bpf_jit_comp.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367
  1. /*
  2. * BPF Jit compiler for s390.
  3. *
  4. * Minimum build requirements:
  5. *
  6. * - HAVE_MARCH_Z196_FEATURES: laal, laalg
  7. * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
  8. * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  9. * - PACK_STACK
  10. * - 64BIT
  11. *
  12. * Copyright IBM Corp. 2012,2015
  13. *
  14. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15. * Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16. */
  17. #define KMSG_COMPONENT "bpf_jit"
  18. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  19. #include <linux/netdevice.h>
  20. #include <linux/filter.h>
  21. #include <linux/init.h>
  22. #include <linux/bpf.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/dis.h>
  25. #include "bpf_jit.h"
  26. int bpf_jit_enable __read_mostly;
  27. struct bpf_jit {
  28. u32 seen; /* Flags to remember seen eBPF instructions */
  29. u32 seen_reg[16]; /* Array to remember which registers are used */
  30. u32 *addrs; /* Array with relative instruction addresses */
  31. u8 *prg_buf; /* Start of program */
  32. int size; /* Size of program and literal pool */
  33. int size_prg; /* Size of program */
  34. int prg; /* Current position in program */
  35. int lit_start; /* Start of literal pool */
  36. int lit; /* Current position in literal pool */
  37. int base_ip; /* Base address for literal pool */
  38. int ret0_ip; /* Address of return 0 */
  39. int exit_ip; /* Address of exit */
  40. int tail_call_start; /* Tail call start offset */
  41. int labels[1]; /* Labels for local jumps */
  42. };
  43. #define BPF_SIZE_MAX 0xffff /* Max size for program (16 bit branches) */
  44. #define SEEN_SKB 1 /* skb access */
  45. #define SEEN_MEM 2 /* use mem[] for temporary storage */
  46. #define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
  47. #define SEEN_LITERAL 8 /* code uses literals */
  48. #define SEEN_FUNC 16 /* calls C functions */
  49. #define SEEN_TAIL_CALL 32 /* code uses tail calls */
  50. #define SEEN_SKB_CHANGE 64 /* code changes skb data */
  51. #define SEEN_REG_AX 128 /* code uses constant blinding */
  52. #define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
  53. /*
  54. * s390 registers
  55. */
  56. #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
  57. #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
  58. #define REG_SKB_DATA (MAX_BPF_JIT_REG + 2) /* SKB data register */
  59. #define REG_L (MAX_BPF_JIT_REG + 3) /* Literal pool register */
  60. #define REG_15 (MAX_BPF_JIT_REG + 4) /* Register 15 */
  61. #define REG_0 REG_W0 /* Register 0 */
  62. #define REG_1 REG_W1 /* Register 1 */
  63. #define REG_2 BPF_REG_1 /* Register 2 */
  64. #define REG_14 BPF_REG_0 /* Register 14 */
  65. /*
  66. * Mapping of BPF registers to s390 registers
  67. */
  68. static const int reg2hex[] = {
  69. /* Return code */
  70. [BPF_REG_0] = 14,
  71. /* Function parameters */
  72. [BPF_REG_1] = 2,
  73. [BPF_REG_2] = 3,
  74. [BPF_REG_3] = 4,
  75. [BPF_REG_4] = 5,
  76. [BPF_REG_5] = 6,
  77. /* Call saved registers */
  78. [BPF_REG_6] = 7,
  79. [BPF_REG_7] = 8,
  80. [BPF_REG_8] = 9,
  81. [BPF_REG_9] = 10,
  82. /* BPF stack pointer */
  83. [BPF_REG_FP] = 13,
  84. /* Register for blinding (shared with REG_SKB_DATA) */
  85. [BPF_REG_AX] = 12,
  86. /* SKB data pointer */
  87. [REG_SKB_DATA] = 12,
  88. /* Work registers for s390x backend */
  89. [REG_W0] = 0,
  90. [REG_W1] = 1,
  91. [REG_L] = 11,
  92. [REG_15] = 15,
  93. };
  94. static inline u32 reg(u32 dst_reg, u32 src_reg)
  95. {
  96. return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
  97. }
  98. static inline u32 reg_high(u32 reg)
  99. {
  100. return reg2hex[reg] << 4;
  101. }
  102. static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
  103. {
  104. u32 r1 = reg2hex[b1];
  105. if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
  106. jit->seen_reg[r1] = 1;
  107. }
  108. #define REG_SET_SEEN(b1) \
  109. ({ \
  110. reg_set_seen(jit, b1); \
  111. })
  112. #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
  113. /*
  114. * EMIT macros for code generation
  115. */
  116. #define _EMIT2(op) \
  117. ({ \
  118. if (jit->prg_buf) \
  119. *(u16 *) (jit->prg_buf + jit->prg) = op; \
  120. jit->prg += 2; \
  121. })
  122. #define EMIT2(op, b1, b2) \
  123. ({ \
  124. _EMIT2(op | reg(b1, b2)); \
  125. REG_SET_SEEN(b1); \
  126. REG_SET_SEEN(b2); \
  127. })
  128. #define _EMIT4(op) \
  129. ({ \
  130. if (jit->prg_buf) \
  131. *(u32 *) (jit->prg_buf + jit->prg) = op; \
  132. jit->prg += 4; \
  133. })
  134. #define EMIT4(op, b1, b2) \
  135. ({ \
  136. _EMIT4(op | reg(b1, b2)); \
  137. REG_SET_SEEN(b1); \
  138. REG_SET_SEEN(b2); \
  139. })
  140. #define EMIT4_RRF(op, b1, b2, b3) \
  141. ({ \
  142. _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
  143. REG_SET_SEEN(b1); \
  144. REG_SET_SEEN(b2); \
  145. REG_SET_SEEN(b3); \
  146. })
  147. #define _EMIT4_DISP(op, disp) \
  148. ({ \
  149. unsigned int __disp = (disp) & 0xfff; \
  150. _EMIT4(op | __disp); \
  151. })
  152. #define EMIT4_DISP(op, b1, b2, disp) \
  153. ({ \
  154. _EMIT4_DISP(op | reg_high(b1) << 16 | \
  155. reg_high(b2) << 8, disp); \
  156. REG_SET_SEEN(b1); \
  157. REG_SET_SEEN(b2); \
  158. })
  159. #define EMIT4_IMM(op, b1, imm) \
  160. ({ \
  161. unsigned int __imm = (imm) & 0xffff; \
  162. _EMIT4(op | reg_high(b1) << 16 | __imm); \
  163. REG_SET_SEEN(b1); \
  164. })
  165. #define EMIT4_PCREL(op, pcrel) \
  166. ({ \
  167. long __pcrel = ((pcrel) >> 1) & 0xffff; \
  168. _EMIT4(op | __pcrel); \
  169. })
  170. #define _EMIT6(op1, op2) \
  171. ({ \
  172. if (jit->prg_buf) { \
  173. *(u32 *) (jit->prg_buf + jit->prg) = op1; \
  174. *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
  175. } \
  176. jit->prg += 6; \
  177. })
  178. #define _EMIT6_DISP(op1, op2, disp) \
  179. ({ \
  180. unsigned int __disp = (disp) & 0xfff; \
  181. _EMIT6(op1 | __disp, op2); \
  182. })
  183. #define _EMIT6_DISP_LH(op1, op2, disp) \
  184. ({ \
  185. u32 _disp = (u32) disp; \
  186. unsigned int __disp_h = _disp & 0xff000; \
  187. unsigned int __disp_l = _disp & 0x00fff; \
  188. _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
  189. })
  190. #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
  191. ({ \
  192. _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
  193. reg_high(b3) << 8, op2, disp); \
  194. REG_SET_SEEN(b1); \
  195. REG_SET_SEEN(b2); \
  196. REG_SET_SEEN(b3); \
  197. })
  198. #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
  199. ({ \
  200. int rel = (jit->labels[label] - jit->prg) >> 1; \
  201. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
  202. op2 | mask << 12); \
  203. REG_SET_SEEN(b1); \
  204. REG_SET_SEEN(b2); \
  205. })
  206. #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
  207. ({ \
  208. int rel = (jit->labels[label] - jit->prg) >> 1; \
  209. _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
  210. (rel & 0xffff), op2 | (imm & 0xff) << 8); \
  211. REG_SET_SEEN(b1); \
  212. BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
  213. })
  214. #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
  215. ({ \
  216. /* Branch instruction needs 6 bytes */ \
  217. int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
  218. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
  219. REG_SET_SEEN(b1); \
  220. REG_SET_SEEN(b2); \
  221. })
  222. #define _EMIT6_IMM(op, imm) \
  223. ({ \
  224. unsigned int __imm = (imm); \
  225. _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
  226. })
  227. #define EMIT6_IMM(op, b1, imm) \
  228. ({ \
  229. _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
  230. REG_SET_SEEN(b1); \
  231. })
  232. #define EMIT_CONST_U32(val) \
  233. ({ \
  234. unsigned int ret; \
  235. ret = jit->lit - jit->base_ip; \
  236. jit->seen |= SEEN_LITERAL; \
  237. if (jit->prg_buf) \
  238. *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
  239. jit->lit += 4; \
  240. ret; \
  241. })
  242. #define EMIT_CONST_U64(val) \
  243. ({ \
  244. unsigned int ret; \
  245. ret = jit->lit - jit->base_ip; \
  246. jit->seen |= SEEN_LITERAL; \
  247. if (jit->prg_buf) \
  248. *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
  249. jit->lit += 8; \
  250. ret; \
  251. })
  252. #define EMIT_ZERO(b1) \
  253. ({ \
  254. /* llgfr %dst,%dst (zero extend to 64 bit) */ \
  255. EMIT4(0xb9160000, b1, b1); \
  256. REG_SET_SEEN(b1); \
  257. })
  258. /*
  259. * Fill whole space with illegal instructions
  260. */
  261. static void jit_fill_hole(void *area, unsigned int size)
  262. {
  263. memset(area, 0, size);
  264. }
  265. /*
  266. * Save registers from "rs" (register start) to "re" (register end) on stack
  267. */
  268. static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
  269. {
  270. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  271. if (rs == re)
  272. /* stg %rs,off(%r15) */
  273. _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
  274. else
  275. /* stmg %rs,%re,off(%r15) */
  276. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
  277. }
  278. /*
  279. * Restore registers from "rs" (register start) to "re" (register end) on stack
  280. */
  281. static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
  282. {
  283. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  284. if (jit->seen & SEEN_STACK)
  285. off += STK_OFF;
  286. if (rs == re)
  287. /* lg %rs,off(%r15) */
  288. _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
  289. else
  290. /* lmg %rs,%re,off(%r15) */
  291. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
  292. }
  293. /*
  294. * Return first seen register (from start)
  295. */
  296. static int get_start(struct bpf_jit *jit, int start)
  297. {
  298. int i;
  299. for (i = start; i <= 15; i++) {
  300. if (jit->seen_reg[i])
  301. return i;
  302. }
  303. return 0;
  304. }
  305. /*
  306. * Return last seen register (from start) (gap >= 2)
  307. */
  308. static int get_end(struct bpf_jit *jit, int start)
  309. {
  310. int i;
  311. for (i = start; i < 15; i++) {
  312. if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
  313. return i - 1;
  314. }
  315. return jit->seen_reg[15] ? 15 : 14;
  316. }
  317. #define REGS_SAVE 1
  318. #define REGS_RESTORE 0
  319. /*
  320. * Save and restore clobbered registers (6-15) on stack.
  321. * We save/restore registers in chunks with gap >= 2 registers.
  322. */
  323. static void save_restore_regs(struct bpf_jit *jit, int op)
  324. {
  325. int re = 6, rs;
  326. do {
  327. rs = get_start(jit, re);
  328. if (!rs)
  329. break;
  330. re = get_end(jit, rs + 1);
  331. if (op == REGS_SAVE)
  332. save_regs(jit, rs, re);
  333. else
  334. restore_regs(jit, rs, re);
  335. re++;
  336. } while (re <= 15);
  337. }
  338. /*
  339. * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
  340. * we store the SKB header length on the stack and the SKB data
  341. * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
  342. */
  343. static void emit_load_skb_data_hlen(struct bpf_jit *jit)
  344. {
  345. /* Header length: llgf %w1,<len>(%b1) */
  346. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
  347. offsetof(struct sk_buff, len));
  348. /* s %w1,<data_len>(%b1) */
  349. EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
  350. offsetof(struct sk_buff, data_len));
  351. /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
  352. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
  353. if (!(jit->seen & SEEN_REG_AX))
  354. /* lg %skb_data,data_off(%b1) */
  355. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  356. BPF_REG_1, offsetof(struct sk_buff, data));
  357. }
  358. /*
  359. * Emit function prologue
  360. *
  361. * Save registers and create stack frame if necessary.
  362. * See stack frame layout desription in "bpf_jit.h"!
  363. */
  364. static void bpf_jit_prologue(struct bpf_jit *jit)
  365. {
  366. if (jit->seen & SEEN_TAIL_CALL) {
  367. /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
  368. _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
  369. } else {
  370. /* j tail_call_start: NOP if no tail calls are used */
  371. EMIT4_PCREL(0xa7f40000, 6);
  372. _EMIT2(0);
  373. }
  374. /* Tail calls have to skip above initialization */
  375. jit->tail_call_start = jit->prg;
  376. /* Save registers */
  377. save_restore_regs(jit, REGS_SAVE);
  378. /* Setup literal pool */
  379. if (jit->seen & SEEN_LITERAL) {
  380. /* basr %r13,0 */
  381. EMIT2(0x0d00, REG_L, REG_0);
  382. jit->base_ip = jit->prg;
  383. }
  384. /* Setup stack and backchain */
  385. if (jit->seen & SEEN_STACK) {
  386. if (jit->seen & SEEN_FUNC)
  387. /* lgr %w1,%r15 (backchain) */
  388. EMIT4(0xb9040000, REG_W1, REG_15);
  389. /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
  390. EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
  391. /* aghi %r15,-STK_OFF */
  392. EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
  393. if (jit->seen & SEEN_FUNC)
  394. /* stg %w1,152(%r15) (backchain) */
  395. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
  396. REG_15, 152);
  397. }
  398. if (jit->seen & SEEN_SKB)
  399. emit_load_skb_data_hlen(jit);
  400. if (jit->seen & SEEN_SKB_CHANGE)
  401. /* stg %b1,ST_OFF_SKBP(%r0,%r15) */
  402. EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
  403. STK_OFF_SKBP);
  404. }
  405. /*
  406. * Function epilogue
  407. */
  408. static void bpf_jit_epilogue(struct bpf_jit *jit)
  409. {
  410. /* Return 0 */
  411. if (jit->seen & SEEN_RET0) {
  412. jit->ret0_ip = jit->prg;
  413. /* lghi %b0,0 */
  414. EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
  415. }
  416. jit->exit_ip = jit->prg;
  417. /* Load exit code: lgr %r2,%b0 */
  418. EMIT4(0xb9040000, REG_2, BPF_REG_0);
  419. /* Restore registers */
  420. save_restore_regs(jit, REGS_RESTORE);
  421. /* br %r14 */
  422. _EMIT2(0x07fe);
  423. }
  424. /*
  425. * Compile one eBPF instruction into s390x code
  426. *
  427. * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
  428. * stack space for the large switch statement.
  429. */
  430. static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
  431. {
  432. struct bpf_insn *insn = &fp->insnsi[i];
  433. int jmp_off, last, insn_count = 1;
  434. unsigned int func_addr, mask;
  435. u32 dst_reg = insn->dst_reg;
  436. u32 src_reg = insn->src_reg;
  437. u32 *addrs = jit->addrs;
  438. s32 imm = insn->imm;
  439. s16 off = insn->off;
  440. if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
  441. jit->seen |= SEEN_REG_AX;
  442. switch (insn->code) {
  443. /*
  444. * BPF_MOV
  445. */
  446. case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
  447. /* llgfr %dst,%src */
  448. EMIT4(0xb9160000, dst_reg, src_reg);
  449. break;
  450. case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
  451. /* lgr %dst,%src */
  452. EMIT4(0xb9040000, dst_reg, src_reg);
  453. break;
  454. case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
  455. /* llilf %dst,imm */
  456. EMIT6_IMM(0xc00f0000, dst_reg, imm);
  457. break;
  458. case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
  459. /* lgfi %dst,imm */
  460. EMIT6_IMM(0xc0010000, dst_reg, imm);
  461. break;
  462. /*
  463. * BPF_LD 64
  464. */
  465. case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
  466. {
  467. /* 16 byte instruction that uses two 'struct bpf_insn' */
  468. u64 imm64;
  469. imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
  470. /* lg %dst,<d(imm)>(%l) */
  471. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
  472. EMIT_CONST_U64(imm64));
  473. insn_count = 2;
  474. break;
  475. }
  476. /*
  477. * BPF_ADD
  478. */
  479. case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
  480. /* ar %dst,%src */
  481. EMIT2(0x1a00, dst_reg, src_reg);
  482. EMIT_ZERO(dst_reg);
  483. break;
  484. case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
  485. /* agr %dst,%src */
  486. EMIT4(0xb9080000, dst_reg, src_reg);
  487. break;
  488. case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
  489. if (!imm)
  490. break;
  491. /* alfi %dst,imm */
  492. EMIT6_IMM(0xc20b0000, dst_reg, imm);
  493. EMIT_ZERO(dst_reg);
  494. break;
  495. case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
  496. if (!imm)
  497. break;
  498. /* agfi %dst,imm */
  499. EMIT6_IMM(0xc2080000, dst_reg, imm);
  500. break;
  501. /*
  502. * BPF_SUB
  503. */
  504. case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
  505. /* sr %dst,%src */
  506. EMIT2(0x1b00, dst_reg, src_reg);
  507. EMIT_ZERO(dst_reg);
  508. break;
  509. case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
  510. /* sgr %dst,%src */
  511. EMIT4(0xb9090000, dst_reg, src_reg);
  512. break;
  513. case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
  514. if (!imm)
  515. break;
  516. /* alfi %dst,-imm */
  517. EMIT6_IMM(0xc20b0000, dst_reg, -imm);
  518. EMIT_ZERO(dst_reg);
  519. break;
  520. case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
  521. if (!imm)
  522. break;
  523. /* agfi %dst,-imm */
  524. EMIT6_IMM(0xc2080000, dst_reg, -imm);
  525. break;
  526. /*
  527. * BPF_MUL
  528. */
  529. case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
  530. /* msr %dst,%src */
  531. EMIT4(0xb2520000, dst_reg, src_reg);
  532. EMIT_ZERO(dst_reg);
  533. break;
  534. case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
  535. /* msgr %dst,%src */
  536. EMIT4(0xb90c0000, dst_reg, src_reg);
  537. break;
  538. case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
  539. if (imm == 1)
  540. break;
  541. /* msfi %r5,imm */
  542. EMIT6_IMM(0xc2010000, dst_reg, imm);
  543. EMIT_ZERO(dst_reg);
  544. break;
  545. case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
  546. if (imm == 1)
  547. break;
  548. /* msgfi %dst,imm */
  549. EMIT6_IMM(0xc2000000, dst_reg, imm);
  550. break;
  551. /*
  552. * BPF_DIV / BPF_MOD
  553. */
  554. case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
  555. case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
  556. {
  557. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  558. jit->seen |= SEEN_RET0;
  559. /* ltr %src,%src (if src == 0 goto fail) */
  560. EMIT2(0x1200, src_reg, src_reg);
  561. /* jz <ret0> */
  562. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  563. /* lhi %w0,0 */
  564. EMIT4_IMM(0xa7080000, REG_W0, 0);
  565. /* lr %w1,%dst */
  566. EMIT2(0x1800, REG_W1, dst_reg);
  567. /* dlr %w0,%src */
  568. EMIT4(0xb9970000, REG_W0, src_reg);
  569. /* llgfr %dst,%rc */
  570. EMIT4(0xb9160000, dst_reg, rc_reg);
  571. break;
  572. }
  573. case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
  574. case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
  575. {
  576. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  577. jit->seen |= SEEN_RET0;
  578. /* ltgr %src,%src (if src == 0 goto fail) */
  579. EMIT4(0xb9020000, src_reg, src_reg);
  580. /* jz <ret0> */
  581. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  582. /* lghi %w0,0 */
  583. EMIT4_IMM(0xa7090000, REG_W0, 0);
  584. /* lgr %w1,%dst */
  585. EMIT4(0xb9040000, REG_W1, dst_reg);
  586. /* dlgr %w0,%dst */
  587. EMIT4(0xb9870000, REG_W0, src_reg);
  588. /* lgr %dst,%rc */
  589. EMIT4(0xb9040000, dst_reg, rc_reg);
  590. break;
  591. }
  592. case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
  593. case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
  594. {
  595. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  596. if (imm == 1) {
  597. if (BPF_OP(insn->code) == BPF_MOD)
  598. /* lhgi %dst,0 */
  599. EMIT4_IMM(0xa7090000, dst_reg, 0);
  600. break;
  601. }
  602. /* lhi %w0,0 */
  603. EMIT4_IMM(0xa7080000, REG_W0, 0);
  604. /* lr %w1,%dst */
  605. EMIT2(0x1800, REG_W1, dst_reg);
  606. /* dl %w0,<d(imm)>(%l) */
  607. EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
  608. EMIT_CONST_U32(imm));
  609. /* llgfr %dst,%rc */
  610. EMIT4(0xb9160000, dst_reg, rc_reg);
  611. break;
  612. }
  613. case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
  614. case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
  615. {
  616. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  617. if (imm == 1) {
  618. if (BPF_OP(insn->code) == BPF_MOD)
  619. /* lhgi %dst,0 */
  620. EMIT4_IMM(0xa7090000, dst_reg, 0);
  621. break;
  622. }
  623. /* lghi %w0,0 */
  624. EMIT4_IMM(0xa7090000, REG_W0, 0);
  625. /* lgr %w1,%dst */
  626. EMIT4(0xb9040000, REG_W1, dst_reg);
  627. /* dlg %w0,<d(imm)>(%l) */
  628. EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
  629. EMIT_CONST_U64(imm));
  630. /* lgr %dst,%rc */
  631. EMIT4(0xb9040000, dst_reg, rc_reg);
  632. break;
  633. }
  634. /*
  635. * BPF_AND
  636. */
  637. case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
  638. /* nr %dst,%src */
  639. EMIT2(0x1400, dst_reg, src_reg);
  640. EMIT_ZERO(dst_reg);
  641. break;
  642. case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
  643. /* ngr %dst,%src */
  644. EMIT4(0xb9800000, dst_reg, src_reg);
  645. break;
  646. case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
  647. /* nilf %dst,imm */
  648. EMIT6_IMM(0xc00b0000, dst_reg, imm);
  649. EMIT_ZERO(dst_reg);
  650. break;
  651. case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
  652. /* ng %dst,<d(imm)>(%l) */
  653. EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
  654. EMIT_CONST_U64(imm));
  655. break;
  656. /*
  657. * BPF_OR
  658. */
  659. case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
  660. /* or %dst,%src */
  661. EMIT2(0x1600, dst_reg, src_reg);
  662. EMIT_ZERO(dst_reg);
  663. break;
  664. case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
  665. /* ogr %dst,%src */
  666. EMIT4(0xb9810000, dst_reg, src_reg);
  667. break;
  668. case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
  669. /* oilf %dst,imm */
  670. EMIT6_IMM(0xc00d0000, dst_reg, imm);
  671. EMIT_ZERO(dst_reg);
  672. break;
  673. case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
  674. /* og %dst,<d(imm)>(%l) */
  675. EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
  676. EMIT_CONST_U64(imm));
  677. break;
  678. /*
  679. * BPF_XOR
  680. */
  681. case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
  682. /* xr %dst,%src */
  683. EMIT2(0x1700, dst_reg, src_reg);
  684. EMIT_ZERO(dst_reg);
  685. break;
  686. case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
  687. /* xgr %dst,%src */
  688. EMIT4(0xb9820000, dst_reg, src_reg);
  689. break;
  690. case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
  691. if (!imm)
  692. break;
  693. /* xilf %dst,imm */
  694. EMIT6_IMM(0xc0070000, dst_reg, imm);
  695. EMIT_ZERO(dst_reg);
  696. break;
  697. case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
  698. /* xg %dst,<d(imm)>(%l) */
  699. EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
  700. EMIT_CONST_U64(imm));
  701. break;
  702. /*
  703. * BPF_LSH
  704. */
  705. case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
  706. /* sll %dst,0(%src) */
  707. EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
  708. EMIT_ZERO(dst_reg);
  709. break;
  710. case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
  711. /* sllg %dst,%dst,0(%src) */
  712. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
  713. break;
  714. case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
  715. if (imm == 0)
  716. break;
  717. /* sll %dst,imm(%r0) */
  718. EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
  719. EMIT_ZERO(dst_reg);
  720. break;
  721. case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
  722. if (imm == 0)
  723. break;
  724. /* sllg %dst,%dst,imm(%r0) */
  725. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
  726. break;
  727. /*
  728. * BPF_RSH
  729. */
  730. case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
  731. /* srl %dst,0(%src) */
  732. EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
  733. EMIT_ZERO(dst_reg);
  734. break;
  735. case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
  736. /* srlg %dst,%dst,0(%src) */
  737. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
  738. break;
  739. case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
  740. if (imm == 0)
  741. break;
  742. /* srl %dst,imm(%r0) */
  743. EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
  744. EMIT_ZERO(dst_reg);
  745. break;
  746. case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
  747. if (imm == 0)
  748. break;
  749. /* srlg %dst,%dst,imm(%r0) */
  750. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
  751. break;
  752. /*
  753. * BPF_ARSH
  754. */
  755. case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
  756. /* srag %dst,%dst,0(%src) */
  757. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
  758. break;
  759. case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
  760. if (imm == 0)
  761. break;
  762. /* srag %dst,%dst,imm(%r0) */
  763. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
  764. break;
  765. /*
  766. * BPF_NEG
  767. */
  768. case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
  769. /* lcr %dst,%dst */
  770. EMIT2(0x1300, dst_reg, dst_reg);
  771. EMIT_ZERO(dst_reg);
  772. break;
  773. case BPF_ALU64 | BPF_NEG: /* dst = -dst */
  774. /* lcgr %dst,%dst */
  775. EMIT4(0xb9130000, dst_reg, dst_reg);
  776. break;
  777. /*
  778. * BPF_FROM_BE/LE
  779. */
  780. case BPF_ALU | BPF_END | BPF_FROM_BE:
  781. /* s390 is big endian, therefore only clear high order bytes */
  782. switch (imm) {
  783. case 16: /* dst = (u16) cpu_to_be16(dst) */
  784. /* llghr %dst,%dst */
  785. EMIT4(0xb9850000, dst_reg, dst_reg);
  786. break;
  787. case 32: /* dst = (u32) cpu_to_be32(dst) */
  788. /* llgfr %dst,%dst */
  789. EMIT4(0xb9160000, dst_reg, dst_reg);
  790. break;
  791. case 64: /* dst = (u64) cpu_to_be64(dst) */
  792. break;
  793. }
  794. break;
  795. case BPF_ALU | BPF_END | BPF_FROM_LE:
  796. switch (imm) {
  797. case 16: /* dst = (u16) cpu_to_le16(dst) */
  798. /* lrvr %dst,%dst */
  799. EMIT4(0xb91f0000, dst_reg, dst_reg);
  800. /* srl %dst,16(%r0) */
  801. EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
  802. /* llghr %dst,%dst */
  803. EMIT4(0xb9850000, dst_reg, dst_reg);
  804. break;
  805. case 32: /* dst = (u32) cpu_to_le32(dst) */
  806. /* lrvr %dst,%dst */
  807. EMIT4(0xb91f0000, dst_reg, dst_reg);
  808. /* llgfr %dst,%dst */
  809. EMIT4(0xb9160000, dst_reg, dst_reg);
  810. break;
  811. case 64: /* dst = (u64) cpu_to_le64(dst) */
  812. /* lrvgr %dst,%dst */
  813. EMIT4(0xb90f0000, dst_reg, dst_reg);
  814. break;
  815. }
  816. break;
  817. /*
  818. * BPF_ST(X)
  819. */
  820. case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
  821. /* stcy %src,off(%dst) */
  822. EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
  823. jit->seen |= SEEN_MEM;
  824. break;
  825. case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
  826. /* sthy %src,off(%dst) */
  827. EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
  828. jit->seen |= SEEN_MEM;
  829. break;
  830. case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
  831. /* sty %src,off(%dst) */
  832. EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
  833. jit->seen |= SEEN_MEM;
  834. break;
  835. case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
  836. /* stg %src,off(%dst) */
  837. EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
  838. jit->seen |= SEEN_MEM;
  839. break;
  840. case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
  841. /* lhi %w0,imm */
  842. EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
  843. /* stcy %w0,off(dst) */
  844. EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
  845. jit->seen |= SEEN_MEM;
  846. break;
  847. case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
  848. /* lhi %w0,imm */
  849. EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
  850. /* sthy %w0,off(dst) */
  851. EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
  852. jit->seen |= SEEN_MEM;
  853. break;
  854. case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
  855. /* llilf %w0,imm */
  856. EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
  857. /* sty %w0,off(%dst) */
  858. EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
  859. jit->seen |= SEEN_MEM;
  860. break;
  861. case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
  862. /* lgfi %w0,imm */
  863. EMIT6_IMM(0xc0010000, REG_W0, imm);
  864. /* stg %w0,off(%dst) */
  865. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
  866. jit->seen |= SEEN_MEM;
  867. break;
  868. /*
  869. * BPF_STX XADD (atomic_add)
  870. */
  871. case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
  872. /* laal %w0,%src,off(%dst) */
  873. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
  874. dst_reg, off);
  875. jit->seen |= SEEN_MEM;
  876. break;
  877. case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
  878. /* laalg %w0,%src,off(%dst) */
  879. EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
  880. dst_reg, off);
  881. jit->seen |= SEEN_MEM;
  882. break;
  883. /*
  884. * BPF_LDX
  885. */
  886. case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
  887. /* llgc %dst,0(off,%src) */
  888. EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
  889. jit->seen |= SEEN_MEM;
  890. break;
  891. case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
  892. /* llgh %dst,0(off,%src) */
  893. EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
  894. jit->seen |= SEEN_MEM;
  895. break;
  896. case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
  897. /* llgf %dst,off(%src) */
  898. jit->seen |= SEEN_MEM;
  899. EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
  900. break;
  901. case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
  902. /* lg %dst,0(off,%src) */
  903. jit->seen |= SEEN_MEM;
  904. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
  905. break;
  906. /*
  907. * BPF_JMP / CALL
  908. */
  909. case BPF_JMP | BPF_CALL:
  910. {
  911. /*
  912. * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
  913. */
  914. const u64 func = (u64)__bpf_call_base + imm;
  915. REG_SET_SEEN(BPF_REG_5);
  916. jit->seen |= SEEN_FUNC;
  917. /* lg %w1,<d(imm)>(%l) */
  918. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
  919. EMIT_CONST_U64(func));
  920. /* basr %r14,%w1 */
  921. EMIT2(0x0d00, REG_14, REG_W1);
  922. /* lgr %b0,%r2: load return value into %b0 */
  923. EMIT4(0xb9040000, BPF_REG_0, REG_2);
  924. if (bpf_helper_changes_pkt_data((void *)func)) {
  925. jit->seen |= SEEN_SKB_CHANGE;
  926. /* lg %b1,ST_OFF_SKBP(%r15) */
  927. EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
  928. REG_15, STK_OFF_SKBP);
  929. emit_load_skb_data_hlen(jit);
  930. }
  931. break;
  932. }
  933. case BPF_JMP | BPF_CALL | BPF_X:
  934. /*
  935. * Implicit input:
  936. * B1: pointer to ctx
  937. * B2: pointer to bpf_array
  938. * B3: index in bpf_array
  939. */
  940. jit->seen |= SEEN_TAIL_CALL;
  941. /*
  942. * if (index >= array->map.max_entries)
  943. * goto out;
  944. */
  945. /* llgf %w1,map.max_entries(%b2) */
  946. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
  947. offsetof(struct bpf_array, map.max_entries));
  948. /* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
  949. EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
  950. REG_W1, 0, 0xa);
  951. /*
  952. * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
  953. * goto out;
  954. */
  955. if (jit->seen & SEEN_STACK)
  956. off = STK_OFF_TCCNT + STK_OFF;
  957. else
  958. off = STK_OFF_TCCNT;
  959. /* lhi %w0,1 */
  960. EMIT4_IMM(0xa7080000, REG_W0, 1);
  961. /* laal %w1,%w0,off(%r15) */
  962. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
  963. /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
  964. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
  965. MAX_TAIL_CALL_CNT, 0, 0x2);
  966. /*
  967. * prog = array->ptrs[index];
  968. * if (prog == NULL)
  969. * goto out;
  970. */
  971. /* sllg %r1,%b3,3: %r1 = index * 8 */
  972. EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
  973. /* lg %r1,prog(%b2,%r1) */
  974. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
  975. REG_1, offsetof(struct bpf_array, ptrs));
  976. /* clgij %r1,0,0x8,label0 */
  977. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
  978. /*
  979. * Restore registers before calling function
  980. */
  981. save_restore_regs(jit, REGS_RESTORE);
  982. /*
  983. * goto *(prog->bpf_func + tail_call_start);
  984. */
  985. /* lg %r1,bpf_func(%r1) */
  986. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
  987. offsetof(struct bpf_prog, bpf_func));
  988. /* bc 0xf,tail_call_start(%r1) */
  989. _EMIT4(0x47f01000 + jit->tail_call_start);
  990. /* out: */
  991. jit->labels[0] = jit->prg;
  992. break;
  993. case BPF_JMP | BPF_EXIT: /* return b0 */
  994. last = (i == fp->len - 1) ? 1 : 0;
  995. if (last && !(jit->seen & SEEN_RET0))
  996. break;
  997. /* j <exit> */
  998. EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
  999. break;
  1000. /*
  1001. * Branch relative (number of skipped instructions) to offset on
  1002. * condition.
  1003. *
  1004. * Condition code to mask mapping:
  1005. *
  1006. * CC | Description | Mask
  1007. * ------------------------------
  1008. * 0 | Operands equal | 8
  1009. * 1 | First operand low | 4
  1010. * 2 | First operand high | 2
  1011. * 3 | Unused | 1
  1012. *
  1013. * For s390x relative branches: ip = ip + off_bytes
  1014. * For BPF relative branches: insn = insn + off_insns + 1
  1015. *
  1016. * For example for s390x with offset 0 we jump to the branch
  1017. * instruction itself (loop) and for BPF with offset 0 we
  1018. * branch to the instruction behind the branch.
  1019. */
  1020. case BPF_JMP | BPF_JA: /* if (true) */
  1021. mask = 0xf000; /* j */
  1022. goto branch_oc;
  1023. case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
  1024. mask = 0x2000; /* jh */
  1025. goto branch_ks;
  1026. case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
  1027. mask = 0xa000; /* jhe */
  1028. goto branch_ks;
  1029. case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
  1030. mask = 0x2000; /* jh */
  1031. goto branch_ku;
  1032. case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
  1033. mask = 0xa000; /* jhe */
  1034. goto branch_ku;
  1035. case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
  1036. mask = 0x7000; /* jne */
  1037. goto branch_ku;
  1038. case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
  1039. mask = 0x8000; /* je */
  1040. goto branch_ku;
  1041. case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
  1042. mask = 0x7000; /* jnz */
  1043. /* lgfi %w1,imm (load sign extend imm) */
  1044. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1045. /* ngr %w1,%dst */
  1046. EMIT4(0xb9800000, REG_W1, dst_reg);
  1047. goto branch_oc;
  1048. case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
  1049. mask = 0x2000; /* jh */
  1050. goto branch_xs;
  1051. case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
  1052. mask = 0xa000; /* jhe */
  1053. goto branch_xs;
  1054. case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
  1055. mask = 0x2000; /* jh */
  1056. goto branch_xu;
  1057. case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
  1058. mask = 0xa000; /* jhe */
  1059. goto branch_xu;
  1060. case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
  1061. mask = 0x7000; /* jne */
  1062. goto branch_xu;
  1063. case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
  1064. mask = 0x8000; /* je */
  1065. goto branch_xu;
  1066. case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
  1067. mask = 0x7000; /* jnz */
  1068. /* ngrk %w1,%dst,%src */
  1069. EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
  1070. goto branch_oc;
  1071. branch_ks:
  1072. /* lgfi %w1,imm (load sign extend imm) */
  1073. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1074. /* cgrj %dst,%w1,mask,off */
  1075. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
  1076. break;
  1077. branch_ku:
  1078. /* lgfi %w1,imm (load sign extend imm) */
  1079. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1080. /* clgrj %dst,%w1,mask,off */
  1081. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
  1082. break;
  1083. branch_xs:
  1084. /* cgrj %dst,%src,mask,off */
  1085. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
  1086. break;
  1087. branch_xu:
  1088. /* clgrj %dst,%src,mask,off */
  1089. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
  1090. break;
  1091. branch_oc:
  1092. /* brc mask,jmp_off (branch instruction needs 4 bytes) */
  1093. jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
  1094. EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
  1095. break;
  1096. /*
  1097. * BPF_LD
  1098. */
  1099. case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
  1100. case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
  1101. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1102. func_addr = __pa(sk_load_byte_pos);
  1103. else
  1104. func_addr = __pa(sk_load_byte);
  1105. goto call_fn;
  1106. case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
  1107. case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
  1108. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1109. func_addr = __pa(sk_load_half_pos);
  1110. else
  1111. func_addr = __pa(sk_load_half);
  1112. goto call_fn;
  1113. case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
  1114. case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
  1115. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1116. func_addr = __pa(sk_load_word_pos);
  1117. else
  1118. func_addr = __pa(sk_load_word);
  1119. goto call_fn;
  1120. call_fn:
  1121. jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
  1122. REG_SET_SEEN(REG_14); /* Return address of possible func call */
  1123. /*
  1124. * Implicit input:
  1125. * BPF_REG_6 (R7) : skb pointer
  1126. * REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
  1127. *
  1128. * Calculated input:
  1129. * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
  1130. * BPF_REG_5 (R6) : return address
  1131. *
  1132. * Output:
  1133. * BPF_REG_0 (R14): data read from skb
  1134. *
  1135. * Scratch registers (BPF_REG_1-5)
  1136. */
  1137. /* Call function: llilf %w1,func_addr */
  1138. EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
  1139. /* Offset: lgfi %b2,imm */
  1140. EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
  1141. if (BPF_MODE(insn->code) == BPF_IND)
  1142. /* agfr %b2,%src (%src is s32 here) */
  1143. EMIT4(0xb9180000, BPF_REG_2, src_reg);
  1144. /* Reload REG_SKB_DATA if BPF_REG_AX is used */
  1145. if (jit->seen & SEEN_REG_AX)
  1146. /* lg %skb_data,data_off(%b6) */
  1147. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  1148. BPF_REG_6, offsetof(struct sk_buff, data));
  1149. /* basr %b5,%w1 (%b5 is call saved) */
  1150. EMIT2(0x0d00, BPF_REG_5, REG_W1);
  1151. /*
  1152. * Note: For fast access we jump directly after the
  1153. * jnz instruction from bpf_jit.S
  1154. */
  1155. /* jnz <ret0> */
  1156. EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
  1157. break;
  1158. default: /* too complex, give up */
  1159. pr_err("Unknown opcode %02x\n", insn->code);
  1160. return -1;
  1161. }
  1162. return insn_count;
  1163. }
  1164. /*
  1165. * Compile eBPF program into s390x code
  1166. */
  1167. static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
  1168. {
  1169. int i, insn_count;
  1170. jit->lit = jit->lit_start;
  1171. jit->prg = 0;
  1172. bpf_jit_prologue(jit);
  1173. for (i = 0; i < fp->len; i += insn_count) {
  1174. insn_count = bpf_jit_insn(jit, fp, i);
  1175. if (insn_count < 0)
  1176. return -1;
  1177. jit->addrs[i + 1] = jit->prg; /* Next instruction address */
  1178. }
  1179. bpf_jit_epilogue(jit);
  1180. jit->lit_start = jit->prg;
  1181. jit->size = jit->lit;
  1182. jit->size_prg = jit->prg;
  1183. return 0;
  1184. }
  1185. /*
  1186. * Classic BPF function stub. BPF programs will be converted into
  1187. * eBPF and then bpf_int_jit_compile() will be called.
  1188. */
  1189. void bpf_jit_compile(struct bpf_prog *fp)
  1190. {
  1191. }
  1192. /*
  1193. * Compile eBPF program "fp"
  1194. */
  1195. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
  1196. {
  1197. struct bpf_prog *tmp, *orig_fp = fp;
  1198. struct bpf_binary_header *header;
  1199. bool tmp_blinded = false;
  1200. struct bpf_jit jit;
  1201. int pass;
  1202. if (!bpf_jit_enable)
  1203. return orig_fp;
  1204. tmp = bpf_jit_blind_constants(fp);
  1205. /*
  1206. * If blinding was requested and we failed during blinding,
  1207. * we must fall back to the interpreter.
  1208. */
  1209. if (IS_ERR(tmp))
  1210. return orig_fp;
  1211. if (tmp != fp) {
  1212. tmp_blinded = true;
  1213. fp = tmp;
  1214. }
  1215. memset(&jit, 0, sizeof(jit));
  1216. jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
  1217. if (jit.addrs == NULL) {
  1218. fp = orig_fp;
  1219. goto out;
  1220. }
  1221. /*
  1222. * Three initial passes:
  1223. * - 1/2: Determine clobbered registers
  1224. * - 3: Calculate program size and addrs arrray
  1225. */
  1226. for (pass = 1; pass <= 3; pass++) {
  1227. if (bpf_jit_prog(&jit, fp)) {
  1228. fp = orig_fp;
  1229. goto free_addrs;
  1230. }
  1231. }
  1232. /*
  1233. * Final pass: Allocate and generate program
  1234. */
  1235. if (jit.size >= BPF_SIZE_MAX) {
  1236. fp = orig_fp;
  1237. goto free_addrs;
  1238. }
  1239. header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
  1240. if (!header) {
  1241. fp = orig_fp;
  1242. goto free_addrs;
  1243. }
  1244. if (bpf_jit_prog(&jit, fp)) {
  1245. fp = orig_fp;
  1246. goto free_addrs;
  1247. }
  1248. if (bpf_jit_enable > 1) {
  1249. bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
  1250. if (jit.prg_buf)
  1251. print_fn_code(jit.prg_buf, jit.size_prg);
  1252. }
  1253. if (jit.prg_buf) {
  1254. set_memory_ro((unsigned long)header, header->pages);
  1255. fp->bpf_func = (void *) jit.prg_buf;
  1256. fp->jited = 1;
  1257. }
  1258. free_addrs:
  1259. kfree(jit.addrs);
  1260. out:
  1261. if (tmp_blinded)
  1262. bpf_jit_prog_release_other(fp, fp == orig_fp ?
  1263. tmp : orig_fp);
  1264. return fp;
  1265. }
  1266. /*
  1267. * Free eBPF program
  1268. */
  1269. void bpf_jit_free(struct bpf_prog *fp)
  1270. {
  1271. unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
  1272. struct bpf_binary_header *header = (void *)addr;
  1273. if (!fp->jited)
  1274. goto free_filter;
  1275. set_memory_rw(addr, header->pages);
  1276. bpf_jit_binary_free(header);
  1277. free_filter:
  1278. bpf_prog_unlock_free(fp);
  1279. }