vmem.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. /*
  2. * Copyright IBM Corp. 2006
  3. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  4. */
  5. #include <linux/bootmem.h>
  6. #include <linux/pfn.h>
  7. #include <linux/mm.h>
  8. #include <linux/module.h>
  9. #include <linux/list.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/slab.h>
  12. #include <linux/memblock.h>
  13. #include <asm/cacheflush.h>
  14. #include <asm/pgalloc.h>
  15. #include <asm/pgtable.h>
  16. #include <asm/setup.h>
  17. #include <asm/tlbflush.h>
  18. #include <asm/sections.h>
  19. static DEFINE_MUTEX(vmem_mutex);
  20. struct memory_segment {
  21. struct list_head list;
  22. unsigned long start;
  23. unsigned long size;
  24. };
  25. static LIST_HEAD(mem_segs);
  26. static void __ref *vmem_alloc_pages(unsigned int order)
  27. {
  28. unsigned long size = PAGE_SIZE << order;
  29. if (slab_is_available())
  30. return (void *)__get_free_pages(GFP_KERNEL, order);
  31. return (void *) memblock_alloc(size, size);
  32. }
  33. static inline pud_t *vmem_pud_alloc(void)
  34. {
  35. pud_t *pud = NULL;
  36. pud = vmem_alloc_pages(2);
  37. if (!pud)
  38. return NULL;
  39. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  40. return pud;
  41. }
  42. pmd_t *vmem_pmd_alloc(void)
  43. {
  44. pmd_t *pmd = NULL;
  45. pmd = vmem_alloc_pages(2);
  46. if (!pmd)
  47. return NULL;
  48. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  49. return pmd;
  50. }
  51. pte_t __ref *vmem_pte_alloc(void)
  52. {
  53. unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
  54. pte_t *pte;
  55. if (slab_is_available())
  56. pte = (pte_t *) page_table_alloc(&init_mm);
  57. else
  58. pte = (pte_t *) memblock_alloc(size, size);
  59. if (!pte)
  60. return NULL;
  61. clear_table((unsigned long *) pte, _PAGE_INVALID, size);
  62. return pte;
  63. }
  64. /*
  65. * Add a physical memory range to the 1:1 mapping.
  66. */
  67. static int vmem_add_mem(unsigned long start, unsigned long size)
  68. {
  69. unsigned long pages4k, pages1m, pages2g;
  70. unsigned long end = start + size;
  71. unsigned long address = start;
  72. pgd_t *pg_dir;
  73. pud_t *pu_dir;
  74. pmd_t *pm_dir;
  75. pte_t *pt_dir;
  76. int ret = -ENOMEM;
  77. pages4k = pages1m = pages2g = 0;
  78. while (address < end) {
  79. pg_dir = pgd_offset_k(address);
  80. if (pgd_none(*pg_dir)) {
  81. pu_dir = vmem_pud_alloc();
  82. if (!pu_dir)
  83. goto out;
  84. pgd_populate(&init_mm, pg_dir, pu_dir);
  85. }
  86. pu_dir = pud_offset(pg_dir, address);
  87. if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
  88. !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
  89. !debug_pagealloc_enabled()) {
  90. pud_val(*pu_dir) = address | pgprot_val(REGION3_KERNEL);
  91. address += PUD_SIZE;
  92. pages2g++;
  93. continue;
  94. }
  95. if (pud_none(*pu_dir)) {
  96. pm_dir = vmem_pmd_alloc();
  97. if (!pm_dir)
  98. goto out;
  99. pud_populate(&init_mm, pu_dir, pm_dir);
  100. }
  101. pm_dir = pmd_offset(pu_dir, address);
  102. if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
  103. !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
  104. !debug_pagealloc_enabled()) {
  105. pmd_val(*pm_dir) = address | pgprot_val(SEGMENT_KERNEL);
  106. address += PMD_SIZE;
  107. pages1m++;
  108. continue;
  109. }
  110. if (pmd_none(*pm_dir)) {
  111. pt_dir = vmem_pte_alloc();
  112. if (!pt_dir)
  113. goto out;
  114. pmd_populate(&init_mm, pm_dir, pt_dir);
  115. }
  116. pt_dir = pte_offset_kernel(pm_dir, address);
  117. pte_val(*pt_dir) = address | pgprot_val(PAGE_KERNEL);
  118. address += PAGE_SIZE;
  119. pages4k++;
  120. }
  121. ret = 0;
  122. out:
  123. update_page_count(PG_DIRECT_MAP_4K, pages4k);
  124. update_page_count(PG_DIRECT_MAP_1M, pages1m);
  125. update_page_count(PG_DIRECT_MAP_2G, pages2g);
  126. return ret;
  127. }
  128. /*
  129. * Remove a physical memory range from the 1:1 mapping.
  130. * Currently only invalidates page table entries.
  131. */
  132. static void vmem_remove_range(unsigned long start, unsigned long size)
  133. {
  134. unsigned long pages4k, pages1m, pages2g;
  135. unsigned long end = start + size;
  136. unsigned long address = start;
  137. pgd_t *pg_dir;
  138. pud_t *pu_dir;
  139. pmd_t *pm_dir;
  140. pte_t *pt_dir;
  141. pages4k = pages1m = pages2g = 0;
  142. while (address < end) {
  143. pg_dir = pgd_offset_k(address);
  144. if (pgd_none(*pg_dir)) {
  145. address += PGDIR_SIZE;
  146. continue;
  147. }
  148. pu_dir = pud_offset(pg_dir, address);
  149. if (pud_none(*pu_dir)) {
  150. address += PUD_SIZE;
  151. continue;
  152. }
  153. if (pud_large(*pu_dir)) {
  154. pud_clear(pu_dir);
  155. address += PUD_SIZE;
  156. pages2g++;
  157. continue;
  158. }
  159. pm_dir = pmd_offset(pu_dir, address);
  160. if (pmd_none(*pm_dir)) {
  161. address += PMD_SIZE;
  162. continue;
  163. }
  164. if (pmd_large(*pm_dir)) {
  165. pmd_clear(pm_dir);
  166. address += PMD_SIZE;
  167. pages1m++;
  168. continue;
  169. }
  170. pt_dir = pte_offset_kernel(pm_dir, address);
  171. pte_clear(&init_mm, address, pt_dir);
  172. address += PAGE_SIZE;
  173. pages4k++;
  174. }
  175. flush_tlb_kernel_range(start, end);
  176. update_page_count(PG_DIRECT_MAP_4K, -pages4k);
  177. update_page_count(PG_DIRECT_MAP_1M, -pages1m);
  178. update_page_count(PG_DIRECT_MAP_2G, -pages2g);
  179. }
  180. /*
  181. * Add a backed mem_map array to the virtual mem_map array.
  182. */
  183. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  184. {
  185. unsigned long address = start;
  186. pgd_t *pg_dir;
  187. pud_t *pu_dir;
  188. pmd_t *pm_dir;
  189. pte_t *pt_dir;
  190. int ret = -ENOMEM;
  191. for (address = start; address < end;) {
  192. pg_dir = pgd_offset_k(address);
  193. if (pgd_none(*pg_dir)) {
  194. pu_dir = vmem_pud_alloc();
  195. if (!pu_dir)
  196. goto out;
  197. pgd_populate(&init_mm, pg_dir, pu_dir);
  198. }
  199. pu_dir = pud_offset(pg_dir, address);
  200. if (pud_none(*pu_dir)) {
  201. pm_dir = vmem_pmd_alloc();
  202. if (!pm_dir)
  203. goto out;
  204. pud_populate(&init_mm, pu_dir, pm_dir);
  205. }
  206. pm_dir = pmd_offset(pu_dir, address);
  207. if (pmd_none(*pm_dir)) {
  208. /* Use 1MB frames for vmemmap if available. We always
  209. * use large frames even if they are only partially
  210. * used.
  211. * Otherwise we would have also page tables since
  212. * vmemmap_populate gets called for each section
  213. * separately. */
  214. if (MACHINE_HAS_EDAT1) {
  215. void *new_page;
  216. new_page = vmemmap_alloc_block(PMD_SIZE, node);
  217. if (!new_page)
  218. goto out;
  219. pmd_val(*pm_dir) = __pa(new_page) |
  220. _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
  221. address = (address + PMD_SIZE) & PMD_MASK;
  222. continue;
  223. }
  224. pt_dir = vmem_pte_alloc();
  225. if (!pt_dir)
  226. goto out;
  227. pmd_populate(&init_mm, pm_dir, pt_dir);
  228. } else if (pmd_large(*pm_dir)) {
  229. address = (address + PMD_SIZE) & PMD_MASK;
  230. continue;
  231. }
  232. pt_dir = pte_offset_kernel(pm_dir, address);
  233. if (pte_none(*pt_dir)) {
  234. void *new_page;
  235. new_page = vmemmap_alloc_block(PAGE_SIZE, node);
  236. if (!new_page)
  237. goto out;
  238. pte_val(*pt_dir) =
  239. __pa(new_page) | pgprot_val(PAGE_KERNEL);
  240. }
  241. address += PAGE_SIZE;
  242. }
  243. ret = 0;
  244. out:
  245. return ret;
  246. }
  247. void vmemmap_free(unsigned long start, unsigned long end)
  248. {
  249. }
  250. /*
  251. * Add memory segment to the segment list if it doesn't overlap with
  252. * an already present segment.
  253. */
  254. static int insert_memory_segment(struct memory_segment *seg)
  255. {
  256. struct memory_segment *tmp;
  257. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  258. seg->start + seg->size < seg->start)
  259. return -ERANGE;
  260. list_for_each_entry(tmp, &mem_segs, list) {
  261. if (seg->start >= tmp->start + tmp->size)
  262. continue;
  263. if (seg->start + seg->size <= tmp->start)
  264. continue;
  265. return -ENOSPC;
  266. }
  267. list_add(&seg->list, &mem_segs);
  268. return 0;
  269. }
  270. /*
  271. * Remove memory segment from the segment list.
  272. */
  273. static void remove_memory_segment(struct memory_segment *seg)
  274. {
  275. list_del(&seg->list);
  276. }
  277. static void __remove_shared_memory(struct memory_segment *seg)
  278. {
  279. remove_memory_segment(seg);
  280. vmem_remove_range(seg->start, seg->size);
  281. }
  282. int vmem_remove_mapping(unsigned long start, unsigned long size)
  283. {
  284. struct memory_segment *seg;
  285. int ret;
  286. mutex_lock(&vmem_mutex);
  287. ret = -ENOENT;
  288. list_for_each_entry(seg, &mem_segs, list) {
  289. if (seg->start == start && seg->size == size)
  290. break;
  291. }
  292. if (seg->start != start || seg->size != size)
  293. goto out;
  294. ret = 0;
  295. __remove_shared_memory(seg);
  296. kfree(seg);
  297. out:
  298. mutex_unlock(&vmem_mutex);
  299. return ret;
  300. }
  301. int vmem_add_mapping(unsigned long start, unsigned long size)
  302. {
  303. struct memory_segment *seg;
  304. int ret;
  305. mutex_lock(&vmem_mutex);
  306. ret = -ENOMEM;
  307. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  308. if (!seg)
  309. goto out;
  310. seg->start = start;
  311. seg->size = size;
  312. ret = insert_memory_segment(seg);
  313. if (ret)
  314. goto out_free;
  315. ret = vmem_add_mem(start, size);
  316. if (ret)
  317. goto out_remove;
  318. goto out;
  319. out_remove:
  320. __remove_shared_memory(seg);
  321. out_free:
  322. kfree(seg);
  323. out:
  324. mutex_unlock(&vmem_mutex);
  325. return ret;
  326. }
  327. /*
  328. * map whole physical memory to virtual memory (identity mapping)
  329. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  330. * additional memory segments.
  331. */
  332. void __init vmem_map_init(void)
  333. {
  334. unsigned long size = _eshared - _stext;
  335. struct memblock_region *reg;
  336. for_each_memblock(memory, reg)
  337. vmem_add_mem(reg->base, reg->size);
  338. set_memory_ro((unsigned long)_stext, size >> PAGE_SHIFT);
  339. pr_info("Write protected kernel read-only data: %luk\n", size >> 10);
  340. }
  341. /*
  342. * Convert memblock.memory to a memory segment list so there is a single
  343. * list that contains all memory segments.
  344. */
  345. static int __init vmem_convert_memory_chunk(void)
  346. {
  347. struct memblock_region *reg;
  348. struct memory_segment *seg;
  349. mutex_lock(&vmem_mutex);
  350. for_each_memblock(memory, reg) {
  351. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  352. if (!seg)
  353. panic("Out of memory...\n");
  354. seg->start = reg->base;
  355. seg->size = reg->size;
  356. insert_memory_segment(seg);
  357. }
  358. mutex_unlock(&vmem_mutex);
  359. return 0;
  360. }
  361. core_initcall(vmem_convert_memory_chunk);