to take about a microsecond on real hardware.
  443. * So we expect a count value of around 100. But we'll be
  444. * generous, and accept anything over 50.
  445. *
  446. * - if the PIT is stuck, and we see *many* more reads, we
  447. * return early (and the next caller of pit_expect_msb()
  448. * then consider it a failure when they don't see the
  449. * next expected value).
  450. *
  451. * These expectations mean that we know that we have seen the
  452. * transition from one expected value to another with a fairly
  453. * high accuracy, and we didn't miss any events. We can thus
  454. * use the TSC value at the transitions to calculate a pretty
  455. * good value for the TSC frequencty.
  456. */
  457. static inline int pit_verify_msb(unsigned char val)
  458. {
  459. /* Ignore LSB */
  460. inb(0x42);
  461. return inb(0x42) == val;
  462. }
  463. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  464. {
  465. int count;
  466. u64 tsc = 0, prev_tsc = 0;
  467. for (count = 0; count < 50000; count++) {
  468. if (!pit_verify_msb(val))
  469. break;
  470. prev_tsc = tsc;
  471. tsc = get_cycles();
  472. }
  473. *deltap = get_cycles() - prev_tsc;
  474. *tscp = tsc;
  475. /*
  476. * We require _some_ success, but the quality control
  477. * will be based on the error terms on the TSC values.
  478. */
  479. return count > 5;
  480. }
  481. /*
  482. * How many MSB values do we want to see? We aim for
  483. * a maximum error rate of 500ppm (in practice the
  484. * real error is much smaller), but refuse to spend
  485. * more than 50ms on it.
  486. */
  487. #define MAX_QUICK_PIT_MS 50
  488. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  489. static unsigned long quick_pit_calibrate(void)
  490. {
  491. int i;
  492. u64 tsc, delta;
  493. unsigned long d1, d2;
  494. /* Set the Gate high, disable speaker */
  495. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  496. /*
  497. * Counter 2, mode 0 (one-shot), binary count
  498. *
  499. * NOTE! Mode 2 decrements by two (and then the
  500. * output is flipped each time, giving the same
  501. * final output frequency as a decrement-by-one),
  502. * so mode 0 is much better when looking at the
  503. * individual counts.
  504. */
  505. outb(0xb0, 0x43);
  506. /* Start at 0xffff */
  507. outb(0xff, 0x42);
  508. outb(0xff, 0x42);
  509. /*
  510. * The PIT starts counting at the next edge, so we
  511. * need to delay for a microsecond. The easiest way
  512. * to do that is to just read back the 16-bit counter
  513. * once from the PIT.
  514. */
  515. pit_verify_msb(0);
  516. if (pit_expect_msb(0xff, &tsc, &d1)) {
  517. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  518. if (!pit_expect_msb(0xff-i, &delta, &d2))
  519. break;
  520. delta -= tsc;
  521. /*
  522. * Extrapolate the error and fail fast if the error will
  523. * never be below 500 ppm.
  524. */
  525. if (i == 1 &&
  526. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  527. return 0;
  528. /*
  529. * Iterate until the error is less than 500 ppm
  530. */
  531. if (d1+d2 >= delta >> 11)
  532. continue;
  533. /*
  534. * Check the PIT one more time to verify that
  535. * all TSC reads were stable wrt the PIT.
  536. *
  537. * This also guarantees serialization of the
  538. * last cycle read ('d2') in pit_expect_msb.
  539. */
  540. if (!pit_verify_msb(0xfe - i))
  541. break;
  542. goto success;
  543. }
  544. }
  545. pr_info("Fast TSC calibration failed\n");
  546. return 0;
  547. success:
  548. /*
  549. * Ok, if we get here, then we've seen the
  550. * MSB of the PIT decrement 'i' times, and the
  551. * error has shrunk to less than 500 ppm.
  552. *
  553. * As a result, we can depend on there not being
  554. * any odd delays anywhere, and the TSC reads are
  555. * reliable (within the error).
  556. *
  557. * kHz = ticks / time-in-seconds / 1000;
  558. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  559. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  560. */
  561. delta *= PIT_TICK_RATE;
  562. do_div(delta, i*256*1000);
  563. pr_info("Fast TSC calibration using PIT\n");
  564. return delta;
  565. }
  566. /**
  567. * native_calibrate_tsc
  568. * Determine TSC frequency via CPUID, else return 0.
  569. */
  570. unsigned long native_calibrate_tsc(void)
  571. {
  572. unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
  573. unsigned int crystal_khz;
  574. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  575. return 0;
  576. if (boot_cpu_data.cpuid_level < 0x15)
  577. return 0;
  578. eax_denominator = ebx_numerator = ecx_hz = edx = 0;
  579. /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
  580. cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
  581. if (ebx_numerator == 0 || eax_denominator == 0)
  582. return 0;
  583. crystal_khz = ecx_hz / 1000;
  584. if (crystal_khz == 0) {
  585. switch (boot_cpu_data.x86_model) {
  586. case INTEL_FAM6_SKYLAKE_MOBILE:
  587. case INTEL_FAM6_SKYLAKE_DESKTOP:
  588. case INTEL_FAM6_KABYLAKE_MOBILE:
  589. case INTEL_FAM6_KABYLAKE_DESKTOP:
  590. crystal_khz = 24000; /* 24.0 MHz */
  591. break;
  592. case INTEL_FAM6_SKYLAKE_X:
  593. case INTEL_FAM6_ATOM_DENVERTON:
  594. crystal_khz = 25000; /* 25.0 MHz */
  595. break;
  596. case INTEL_FAM6_ATOM_GOLDMONT:
  597. crystal_khz = 19200; /* 19.2 MHz */
  598. break;
  599. }
  600. }
  601. /*
  602. * TSC frequency determined by CPUID is a "hardware reported"
  603. * frequency and is the most accurate one so far we have. This
  604. * is considered a known frequency.
  605. */
  606. setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
  607. /*
  608. * For Atom SoCs TSC is the only reliable clocksource.
  609. * Mark TSC reliable so no watchdog on it.
  610. */
  611. if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
  612. setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
  613. return crystal_khz * ebx_numerator / eax_denominator;
  614. }
  615. static unsigned long cpu_khz_from_cpuid(void)
  616. {
  617. unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
  618. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  619. return 0;
  620. if (boot_cpu_data.cpuid_level < 0x16)
  621. return 0;
  622. eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
  623. cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
  624. return eax_base_mhz * 1000;
  625. }
  626. /**
  627. * native_calibrate_cpu - calibrate the cpu on boot
  628. */
  629. unsigned long native_calibrate_cpu(void)
  630. {
  631. u64 tsc1, tsc2, delta, ref1, ref2;
  632. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  633. unsigned long flags, latch, ms, fast_calibrate;
  634. int hpet = is_hpet_enabled(), i, loopmin;
  635. fast_calibrate = cpu_khz_from_cpuid();
  636. if (fast_calibrate)
  637. return fast_calibrate;
  638. fast_calibrate = cpu_khz_from_msr();
  639. if (fast_calibrate)
  640. return fast_calibrate;
  641. local_irq_save(flags);
  642. fast_calibrate = quick_pit_calibrate();
  643. local_irq_restore(flags);
  644. if (fast_calibrate)
  645. return fast_calibrate;
  646. /*
  647. * Run 5 calibration loops to get the lowest frequency value
  648. * (the best estimate). We use two different calibration modes
  649. * here:
  650. *
  651. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  652. * load a timeout of 50ms. We read the time right after we
  653. * started the timer and wait until the PIT count down reaches
  654. * zero. In each wait loop iteration we read the TSC and check
  655. * the delta to the previous read. We keep track of the min
  656. * and max values of that delta. The delta is mostly defined
  657. * by the IO time of the PIT access, so we can detect when a
  658. * SMI/SMM disturbance happened between the two reads. If the
  659. * maximum time is significantly larger than the minimum time,
  660. * then we discard the result and have another try.
  661. *
  662. * 2) Reference counter. If available we use the HPET or the
  663. * PMTIMER as a reference to check the sanity of that value.
  664. * We use separate TSC readouts and check inside of the
  665. * reference read for a SMI/SMM disturbance. We dicard
  666. * disturbed values here as well. We do that around the PIT
  667. * calibration delay loop as we have to wait for a certain
  668. * amount of time anyway.
  669. */
  670. /* Preset PIT loop values */
  671. latch = CAL_LATCH;
  672. ms = CAL_MS;
  673. loopmin = CAL_PIT_LOOPS;
  674. for (i = 0; i < 3; i++) {
  675. unsigned long tsc_pit_khz;
  676. /*
  677. * Read the start value and the reference count of
  678. * hpet/pmtimer when available. Then do the PIT
  679. * calibration, which will take at least 50ms, and
  680. * read the end value.
  681. */
  682. local_irq_save(flags);
  683. tsc1 = tsc_read_refs(&ref1, hpet);
  684. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  685. tsc2 = tsc_read_refs(&ref2, hpet);
  686. local_irq_restore(flags);
  687. /* Pick the lowest PIT TSC calibration so far */
  688. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  689. /* hpet or pmtimer available ? */
  690. if (ref1 == ref2)
  691. continue;
  692. /* Check, whether the sampling was disturbed by an SMI */
  693. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  694. continue;
  695. tsc2 = (tsc2 - tsc1) * 1000000LL;
  696. if (hpet)
  697. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  698. else
  699. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  700. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  701. /* Check the reference deviation */
  702. delta = ((u64) tsc_pit_min) * 100;
  703. do_div(delta, tsc_ref_min);
  704. /*
  705. * If both calibration results are inside a 10% window
  706. * then we can be sure, that the calibration
  707. * succeeded. We break out of the loop right away. We
  708. * use the reference value, as it is more precise.
  709. */
  710. if (delta >= 90 && delta <= 110) {
  711. pr_info("PIT calibration matches %s. %d loops\n",
  712. hpet ? "HPET" : "PMTIMER", i + 1);
  713. return tsc_ref_min;
  714. }
  715. /*
  716. * Check whether PIT failed more than once. This
  717. * happens in virtualized environments. We need to
  718. * give the virtual PC a slightly longer timeframe for
  719. * the HPET/PMTIMER to make the result precise.
  720. */
  721. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  722. latch = CAL2_LATCH;
  723. ms = CAL2_MS;
  724. loopmin = CAL2_PIT_LOOPS;
  725. }
  726. }
  727. /*
  728. * Now check the results.
  729. */
  730. if (tsc_pit_min == ULONG_MAX) {
  731. /* PIT gave no useful value */
  732. pr_warn("Unable to calibrate against PIT\n");
  733. /* We don't have an alternative source, disable TSC */
  734. if (!hpet && !ref1 && !ref2) {
  735. pr_notice("No reference (HPET/PMTIMER) available\n");
  736. return 0;
  737. }
  738. /* The alternative source failed as well, disable TSC */
  739. if (tsc_ref_min == ULONG_MAX) {
  740. pr_warn("HPET/PMTIMER calibration failed\n");
  741. return 0;
  742. }
  743. /* Use the alternative source */
  744. pr_info("using %s reference calibration\n",
  745. hpet ? "HPET" : "PMTIMER");
  746. return tsc_ref_min;
  747. }
  748. /* We don't have an alternative source, use the PIT calibration value */
  749. if (!hpet && !ref1 && !ref2) {
  750. pr_info("Using PIT calibration value\n");
  751. return tsc_pit_min;
  752. }
  753. /* The alternative source failed, use the PIT calibration value */
  754. if (tsc_ref_min == ULONG_MAX) {
  755. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  756. return tsc_pit_min;
  757. }
  758. /*
  759. * The calibration values differ too much. In doubt, we use
  760. * the PIT value as we know that there are PMTIMERs around
  761. * running at double speed. At least we let the user know:
  762. */
  763. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  764. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  765. pr_info("Using PIT calibration value\n");
  766. return tsc_pit_min;
  767. }
  768. int recalibrate_cpu_khz(void)
  769. {
  770. #ifndef CONFIG_SMP
  771. unsigned long cpu_khz_old = cpu_khz;
  772. if (!boot_cpu_has(X86_FEATURE_TSC))
  773. return -ENODEV;
  774. cpu_khz = x86_platform.calibrate_cpu();
  775. tsc_khz = x86_platform.calibrate_tsc();
  776. if (tsc_khz == 0)
  777. tsc_khz = cpu_khz;
  778. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  779. cpu_khz = tsc_khz;
  780. cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
  781. cpu_khz_old, cpu_khz);
  782. return 0;
  783. #else
  784. return -ENODEV;
  785. #endif
  786. }
  787. EXPORT_SYMBOL(recalibrate_cpu_khz);
  788. static unsigned long long cyc2ns_suspend;
  789. void tsc_save_sched_clock_state(void)
  790. {
  791. if (!sched_clock_stable())
  792. return;
  793. cyc2ns_suspend = sched_clock();
  794. }
  795. /*
  796. * Even on processors with invariant TSC, TSC gets reset in some the
  797. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  798. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  799. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  800. * that sched_clock() continues from the point where it was left off during
  801. * suspend.
  802. */
  803. void tsc_restore_sched_clock_state(void)
  804. {
  805. unsigned long long offset;
  806. unsigned long flags;
  807. int cpu;
  808. if (!sched_clock_stable())
  809. return;
  810. local_irq_save(flags);
  811. /*
  812. * We're coming out of suspend, there's no concurrency yet; don't
  813. * bother being nice about the RCU stuff, just write to both
  814. * data fields.
  815. */
  816. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  817. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  818. offset = cyc2ns_suspend - sched_clock();
  819. for_each_possible_cpu(cpu) {
  820. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  821. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  822. }
  823. local_irq_restore(flags);
  824. }
  825. #ifdef CONFIG_CPU_FREQ
  826. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  827. * changes.
  828. *
  829. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  830. * not that important because current Opteron setups do not support
  831. * scaling on SMP anyroads.
  832. *
  833. * Should fix up last_tsc too. Currently gettimeofday in the
  834. * first tick after the change will be slightly wrong.
  835. */
  836. static unsigned int ref_freq;
  837. static unsigned long loops_per_jiffy_ref;
  838. static unsigned long tsc_khz_ref;
  839. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  840. void *data)
  841. {
  842. struct cpufreq_freqs *freq = data;
  843. unsigned long *lpj;
  844. lpj = &boot_cpu_data.loops_per_jiffy;
  845. #ifdef CONFIG_SMP
  846. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  847. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  848. #endif
  849. if (!ref_freq) {
  850. ref_freq = freq->old;
  851. loops_per_jiffy_ref = *lpj;
  852. tsc_khz_ref = tsc_khz;
  853. }
  854. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  855. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  856. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  857. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  858. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  859. mark_tsc_unstable("cpufreq changes");
  860. set_cyc2ns_scale(tsc_khz, freq->cpu);
  861. }
  862. return 0;
  863. }
  864. static struct notifier_block time_cpufreq_notifier_block = {
  865. .notifier_call = time_cpufreq_notifier
  866. };
  867. static int __init cpufreq_register_tsc_scaling(void)
  868. {
  869. if (!boot_cpu_has(X86_FEATURE_TSC))
  870. return 0;
  871. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  872. return 0;
  873. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  874. CPUFREQ_TRANSITION_NOTIFIER);
  875. return 0;
  876. }
  877. core_initcall(cpufreq_register_tsc_scaling);
  878. #endif /* CONFIG_CPU_FREQ */
  879. #define ART_CPUID_LEAF (0x15)
  880. #define ART_MIN_DENOMINATOR (1)
  881. /*
  882. * If ART is present detect the numerator:denominator to convert to TSC
  883. */
  884. static void detect_art(void)
  885. {
  886. unsigned int unused[2];
  887. if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
  888. return;
  889. /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
  890. if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
  891. !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
  892. !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
  893. return;
  894. cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
  895. &art_to_tsc_numerator, unused, unused+1);
  896. if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
  897. return;
  898. rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
  899. /* Make this sticky over multiple CPU init calls */
  900. setup_force_cpu_cap(X86_FEATURE_ART);
  901. }
  902. /* clocksource code */
  903. static struct clocksource clocksource_tsc;
  904. static void tsc_resume(struct clocksource *cs)
  905. {
  906. tsc_verify_tsc_adjust(true);
  907. }
  908. /*
  909. * We used to compare the TSC to the cycle_last value in the clocksource
  910. * structure to avoid a nasty time-warp. This can be observed in a
  911. * very small window right after one CPU updated cycle_last under
  912. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  913. * is smaller than the cycle_last reference value due to a TSC which
  914. * is slighty behind. This delta is nowhere else observable, but in
  915. * that case it results in a forward time jump in the range of hours
  916. * due to the unsigned delta calculation of the time keeping core
  917. * code, which is necessary to support wrapping clocksources like pm
  918. * timer.
  919. *
  920. * This sanity check is now done in the core timekeeping code.
  921. * checking the result of read_tsc() - cycle_last for being negative.
  922. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  923. */
  924. static u64 read_tsc(struct clocksource *cs)
  925. {
  926. return (u64)rdtsc_ordered();
  927. }
  928. /*
  929. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  930. */
  931. static struct clocksource clocksource_tsc = {
  932. .name = "tsc",
  933. .rating = 300,
  934. .read = read_tsc,
  935. .mask = CLOCKSOURCE_MASK(64),
  936. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  937. CLOCK_SOURCE_MUST_VERIFY,
  938. .archdata = { .vclock_mode = VCLOCK_TSC },
  939. .resume = tsc_resume,
  940. };
  941. void mark_tsc_unstable(char *reason)
  942. {
  943. if (!tsc_unstable) {
  944. tsc_unstable = 1;
  945. clear_sched_clock_stable();
  946. disable_sched_clock_irqtime();
  947. pr_info("Marking TSC unstable due to %s\n", reason);
  948. /* Change only the rating, when not registered */
  949. if (clocksource_tsc.mult)
  950. clocksource_mark_unstable(&clocksource_tsc);
  951. else {
  952. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  953. clocksource_tsc.rating = 0;
  954. }
  955. }
  956. }
  957. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  958. static void __init check_system_tsc_reliable(void)
  959. {
  960. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  961. if (is_geode_lx()) {
  962. /* RTSC counts during suspend */
  963. #define RTSC_SUSP 0x100
  964. unsigned long res_low, res_high;
  965. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  966. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  967. if (res_low & RTSC_SUSP)
  968. tsc_clocksource_reliable = 1;
  969. }
  970. #endif
  971. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  972. tsc_clocksource_reliable = 1;
  973. }
  974. /*
  975. * Make an educated guess if the TSC is trustworthy and synchronized
  976. * over all CPUs.
  977. */
  978. int unsynchronized_tsc(void)
  979. {
  980. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
  981. return 1;
  982. #ifdef CONFIG_SMP
  983. if (apic_is_clustered_box())
  984. return 1;
  985. #endif
  986. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  987. return 0;
  988. if (tsc_clocksource_reliable)
  989. return 0;
  990. /*
  991. * Intel systems are normally all synchronized.
  992. * Exceptions must mark TSC as unstable:
  993. */
  994. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  995. /* assume multi socket systems are not synchronized: */
  996. if (num_possible_cpus() > 1)
  997. return 1;
  998. }
  999. return 0;
  1000. }
  1001. /*
  1002. * Convert ART to TSC given numerator/denominator found in detect_art()
  1003. */
  1004. struct system_counterval_t convert_art_to_tsc(u64 art)
  1005. {
  1006. u64 tmp, res, rem;
  1007. rem = do_div(art, art_to_tsc_denominator);
  1008. res = art * art_to_tsc_numerator;
  1009. tmp = rem * art_to_tsc_numerator;
  1010. do_div(tmp, art_to_tsc_denominator);
  1011. res += tmp + art_to_tsc_offset;
  1012. return (struct system_counterval_t) {.cs = art_related_clocksource,
  1013. .cycles = res};
  1014. }
  1015. EXPORT_SYMBOL(convert_art_to_tsc);
  1016. static void tsc_refine_calibration_work(struct work_struct *work);
  1017. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  1018. /**
  1019. * tsc_refine_calibration_work - Further refine tsc freq calibration
  1020. * @work - ignored.
  1021. *
  1022. * This functions uses delayed work over a period of a
  1023. * second to further refine the TSC freq value. Since this is
  1024. * timer based, instead of loop based, we don't block the boot
  1025. * process while this longer calibration is done.
  1026. *
  1027. * If there are any calibration anomalies (too many SMIs, etc),
  1028. * or the refined calibration is off by 1% of the fast early
  1029. * calibration, we throw out the new calibration and use the
  1030. * early calibration.
  1031. */
  1032. static void tsc_refine_calibration_work(struct work_struct *work)
  1033. {
  1034. static u64 tsc_start = -1, ref_start;
  1035. static int hpet;
  1036. u64 tsc_stop, ref_stop, delta;
  1037. unsigned long freq;
  1038. /* Don't bother refining TSC on unstable systems */
  1039. if (check_tsc_unstable())
  1040. goto out;
  1041. /*
  1042. * Since the work is started early in boot, we may be
  1043. * delayed the first time we expire. So set the workqueue
  1044. * again once we know timers are working.
  1045. */
  1046. if (tsc_start == -1) {
  1047. /*
  1048. * Only set hpet once, to avoid mixing hardware
  1049. * if the hpet becomes enabled later.
  1050. */
  1051. hpet = is_hpet_enabled();
  1052. schedule_delayed_work(&tsc_irqwork, HZ);
  1053. tsc_start = tsc_read_refs(&ref_start, hpet);
  1054. return;
  1055. }
  1056. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  1057. /* hpet or pmtimer available ? */
  1058. if (ref_start == ref_stop)
  1059. goto out;
  1060. /* Check, whether the sampling was disturbed by an SMI */
  1061. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  1062. goto out;
  1063. delta = tsc_stop - tsc_start;
  1064. delta *= 1000000LL;
  1065. if (hpet)
  1066. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  1067. else
  1068. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  1069. /* Make sure we're within 1% */
  1070. if (abs(tsc_khz - freq) > tsc_khz/100)
  1071. goto out;
  1072. tsc_khz = freq;
  1073. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  1074. (unsigned long)tsc_khz / 1000,
  1075. (unsigned long)tsc_khz % 1000);
  1076. /* Inform the TSC deadline clockevent devices about the recalibration */
  1077. lapic_update_tsc_freq();
  1078. out:
  1079. if (boot_cpu_has(X86_FEATURE_ART))
  1080. art_related_clocksource = &clocksource_tsc;
  1081. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1082. }
  1083. static int __init init_tsc_clocksource(void)
  1084. {
  1085. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
  1086. return 0;
  1087. if (tsc_clocksource_reliable)
  1088. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  1089. /* lower the rating if we already know its unstable: */
  1090. if (check_tsc_unstable()) {
  1091. clocksource_tsc.rating = 0;
  1092. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  1093. }
  1094. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  1095. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  1096. /*
  1097. * When TSC frequency is known (retrieved via MSR or CPUID), we skip
  1098. * the refined calibration and directly register it as a clocksource.
  1099. */
  1100. if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
  1101. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1102. return 0;
  1103. }
  1104. schedule_delayed_work(&tsc_irqwork, 0);
  1105. return 0;
  1106. }
  1107. /*
  1108. * We use device_initcall here, to ensure we run after the hpet
  1109. * is fully initialized, which may occur at fs_initcall time.
  1110. */
  1111. device_initcall(init_tsc_clocksource);
  1112. void __init tsc_init(void)
  1113. {
  1114. u64 lpj;
  1115. int cpu;
  1116. if (!boot_cpu_has(X86_FEATURE_TSC)) {
  1117. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1118. return;
  1119. }
  1120. cpu_khz = x86_platform.calibrate_cpu();
  1121. tsc_khz = x86_platform.calibrate_tsc();
  1122. /*
  1123. * Trust non-zero tsc_khz as authorative,
  1124. * and use it to sanity check cpu_khz,
  1125. * which will be off if system timer is off.
  1126. */
  1127. if (tsc_khz == 0)
  1128. tsc_khz = cpu_khz;
  1129. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  1130. cpu_khz = tsc_khz;
  1131. if (!tsc_khz) {
  1132. mark_tsc_unstable("could not calculate TSC khz");
  1133. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1134. return;
  1135. }
  1136. pr_info("Detected %lu.%03lu MHz processor\n",
  1137. (unsigned long)cpu_khz / 1000,
  1138. (unsigned long)cpu_khz % 1000);
  1139. /*
  1140. * Secondary CPUs do not run through tsc_init(), so set up
  1141. * all the scale factors for all CPUs, assuming the same
  1142. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1143. * up if their speed diverges)
  1144. */
  1145. for_each_possible_cpu(cpu) {
  1146. cyc2ns_init(cpu);
  1147. set_cyc2ns_scale(tsc_khz, cpu);
  1148. }
  1149. if (tsc_disabled > 0)
  1150. return;
  1151. /* now allow native_sched_clock() to use rdtsc */
  1152. tsc_disabled = 0;
  1153. static_branch_enable(&__use_tsc);
  1154. if (!no_sched_irq_time)
  1155. enable_sched_clock_irqtime();
  1156. lpj = ((u64)tsc_khz * 1000);
  1157. do_div(lpj, HZ);
  1158. lpj_fine = lpj;
  1159. use_tsc_delay();
  1160. if (unsynchronized_tsc())
  1161. mark_tsc_unstable("TSCs unsynchronized");
  1162. else
  1163. tsc_store_and_check_tsc_adjust(true);
  1164. check_system_tsc_reliable();
  1165. detect_art();
  1166. }
  1167. #ifdef CONFIG_SMP
  1168. /*
  1169. * If we have a constant TSC and are using the TSC for the delay loop,
  1170. * we can skip clock calibration if another cpu in the same socket has already
  1171. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1172. * cpus in the socket - this should be a safe assumption.
  1173. */
  1174. unsigned long calibrate_delay_is_known(void)
  1175. {
  1176. int sibling, cpu = smp_processor_id();
  1177. struct cpumask *mask = topology_core_cpumask(cpu);
  1178. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  1179. return 0;
  1180. if (!mask)
  1181. return 0;
  1182. sibling = cpumask_any_but(mask, cpu);
  1183. if (sibling < nr_cpu_ids)
  1184. return cpu_data(sibling).loops_per_jiffy;
  1185. return 0;
  1186. }
  1187. #endif