intel.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822
  1. #include <linux/kernel.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/smp.h>
  5. #include <linux/sched.h>
  6. #include <linux/thread_info.h>
  7. #include <linux/init.h>
  8. #include <linux/uaccess.h>
  9. #include <asm/cpufeature.h>
  10. #include <asm/pgtable.h>
  11. #include <asm/msr.h>
  12. #include <asm/bugs.h>
  13. #include <asm/cpu.h>
  14. #include <asm/intel-family.h>
  15. #include <asm/microcode_intel.h>
  16. #ifdef CONFIG_X86_64
  17. #include <linux/topology.h>
  18. #endif
  19. #include "cpu.h"
  20. #ifdef CONFIG_X86_LOCAL_APIC
  21. #include <asm/mpspec.h>
  22. #include <asm/apic.h>
  23. #endif
  24. /*
  25. * Just in case our CPU detection goes bad, or you have a weird system,
  26. * allow a way to override the automatic disabling of MPX.
  27. */
  28. static int forcempx;
  29. static int __init forcempx_setup(char *__unused)
  30. {
  31. forcempx = 1;
  32. return 1;
  33. }
  34. __setup("intel-skd-046-workaround=disable", forcempx_setup);
  35. void check_mpx_erratum(struct cpuinfo_x86 *c)
  36. {
  37. if (forcempx)
  38. return;
  39. /*
  40. * Turn off the MPX feature on CPUs where SMEP is not
  41. * available or disabled.
  42. *
  43. * Works around Intel Erratum SKD046: "Branch Instructions
  44. * May Initialize MPX Bound Registers Incorrectly".
  45. *
  46. * This might falsely disable MPX on systems without
  47. * SMEP, like Atom processors without SMEP. But there
  48. * is no such hardware known at the moment.
  49. */
  50. if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  51. setup_clear_cpu_cap(X86_FEATURE_MPX);
  52. pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  53. }
  54. }
  55. static void early_init_intel(struct cpuinfo_x86 *c)
  56. {
  57. u64 misc_enable;
  58. /* Unmask CPUID levels if masked: */
  59. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  60. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  61. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  62. c->cpuid_level = cpuid_eax(0);
  63. get_cpu_cap(c);
  64. }
  65. }
  66. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  67. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  68. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  69. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
  70. c->microcode = intel_get_microcode_revision();
  71. /*
  72. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  73. *
  74. * A race condition between speculative fetches and invalidating
  75. * a large page. This is worked around in microcode, but we
  76. * need the microcode to have already been loaded... so if it is
  77. * not, recommend a BIOS update and disable large pages.
  78. */
  79. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  80. c->microcode < 0x20e) {
  81. pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
  82. clear_cpu_cap(c, X86_FEATURE_PSE);
  83. }
  84. #ifdef CONFIG_X86_64
  85. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  86. #else
  87. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  88. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  89. c->x86_cache_alignment = 128;
  90. #endif
  91. /* CPUID workaround for 0F33/0F34 CPU */
  92. if (c->x86 == 0xF && c->x86_model == 0x3
  93. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  94. c->x86_phys_bits = 36;
  95. /*
  96. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  97. * with P/T states and does not stop in deep C-states.
  98. *
  99. * It is also reliable across cores and sockets. (but not across
  100. * cabinets - we turn it off in that case explicitly.)
  101. */
  102. if (c->x86_power & (1 << 8)) {
  103. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  104. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  105. if (!check_tsc_unstable())
  106. set_sched_clock_stable();
  107. }
  108. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  109. if (c->x86 == 6) {
  110. switch (c->x86_model) {
  111. case 0x27: /* Penwell */
  112. case 0x35: /* Cloverview */
  113. case 0x4a: /* Merrifield */
  114. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  115. break;
  116. default:
  117. break;
  118. }
  119. }
  120. /*
  121. * There is a known erratum on Pentium III and Core Solo
  122. * and Core Duo CPUs.
  123. * " Page with PAT set to WC while associated MTRR is UC
  124. * may consolidate to UC "
  125. * Because of this erratum, it is better to stick with
  126. * setting WC in MTRR rather than using PAT on these CPUs.
  127. *
  128. * Enable PAT WC only on P4, Core 2 or later CPUs.
  129. */
  130. if (c->x86 == 6 && c->x86_model < 15)
  131. clear_cpu_cap(c, X86_FEATURE_PAT);
  132. #ifdef CONFIG_KMEMCHECK
  133. /*
  134. * P4s have a "fast strings" feature which causes single-
  135. * stepping REP instructions to only generate a #DB on
  136. * cache-line boundaries.
  137. *
  138. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  139. * (model 2) with the same problem.
  140. */
  141. if (c->x86 == 15)
  142. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  143. MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
  144. pr_info("kmemcheck: Disabling fast string operations\n");
  145. #endif
  146. /*
  147. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  148. * clear the fast string and enhanced fast string CPU capabilities.
  149. */
  150. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  151. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  152. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  153. pr_info("Disabled fast string operations\n");
  154. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  155. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  156. }
  157. }
  158. /*
  159. * Intel Quark Core DevMan_001.pdf section 6.4.11
  160. * "The operating system also is required to invalidate (i.e., flush)
  161. * the TLB when any changes are made to any of the page table entries.
  162. * The operating system must reload CR3 to cause the TLB to be flushed"
  163. *
  164. * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
  165. * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  166. * to be modified.
  167. */
  168. if (c->x86 == 5 && c->x86_model == 9) {
  169. pr_info("Disabling PGE capability bit\n");
  170. setup_clear_cpu_cap(X86_FEATURE_PGE);
  171. }
  172. if (c->cpuid_level >= 0x00000001) {
  173. u32 eax, ebx, ecx, edx;
  174. cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  175. /*
  176. * If HTT (EDX[28]) is set EBX[16:23] contain the number of
  177. * apicids which are reserved per package. Store the resulting
  178. * shift value for the package management code.
  179. */
  180. if (edx & (1U << 28))
  181. c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
  182. }
  183. check_mpx_erratum(c);
  184. }
  185. #ifdef CONFIG_X86_32
  186. /*
  187. * Early probe support logic for ppro memory erratum #50
  188. *
  189. * This is called before we do cpu ident work
  190. */
  191. int ppro_with_ram_bug(void)
  192. {
  193. /* Uses data from early_cpu_detect now */
  194. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  195. boot_cpu_data.x86 == 6 &&
  196. boot_cpu_data.x86_model == 1 &&
  197. boot_cpu_data.x86_mask < 8) {
  198. pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  199. return 1;
  200. }
  201. return 0;
  202. }
  203. static void intel_smp_check(struct cpuinfo_x86 *c)
  204. {
  205. /* calling is from identify_secondary_cpu() ? */
  206. if (!c->cpu_index)
  207. return;
  208. /*
  209. * Mask B, Pentium, but not Pentium MMX
  210. */
  211. if (c->x86 == 5 &&
  212. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  213. c->x86_model <= 3) {
  214. /*
  215. * Remember we have B step Pentia with bugs
  216. */
  217. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  218. "with B stepping processors.\n");
  219. }
  220. }
  221. static int forcepae;
  222. static int __init forcepae_setup(char *__unused)
  223. {
  224. forcepae = 1;
  225. return 1;
  226. }
  227. __setup("forcepae", forcepae_setup);
  228. static void intel_workarounds(struct cpuinfo_x86 *c)
  229. {
  230. #ifdef CONFIG_X86_F00F_BUG
  231. /*
  232. * All models of Pentium and Pentium with MMX technology CPUs
  233. * have the F0 0F bug, which lets nonprivileged users lock up the
  234. * system. Announce that the fault handler will be checking for it.
  235. * The Quark is also family 5, but does not have the same bug.
  236. */
  237. clear_cpu_bug(c, X86_BUG_F00F);
  238. if (c->x86 == 5 && c->x86_model < 9) {
  239. static int f00f_workaround_enabled;
  240. set_cpu_bug(c, X86_BUG_F00F);
  241. if (!f00f_workaround_enabled) {
  242. pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
  243. f00f_workaround_enabled = 1;
  244. }
  245. }
  246. #endif
  247. /*
  248. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  249. * model 3 mask 3
  250. */
  251. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  252. clear_cpu_cap(c, X86_FEATURE_SEP);
  253. /*
  254. * PAE CPUID issue: many Pentium M report no PAE but may have a
  255. * functionally usable PAE implementation.
  256. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  257. */
  258. if (forcepae) {
  259. pr_warn("PAE forced!\n");
  260. set_cpu_cap(c, X86_FEATURE_PAE);
  261. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  262. }
  263. /*
  264. * P4 Xeon erratum 037 workaround.
  265. * Hardware prefetcher may cause stale data to be loaded into the cache.
  266. */
  267. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  268. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  269. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
  270. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  271. pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
  272. }
  273. }
  274. /*
  275. * See if we have a good local APIC by checking for buggy Pentia,
  276. * i.e. all B steppings and the C2 stepping of P54C when using their
  277. * integrated APIC (see 11AP erratum in "Pentium Processor
  278. * Specification Update").
  279. */
  280. if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  281. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  282. set_cpu_bug(c, X86_BUG_11AP);
  283. #ifdef CONFIG_X86_INTEL_USERCOPY
  284. /*
  285. * Set up the preferred alignment for movsl bulk memory moves
  286. */
  287. switch (c->x86) {
  288. case 4: /* 486: untested */
  289. break;
  290. case 5: /* Old Pentia: untested */
  291. break;
  292. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  293. movsl_mask.mask = 7;
  294. break;
  295. case 15: /* P4 is OK down to 8-byte alignment */
  296. movsl_mask.mask = 7;
  297. break;
  298. }
  299. #endif
  300. intel_smp_check(c);
  301. }
  302. #else
  303. static void intel_workarounds(struct cpuinfo_x86 *c)
  304. {
  305. }
  306. #endif
  307. static void srat_detect_node(struct cpuinfo_x86 *c)
  308. {
  309. #ifdef CONFIG_NUMA
  310. unsigned node;
  311. int cpu = smp_processor_id();
  312. /* Don't do the funky fallback heuristics the AMD version employs
  313. for now. */
  314. node = numa_cpu_node(cpu);
  315. if (node == NUMA_NO_NODE || !node_online(node)) {
  316. /* reuse the value from init_cpu_to_node() */
  317. node = cpu_to_node(cpu);
  318. }
  319. numa_set_node(cpu, node);
  320. #endif
  321. }
  322. /*
  323. * find out the number of processor cores on the die
  324. */
  325. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  326. {
  327. unsigned int eax, ebx, ecx, edx;
  328. if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
  329. return 1;
  330. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  331. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  332. if (eax & 0x1f)
  333. return (eax >> 26) + 1;
  334. else
  335. return 1;
  336. }
  337. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  338. {
  339. /* Intel VMX MSR indicated features */
  340. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  341. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  342. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  343. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  344. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  345. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  346. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  347. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  348. clear_cpu_cap(c, X86_FEATURE_VNMI);
  349. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  350. clear_cpu_cap(c, X86_FEATURE_EPT);
  351. clear_cpu_cap(c, X86_FEATURE_VPID);
  352. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  353. msr_ctl = vmx_msr_high | vmx_msr_low;
  354. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  355. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  356. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  357. set_cpu_cap(c, X86_FEATURE_VNMI);
  358. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  359. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  360. vmx_msr_low, vmx_msr_high);
  361. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  362. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  363. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  364. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  365. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  366. set_cpu_cap(c, X86_FEATURE_EPT);
  367. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  368. set_cpu_cap(c, X86_FEATURE_VPID);
  369. }
  370. }
  371. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  372. {
  373. u64 epb;
  374. /*
  375. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  376. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  377. */
  378. if (!cpu_has(c, X86_FEATURE_EPB))
  379. return;
  380. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  381. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  382. return;
  383. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  384. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  385. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  386. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  387. }
  388. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  389. {
  390. /*
  391. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  392. * so reinitialize it properly like during bootup:
  393. */
  394. init_intel_energy_perf(c);
  395. }
  396. static void init_intel(struct cpuinfo_x86 *c)
  397. {
  398. unsigned int l2 = 0;
  399. early_init_intel(c);
  400. intel_workarounds(c);
  401. /*
  402. * Detect the extended topology information if available. This
  403. * will reinitialise the initial_apicid which will be used
  404. * in init_intel_cacheinfo()
  405. */
  406. detect_extended_topology(c);
  407. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  408. /*
  409. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  410. * detection.
  411. */
  412. c->x86_max_cores = intel_num_cpu_cores(c);
  413. #ifdef CONFIG_X86_32
  414. detect_ht(c);
  415. #endif
  416. }
  417. l2 = init_intel_cacheinfo(c);
  418. /* Detect legacy cache sizes if init_intel_cacheinfo did not */
  419. if (l2 == 0) {
  420. cpu_detect_cache_sizes(c);
  421. l2 = c->x86_cache_size;
  422. }
  423. if (c->cpuid_level > 9) {
  424. unsigned eax = cpuid_eax(10);
  425. /* Check for version and the number of counters */
  426. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  427. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  428. }
  429. if (cpu_has(c, X86_FEATURE_XMM2))
  430. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  431. if (boot_cpu_has(X86_FEATURE_DS)) {
  432. unsigned int l1;
  433. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  434. if (!(l1 & (1<<11)))
  435. set_cpu_cap(c, X86_FEATURE_BTS);
  436. if (!(l1 & (1<<12)))
  437. set_cpu_cap(c, X86_FEATURE_PEBS);
  438. }
  439. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
  440. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  441. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  442. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
  443. ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
  444. set_cpu_bug(c, X86_BUG_MONITOR);
  445. #ifdef CONFIG_X86_64
  446. if (c->x86 == 15)
  447. c->x86_cache_alignment = c->x86_clflush_size * 2;
  448. if (c->x86 == 6)
  449. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  450. #else
  451. /*
  452. * Names for the Pentium II/Celeron processors
  453. * detectable only by also checking the cache size.
  454. * Dixon is NOT a Celeron.
  455. */
  456. if (c->x86 == 6) {
  457. char *p = NULL;
  458. switch (c->x86_model) {
  459. case 5:
  460. if (l2 == 0)
  461. p = "Celeron (Covington)";
  462. else if (l2 == 256)
  463. p = "Mobile Pentium II (Dixon)";
  464. break;
  465. case 6:
  466. if (l2 == 128)
  467. p = "Celeron (Mendocino)";
  468. else if (c->x86_mask == 0 || c->x86_mask == 5)
  469. p = "Celeron-A";
  470. break;
  471. case 8:
  472. if (l2 == 128)
  473. p = "Celeron (Coppermine)";
  474. break;
  475. }
  476. if (p)
  477. strcpy(c->x86_model_id, p);
  478. }
  479. if (c->x86 == 15)
  480. set_cpu_cap(c, X86_FEATURE_P4);
  481. if (c->x86 == 6)
  482. set_cpu_cap(c, X86_FEATURE_P3);
  483. #endif
  484. /* Work around errata */
  485. srat_detect_node(c);
  486. if (cpu_has(c, X86_FEATURE_VMX))
  487. detect_vmx_virtcap(c);
  488. init_intel_energy_perf(c);
  489. }
  490. #ifdef CONFIG_X86_32
  491. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  492. {
  493. /*
  494. * Intel PIII Tualatin. This comes in two flavours.
  495. * One has 256kb of cache, the other 512. We have no way
  496. * to determine which, so we use a boottime override
  497. * for the 512kb model, and assume 256 otherwise.
  498. */
  499. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  500. size = 256;
  501. /*
  502. * Intel Quark SoC X1000 contains a 4-way set associative
  503. * 16K cache with a 16 byte cache line and 256 lines per tag
  504. */
  505. if ((c->x86 == 5) && (c->x86_model == 9))
  506. size = 16;
  507. return size;
  508. }
  509. #endif
  510. #define TLB_INST_4K 0x01
  511. #define TLB_INST_4M 0x02
  512. #define TLB_INST_2M_4M 0x03
  513. #define TLB_INST_ALL 0x05
  514. #define TLB_INST_1G 0x06
  515. #define TLB_DATA_4K 0x11
  516. #define TLB_DATA_4M 0x12
  517. #define TLB_DATA_2M_4M 0x13
  518. #define TLB_DATA_4K_4M 0x14
  519. #define TLB_DATA_1G 0x16
  520. #define TLB_DATA0_4K 0x21
  521. #define TLB_DATA0_4M 0x22
  522. #define TLB_DATA0_2M_4M 0x23
  523. #define STLB_4K 0x41
  524. #define STLB_4K_2M 0x42
  525. static const struct _tlb_table intel_tlb_table[] = {
  526. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  527. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  528. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  529. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  530. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  531. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  532. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  533. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  534. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  535. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  536. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  537. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  538. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  539. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  540. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  541. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  542. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  543. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  544. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  545. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  546. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  547. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  548. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  549. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  550. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  551. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  552. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  553. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  554. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  555. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  556. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  557. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  558. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  559. { 0x00, 0, 0 }
  560. };
  561. static void intel_tlb_lookup(const unsigned char desc)
  562. {
  563. unsigned char k;
  564. if (desc == 0)
  565. return;
  566. /* look up this descriptor in the table */
  567. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  568. intel_tlb_table[k].descriptor != 0; k++)
  569. ;
  570. if (intel_tlb_table[k].tlb_type == 0)
  571. return;
  572. switch (intel_tlb_table[k].tlb_type) {
  573. case STLB_4K:
  574. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  575. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  576. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  577. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  578. break;
  579. case STLB_4K_2M:
  580. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  581. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  582. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  583. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  584. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  585. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  586. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  587. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  588. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  589. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  590. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  591. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  592. break;
  593. case TLB_INST_ALL:
  594. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  595. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  596. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  597. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  598. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  599. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  600. break;
  601. case TLB_INST_4K:
  602. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  603. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  604. break;
  605. case TLB_INST_4M:
  606. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  607. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  608. break;
  609. case TLB_INST_2M_4M:
  610. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  611. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  612. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  613. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  614. break;
  615. case TLB_DATA_4K:
  616. case TLB_DATA0_4K:
  617. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  618. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  619. break;
  620. case TLB_DATA_4M:
  621. case TLB_DATA0_4M:
  622. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  623. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  624. break;
  625. case TLB_DATA_2M_4M:
  626. case TLB_DATA0_2M_4M:
  627. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  628. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  629. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  630. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  631. break;
  632. case TLB_DATA_4K_4M:
  633. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  634. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  635. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  636. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  637. break;
  638. case TLB_DATA_1G:
  639. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  640. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  641. break;
  642. }
  643. }
  644. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  645. {
  646. int i, j, n;
  647. unsigned int regs[4];
  648. unsigned char *desc = (unsigned char *)regs;
  649. if (c->cpuid_level < 2)
  650. return;
  651. /* Number of times to iterate */
  652. n = cpuid_eax(2) & 0xFF;
  653. for (i = 0 ; i < n ; i++) {
  654. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  655. /* If bit 31 is set, this is an unknown format */
  656. for (j = 0 ; j < 3 ; j++)
  657. if (regs[j] & (1 << 31))
  658. regs[j] = 0;
  659. /* Byte 0 is level count, not a descriptor */
  660. for (j = 1 ; j < 16 ; j++)
  661. intel_tlb_lookup(desc[j]);
  662. }
  663. }
  664. static const struct cpu_dev intel_cpu_dev = {
  665. .c_vendor = "Intel",
  666. .c_ident = { "GenuineIntel" },
  667. #ifdef CONFIG_X86_32
  668. .legacy_models = {
  669. { .family = 4, .model_names =
  670. {
  671. [0] = "486 DX-25/33",
  672. [1] = "486 DX-50",
  673. [2] = "486 SX",
  674. [3] = "486 DX/2",
  675. [4] = "486 SL",
  676. [5] = "486 SX/2",
  677. [7] = "486 DX/2-WB",
  678. [8] = "486 DX/4",
  679. [9] = "486 DX/4-WB"
  680. }
  681. },
  682. { .family = 5, .model_names =
  683. {
  684. [0] = "Pentium 60/66 A-step",
  685. [1] = "Pentium 60/66",
  686. [2] = "Pentium 75 - 200",
  687. [3] = "OverDrive PODP5V83",
  688. [4] = "Pentium MMX",
  689. [7] = "Mobile Pentium 75 - 200",
  690. [8] = "Mobile Pentium MMX",
  691. [9] = "Quark SoC X1000",
  692. }
  693. },
  694. { .family = 6, .model_names =
  695. {
  696. [0] = "Pentium Pro A-step",
  697. [1] = "Pentium Pro",
  698. [3] = "Pentium II (Klamath)",
  699. [4] = "Pentium II (Deschutes)",
  700. [5] = "Pentium II (Deschutes)",
  701. [6] = "Mobile Pentium II",
  702. [7] = "Pentium III (Katmai)",
  703. [8] = "Pentium III (Coppermine)",
  704. [10] = "Pentium III (Cascades)",
  705. [11] = "Pentium III (Tualatin)",
  706. }
  707. },
  708. { .family = 15, .model_names =
  709. {
  710. [0] = "Pentium 4 (Unknown)",
  711. [1] = "Pentium 4 (Willamette)",
  712. [2] = "Pentium 4 (Northwood)",
  713. [4] = "Pentium 4 (Foster)",
  714. [5] = "Pentium 4 (Foster)",
  715. }
  716. },
  717. },
  718. .legacy_cache_size = intel_size_cache,
  719. #endif
  720. .c_detect_tlb = intel_detect_tlb,
  721. .c_early_init = early_init_intel,
  722. .c_init = init_intel,
  723. .c_bsp_resume = intel_bsp_resume,
  724. .c_x86_vendor = X86_VENDOR_INTEL,
  725. };
  726. cpu_dev_register(intel_cpu_dev);