pgtable.h 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2000
  4. * Author(s): Hartmut Penner (hp@de.ibm.com)
  5. * Ulrich Weigand (weigand@de.ibm.com)
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. *
  8. * Derived from "include/asm-i386/pgtable.h"
  9. */
  10. #ifndef _ASM_S390_PGTABLE_H
  11. #define _ASM_S390_PGTABLE_H
  12. /*
  13. * The Linux memory management assumes a three-level page table setup.
  14. * For s390 64 bit we use up to four of the five levels the hardware
  15. * provides (region first tables are not used).
  16. *
  17. * The "pgd_xxx()" functions are trivial for a folded two-level
  18. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  19. * into the pgd entry)
  20. *
  21. * This file contains the functions and defines necessary to modify and use
  22. * the S390 page table tree.
  23. */
  24. #ifndef __ASSEMBLY__
  25. #include <linux/sched.h>
  26. #include <linux/mm_types.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/radix-tree.h>
  29. #include <linux/atomic.h>
  30. #include <asm/bug.h>
  31. #include <asm/page.h>
  32. extern pgd_t swapper_pg_dir[];
  33. extern void paging_init(void);
  34. extern void vmem_map_init(void);
  35. pmd_t *vmem_pmd_alloc(void);
  36. pte_t *vmem_pte_alloc(void);
  37. enum {
  38. PG_DIRECT_MAP_4K = 0,
  39. PG_DIRECT_MAP_1M,
  40. PG_DIRECT_MAP_2G,
  41. PG_DIRECT_MAP_MAX
  42. };
  43. extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  44. static inline void update_page_count(int level, long count)
  45. {
  46. if (IS_ENABLED(CONFIG_PROC_FS))
  47. atomic_long_add(count, &direct_pages_count[level]);
  48. }
  49. struct seq_file;
  50. void arch_report_meminfo(struct seq_file *m);
  51. /*
  52. * The S390 doesn't have any external MMU info: the kernel page
  53. * tables contain all the necessary information.
  54. */
  55. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  56. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  57. /*
  58. * ZERO_PAGE is a global shared page that is always zero; used
  59. * for zero-mapped memory areas etc..
  60. */
  61. extern unsigned long empty_zero_page;
  62. extern unsigned long zero_page_mask;
  63. #define ZERO_PAGE(vaddr) \
  64. (virt_to_page((void *)(empty_zero_page + \
  65. (((unsigned long)(vaddr)) &zero_page_mask))))
  66. #define __HAVE_COLOR_ZERO_PAGE
  67. /* TODO: s390 cannot support io_remap_pfn_range... */
  68. #endif /* !__ASSEMBLY__ */
  69. /*
  70. * PMD_SHIFT determines the size of the area a second-level page
  71. * table can map
  72. * PGDIR_SHIFT determines what a third-level page table entry can map
  73. */
  74. #define PMD_SHIFT 20
  75. #define PUD_SHIFT 31
  76. #define PGDIR_SHIFT 42
  77. #define PMD_SIZE (1UL << PMD_SHIFT)
  78. #define PMD_MASK (~(PMD_SIZE-1))
  79. #define PUD_SIZE (1UL << PUD_SHIFT)
  80. #define PUD_MASK (~(PUD_SIZE-1))
  81. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  82. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  83. /*
  84. * entries per page directory level: the S390 is two-level, so
  85. * we don't really have any PMD directory physically.
  86. * for S390 segment-table entries are combined to one PGD
  87. * that leads to 1024 pte per pgd
  88. */
  89. #define PTRS_PER_PTE 256
  90. #define PTRS_PER_PMD 2048
  91. #define PTRS_PER_PUD 2048
  92. #define PTRS_PER_PGD 2048
  93. #define FIRST_USER_ADDRESS 0UL
  94. #define pte_ERROR(e) \
  95. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  96. #define pmd_ERROR(e) \
  97. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  98. #define pud_ERROR(e) \
  99. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  100. #define pgd_ERROR(e) \
  101. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  102. #ifndef __ASSEMBLY__
  103. /*
  104. * The vmalloc and module area will always be on the topmost area of the
  105. * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
  106. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  107. * modules will reside. That makes sure that inter module branches always
  108. * happen without trampolines and in addition the placement within a 2GB frame
  109. * is branch prediction unit friendly.
  110. */
  111. extern unsigned long VMALLOC_START;
  112. extern unsigned long VMALLOC_END;
  113. extern struct page *vmemmap;
  114. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  115. extern unsigned long MODULES_VADDR;
  116. extern unsigned long MODULES_END;
  117. #define MODULES_VADDR MODULES_VADDR
  118. #define MODULES_END MODULES_END
  119. #define MODULES_LEN (1UL << 31)
  120. static inline int is_module_addr(void *addr)
  121. {
  122. BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
  123. if (addr < (void *)MODULES_VADDR)
  124. return 0;
  125. if (addr > (void *)MODULES_END)
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * A 64 bit pagetable entry of S390 has following format:
  131. * | PFRA |0IPC| OS |
  132. * 0000000000111111111122222222223333333333444444444455555555556666
  133. * 0123456789012345678901234567890123456789012345678901234567890123
  134. *
  135. * I Page-Invalid Bit: Page is not available for address-translation
  136. * P Page-Protection Bit: Store access not possible for page
  137. * C Change-bit override: HW is not required to set change bit
  138. *
  139. * A 64 bit segmenttable entry of S390 has following format:
  140. * | P-table origin | TT
  141. * 0000000000111111111122222222223333333333444444444455555555556666
  142. * 0123456789012345678901234567890123456789012345678901234567890123
  143. *
  144. * I Segment-Invalid Bit: Segment is not available for address-translation
  145. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  146. * P Page-Protection Bit: Store access not possible for page
  147. * TT Type 00
  148. *
  149. * A 64 bit region table entry of S390 has following format:
  150. * | S-table origin | TF TTTL
  151. * 0000000000111111111122222222223333333333444444444455555555556666
  152. * 0123456789012345678901234567890123456789012345678901234567890123
  153. *
  154. * I Segment-Invalid Bit: Segment is not available for address-translation
  155. * TT Type 01
  156. * TF
  157. * TL Table length
  158. *
  159. * The 64 bit regiontable origin of S390 has following format:
  160. * | region table origon | DTTL
  161. * 0000000000111111111122222222223333333333444444444455555555556666
  162. * 0123456789012345678901234567890123456789012345678901234567890123
  163. *
  164. * X Space-Switch event:
  165. * G Segment-Invalid Bit:
  166. * P Private-Space Bit:
  167. * S Storage-Alteration:
  168. * R Real space
  169. * TL Table-Length:
  170. *
  171. * A storage key has the following format:
  172. * | ACC |F|R|C|0|
  173. * 0 3 4 5 6 7
  174. * ACC: access key
  175. * F : fetch protection bit
  176. * R : referenced bit
  177. * C : changed bit
  178. */
  179. /* Hardware bits in the page table entry */
  180. #define _PAGE_PROTECT 0x200 /* HW read-only bit */
  181. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  182. #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
  183. /* Software bits in the page table entry */
  184. #define _PAGE_PRESENT 0x001 /* SW pte present bit */
  185. #define _PAGE_YOUNG 0x004 /* SW pte young bit */
  186. #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
  187. #define _PAGE_READ 0x010 /* SW pte read bit */
  188. #define _PAGE_WRITE 0x020 /* SW pte write bit */
  189. #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
  190. #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
  191. #define __HAVE_ARCH_PTE_SPECIAL
  192. #ifdef CONFIG_MEM_SOFT_DIRTY
  193. #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
  194. #else
  195. #define _PAGE_SOFT_DIRTY 0x000
  196. #endif
  197. /* Set of bits not changed in pte_modify */
  198. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
  199. _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
  200. /*
  201. * handle_pte_fault uses pte_present and pte_none to find out the pte type
  202. * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
  203. * distinguish present from not-present ptes. It is changed only with the page
  204. * table lock held.
  205. *
  206. * The following table gives the different possible bit combinations for
  207. * the pte hardware and software bits in the last 12 bits of a pte
  208. * (. unassigned bit, x don't care, t swap type):
  209. *
  210. * 842100000000
  211. * 000084210000
  212. * 000000008421
  213. * .IR.uswrdy.p
  214. * empty .10.00000000
  215. * swap .11..ttttt.0
  216. * prot-none, clean, old .11.xx0000.1
  217. * prot-none, clean, young .11.xx0001.1
  218. * prot-none, dirty, old .11.xx0010.1
  219. * prot-none, dirty, young .11.xx0011.1
  220. * read-only, clean, old .11.xx0100.1
  221. * read-only, clean, young .01.xx0101.1
  222. * read-only, dirty, old .11.xx0110.1
  223. * read-only, dirty, young .01.xx0111.1
  224. * read-write, clean, old .11.xx1100.1
  225. * read-write, clean, young .01.xx1101.1
  226. * read-write, dirty, old .10.xx1110.1
  227. * read-write, dirty, young .00.xx1111.1
  228. * HW-bits: R read-only, I invalid
  229. * SW-bits: p present, y young, d dirty, r read, w write, s special,
  230. * u unused, l large
  231. *
  232. * pte_none is true for the bit pattern .10.00000000, pte == 0x400
  233. * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
  234. * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
  235. */
  236. /* Bits in the segment/region table address-space-control-element */
  237. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  238. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  239. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  240. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  241. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  242. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  243. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  244. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  245. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  246. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  247. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  248. /* Bits in the region table entry */
  249. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  250. #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
  251. #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
  252. #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
  253. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  254. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  255. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  256. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  257. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  258. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  259. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
  260. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  261. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
  262. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  263. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
  264. #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
  265. #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
  266. #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
  267. #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
  268. #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
  269. #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
  270. #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
  271. #ifdef CONFIG_MEM_SOFT_DIRTY
  272. #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
  273. #else
  274. #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
  275. #endif
  276. #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
  277. #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
  278. /* Bits in the segment table entry */
  279. #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
  280. #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
  281. #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
  282. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  283. #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
  284. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  285. #define _SEGMENT_ENTRY (0)
  286. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  287. #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
  288. #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
  289. #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
  290. #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
  291. #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
  292. #ifdef CONFIG_MEM_SOFT_DIRTY
  293. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
  294. #else
  295. #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
  296. #endif
  297. /*
  298. * Segment table and region3 table entry encoding
  299. * (R = read-only, I = invalid, y = young bit):
  300. * dy..R...I...wr
  301. * prot-none, clean, old 00..1...1...00
  302. * prot-none, clean, young 01..1...1...00
  303. * prot-none, dirty, old 10..1...1...00
  304. * prot-none, dirty, young 11..1...1...00
  305. * read-only, clean, old 00..1...1...01
  306. * read-only, clean, young 01..1...0...01
  307. * read-only, dirty, old 10..1...1...01
  308. * read-only, dirty, young 11..1...0...01
  309. * read-write, clean, old 00..1...1...11
  310. * read-write, clean, young 01..1...0...11
  311. * read-write, dirty, old 10..0...1...11
  312. * read-write, dirty, young 11..0...0...11
  313. * The segment table origin is used to distinguish empty (origin==0) from
  314. * read-write, old segment table entries (origin!=0)
  315. * HW-bits: R read-only, I invalid
  316. * SW-bits: y young, d dirty, r read, w write
  317. */
  318. /* Page status table bits for virtualization */
  319. #define PGSTE_ACC_BITS 0xf000000000000000UL
  320. #define PGSTE_FP_BIT 0x0800000000000000UL
  321. #define PGSTE_PCL_BIT 0x0080000000000000UL
  322. #define PGSTE_HR_BIT 0x0040000000000000UL
  323. #define PGSTE_HC_BIT 0x0020000000000000UL
  324. #define PGSTE_GR_BIT 0x0004000000000000UL
  325. #define PGSTE_GC_BIT 0x0002000000000000UL
  326. #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
  327. #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
  328. #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
  329. /* Guest Page State used for virtualization */
  330. #define _PGSTE_GPS_ZERO 0x0000000080000000UL
  331. #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
  332. #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
  333. #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
  334. /*
  335. * A user page table pointer has the space-switch-event bit, the
  336. * private-space-control bit and the storage-alteration-event-control
  337. * bit set. A kernel page table pointer doesn't need them.
  338. */
  339. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  340. _ASCE_ALT_EVENT)
  341. /*
  342. * Page protection definitions.
  343. */
  344. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
  345. #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  346. _PAGE_INVALID | _PAGE_PROTECT)
  347. #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  348. _PAGE_INVALID | _PAGE_PROTECT)
  349. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  350. _PAGE_YOUNG | _PAGE_DIRTY)
  351. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  352. _PAGE_YOUNG | _PAGE_DIRTY)
  353. #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
  354. _PAGE_PROTECT)
  355. /*
  356. * On s390 the page table entry has an invalid bit and a read-only bit.
  357. * Read permission implies execute permission and write permission
  358. * implies read permission.
  359. */
  360. /*xwr*/
  361. #define __P000 PAGE_NONE
  362. #define __P001 PAGE_READ
  363. #define __P010 PAGE_READ
  364. #define __P011 PAGE_READ
  365. #define __P100 PAGE_READ
  366. #define __P101 PAGE_READ
  367. #define __P110 PAGE_READ
  368. #define __P111 PAGE_READ
  369. #define __S000 PAGE_NONE
  370. #define __S001 PAGE_READ
  371. #define __S010 PAGE_WRITE
  372. #define __S011 PAGE_WRITE
  373. #define __S100 PAGE_READ
  374. #define __S101 PAGE_READ
  375. #define __S110 PAGE_WRITE
  376. #define __S111 PAGE_WRITE
  377. /*
  378. * Segment entry (large page) protection definitions.
  379. */
  380. #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
  381. _SEGMENT_ENTRY_PROTECT)
  382. #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
  383. _SEGMENT_ENTRY_READ)
  384. #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
  385. _SEGMENT_ENTRY_WRITE)
  386. #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
  387. _SEGMENT_ENTRY_LARGE | \
  388. _SEGMENT_ENTRY_READ | \
  389. _SEGMENT_ENTRY_WRITE | \
  390. _SEGMENT_ENTRY_YOUNG | \
  391. _SEGMENT_ENTRY_DIRTY)
  392. #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
  393. _SEGMENT_ENTRY_LARGE | \
  394. _SEGMENT_ENTRY_READ | \
  395. _SEGMENT_ENTRY_YOUNG | \
  396. _SEGMENT_ENTRY_PROTECT)
  397. /*
  398. * Region3 entry (large page) protection definitions.
  399. */
  400. #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
  401. _REGION3_ENTRY_LARGE | \
  402. _REGION3_ENTRY_READ | \
  403. _REGION3_ENTRY_WRITE | \
  404. _REGION3_ENTRY_YOUNG | \
  405. _REGION3_ENTRY_DIRTY)
  406. #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
  407. _REGION3_ENTRY_LARGE | \
  408. _REGION3_ENTRY_READ | \
  409. _REGION3_ENTRY_YOUNG | \
  410. _REGION_ENTRY_PROTECT)
  411. static inline int mm_has_pgste(struct mm_struct *mm)
  412. {
  413. #ifdef CONFIG_PGSTE
  414. if (unlikely(mm->context.has_pgste))
  415. return 1;
  416. #endif
  417. return 0;
  418. }
  419. static inline int mm_alloc_pgste(struct mm_struct *mm)
  420. {
  421. #ifdef CONFIG_PGSTE
  422. if (unlikely(mm->context.alloc_pgste))
  423. return 1;
  424. #endif
  425. return 0;
  426. }
  427. /*
  428. * In the case that a guest uses storage keys
  429. * faults should no longer be backed by zero pages
  430. */
  431. #define mm_forbids_zeropage mm_use_skey
  432. static inline int mm_use_skey(struct mm_struct *mm)
  433. {
  434. #ifdef CONFIG_PGSTE
  435. if (mm->context.use_skey)
  436. return 1;
  437. #endif
  438. return 0;
  439. }
  440. static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
  441. {
  442. register unsigned long reg2 asm("2") = old;
  443. register unsigned long reg3 asm("3") = new;
  444. unsigned long address = (unsigned long)ptr | 1;
  445. asm volatile(
  446. " csp %0,%3"
  447. : "+d" (reg2), "+m" (*ptr)
  448. : "d" (reg3), "d" (address)
  449. : "cc");
  450. }
  451. static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
  452. {
  453. register unsigned long reg2 asm("2") = old;
  454. register unsigned long reg3 asm("3") = new;
  455. unsigned long address = (unsigned long)ptr | 1;
  456. asm volatile(
  457. " .insn rre,0xb98a0000,%0,%3"
  458. : "+d" (reg2), "+m" (*ptr)
  459. : "d" (reg3), "d" (address)
  460. : "cc");
  461. }
  462. #define CRDTE_DTT_PAGE 0x00UL
  463. #define CRDTE_DTT_SEGMENT 0x10UL
  464. #define CRDTE_DTT_REGION3 0x14UL
  465. #define CRDTE_DTT_REGION2 0x18UL
  466. #define CRDTE_DTT_REGION1 0x1cUL
  467. static inline void crdte(unsigned long old, unsigned long new,
  468. unsigned long table, unsigned long dtt,
  469. unsigned long address, unsigned long asce)
  470. {
  471. register unsigned long reg2 asm("2") = old;
  472. register unsigned long reg3 asm("3") = new;
  473. register unsigned long reg4 asm("4") = table | dtt;
  474. register unsigned long reg5 asm("5") = address;
  475. asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
  476. : "+d" (reg2)
  477. : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
  478. : "memory", "cc");
  479. }
  480. /*
  481. * pgd/pmd/pte query functions
  482. */
  483. static inline int pgd_present(pgd_t pgd)
  484. {
  485. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  486. return 1;
  487. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  488. }
  489. static inline int pgd_none(pgd_t pgd)
  490. {
  491. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  492. return 0;
  493. return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
  494. }
  495. static inline int pgd_bad(pgd_t pgd)
  496. {
  497. /*
  498. * With dynamic page table levels the pgd can be a region table
  499. * entry or a segment table entry. Check for the bit that are
  500. * invalid for either table entry.
  501. */
  502. unsigned long mask =
  503. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
  504. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  505. return (pgd_val(pgd) & mask) != 0;
  506. }
  507. static inline int pud_present(pud_t pud)
  508. {
  509. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  510. return 1;
  511. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  512. }
  513. static inline int pud_none(pud_t pud)
  514. {
  515. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  516. return 0;
  517. return pud_val(pud) == _REGION3_ENTRY_EMPTY;
  518. }
  519. static inline int pud_large(pud_t pud)
  520. {
  521. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
  522. return 0;
  523. return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
  524. }
  525. static inline unsigned long pud_pfn(pud_t pud)
  526. {
  527. unsigned long origin_mask;
  528. origin_mask = _REGION3_ENTRY_ORIGIN;
  529. if (pud_large(pud))
  530. origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
  531. return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
  532. }
  533. static inline int pmd_large(pmd_t pmd)
  534. {
  535. return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
  536. }
  537. static inline int pmd_bad(pmd_t pmd)
  538. {
  539. if (pmd_large(pmd))
  540. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
  541. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
  542. }
  543. static inline int pud_bad(pud_t pud)
  544. {
  545. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  546. return pmd_bad(__pmd(pud_val(pud)));
  547. if (pud_large(pud))
  548. return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
  549. return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
  550. }
  551. static inline int pmd_present(pmd_t pmd)
  552. {
  553. return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
  554. }
  555. static inline int pmd_none(pmd_t pmd)
  556. {
  557. return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
  558. }
  559. static inline unsigned long pmd_pfn(pmd_t pmd)
  560. {
  561. unsigned long origin_mask;
  562. origin_mask = _SEGMENT_ENTRY_ORIGIN;
  563. if (pmd_large(pmd))
  564. origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
  565. return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
  566. }
  567. #define __HAVE_ARCH_PMD_WRITE
  568. static inline int pmd_write(pmd_t pmd)
  569. {
  570. return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
  571. }
  572. static inline int pmd_dirty(pmd_t pmd)
  573. {
  574. int dirty = 1;
  575. if (pmd_large(pmd))
  576. dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
  577. return dirty;
  578. }
  579. static inline int pmd_young(pmd_t pmd)
  580. {
  581. int young = 1;
  582. if (pmd_large(pmd))
  583. young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
  584. return young;
  585. }
  586. static inline int pte_present(pte_t pte)
  587. {
  588. /* Bit pattern: (pte & 0x001) == 0x001 */
  589. return (pte_val(pte) & _PAGE_PRESENT) != 0;
  590. }
  591. static inline int pte_none(pte_t pte)
  592. {
  593. /* Bit pattern: pte == 0x400 */
  594. return pte_val(pte) == _PAGE_INVALID;
  595. }
  596. static inline int pte_swap(pte_t pte)
  597. {
  598. /* Bit pattern: (pte & 0x201) == 0x200 */
  599. return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
  600. == _PAGE_PROTECT;
  601. }
  602. static inline int pte_special(pte_t pte)
  603. {
  604. return (pte_val(pte) & _PAGE_SPECIAL);
  605. }
  606. #define __HAVE_ARCH_PTE_SAME
  607. static inline int pte_same(pte_t a, pte_t b)
  608. {
  609. return pte_val(a) == pte_val(b);
  610. }
  611. #ifdef CONFIG_NUMA_BALANCING
  612. static inline int pte_protnone(pte_t pte)
  613. {
  614. return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
  615. }
  616. static inline int pmd_protnone(pmd_t pmd)
  617. {
  618. /* pmd_large(pmd) implies pmd_present(pmd) */
  619. return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
  620. }
  621. #endif
  622. static inline int pte_soft_dirty(pte_t pte)
  623. {
  624. return pte_val(pte) & _PAGE_SOFT_DIRTY;
  625. }
  626. #define pte_swp_soft_dirty pte_soft_dirty
  627. static inline pte_t pte_mksoft_dirty(pte_t pte)
  628. {
  629. pte_val(pte) |= _PAGE_SOFT_DIRTY;
  630. return pte;
  631. }
  632. #define pte_swp_mksoft_dirty pte_mksoft_dirty
  633. static inline pte_t pte_clear_soft_dirty(pte_t pte)
  634. {
  635. pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
  636. return pte;
  637. }
  638. #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
  639. static inline int pmd_soft_dirty(pmd_t pmd)
  640. {
  641. return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
  642. }
  643. static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
  644. {
  645. pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
  646. return pmd;
  647. }
  648. static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
  649. {
  650. pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
  651. return pmd;
  652. }
  653. /*
  654. * query functions pte_write/pte_dirty/pte_young only work if
  655. * pte_present() is true. Undefined behaviour if not..
  656. */
  657. static inline int pte_write(pte_t pte)
  658. {
  659. return (pte_val(pte) & _PAGE_WRITE) != 0;
  660. }
  661. static inline int pte_dirty(pte_t pte)
  662. {
  663. return (pte_val(pte) & _PAGE_DIRTY) != 0;
  664. }
  665. static inline int pte_young(pte_t pte)
  666. {
  667. return (pte_val(pte) & _PAGE_YOUNG) != 0;
  668. }
  669. #define __HAVE_ARCH_PTE_UNUSED
  670. static inline int pte_unused(pte_t pte)
  671. {
  672. return pte_val(pte) & _PAGE_UNUSED;
  673. }
  674. /*
  675. * pgd/pmd/pte modification functions
  676. */
  677. static inline void pgd_clear(pgd_t *pgd)
  678. {
  679. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  680. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  681. }
  682. static inline void pud_clear(pud_t *pud)
  683. {
  684. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  685. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  686. }
  687. static inline void pmd_clear(pmd_t *pmdp)
  688. {
  689. pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
  690. }
  691. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  692. {
  693. pte_val(*ptep) = _PAGE_INVALID;
  694. }
  695. /*
  696. * The following pte modification functions only work if
  697. * pte_present() is true. Undefined behaviour if not..
  698. */
  699. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  700. {
  701. pte_val(pte) &= _PAGE_CHG_MASK;
  702. pte_val(pte) |= pgprot_val(newprot);
  703. /*
  704. * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
  705. * invalid bit set, clear it again for readable, young pages
  706. */
  707. if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
  708. pte_val(pte) &= ~_PAGE_INVALID;
  709. /*
  710. * newprot for PAGE_READ and PAGE_WRITE has the page protection
  711. * bit set, clear it again for writable, dirty pages
  712. */
  713. if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
  714. pte_val(pte) &= ~_PAGE_PROTECT;
  715. return pte;
  716. }
  717. static inline pte_t pte_wrprotect(pte_t pte)
  718. {
  719. pte_val(pte) &= ~_PAGE_WRITE;
  720. pte_val(pte) |= _PAGE_PROTECT;
  721. return pte;
  722. }
  723. static inline pte_t pte_mkwrite(pte_t pte)
  724. {
  725. pte_val(pte) |= _PAGE_WRITE;
  726. if (pte_val(pte) & _PAGE_DIRTY)
  727. pte_val(pte) &= ~_PAGE_PROTECT;
  728. return pte;
  729. }
  730. static inline pte_t pte_mkclean(pte_t pte)
  731. {
  732. pte_val(pte) &= ~_PAGE_DIRTY;
  733. pte_val(pte) |= _PAGE_PROTECT;
  734. return pte;
  735. }
  736. static inline pte_t pte_mkdirty(pte_t pte)
  737. {
  738. pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
  739. if (pte_val(pte) & _PAGE_WRITE)
  740. pte_val(pte) &= ~_PAGE_PROTECT;
  741. return pte;
  742. }
  743. static inline pte_t pte_mkold(pte_t pte)
  744. {
  745. pte_val(pte) &= ~_PAGE_YOUNG;
  746. pte_val(pte) |= _PAGE_INVALID;
  747. return pte;
  748. }
  749. static inline pte_t pte_mkyoung(pte_t pte)
  750. {
  751. pte_val(pte) |= _PAGE_YOUNG;
  752. if (pte_val(pte) & _PAGE_READ)
  753. pte_val(pte) &= ~_PAGE_INVALID;
  754. return pte;
  755. }
  756. static inline pte_t pte_mkspecial(pte_t pte)
  757. {
  758. pte_val(pte) |= _PAGE_SPECIAL;
  759. return pte;
  760. }
  761. #ifdef CONFIG_HUGETLB_PAGE
  762. static inline pte_t pte_mkhuge(pte_t pte)
  763. {
  764. pte_val(pte) |= _PAGE_LARGE;
  765. return pte;
  766. }
  767. #endif
  768. #define IPTE_GLOBAL 0
  769. #define IPTE_LOCAL 1
  770. static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
  771. {
  772. unsigned long pto = (unsigned long) ptep;
  773. /* Invalidation + TLB flush for the pte */
  774. asm volatile(
  775. " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
  776. : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
  777. [m4] "i" (local));
  778. }
  779. static inline void __ptep_ipte_range(unsigned long address, int nr,
  780. pte_t *ptep, int local)
  781. {
  782. unsigned long pto = (unsigned long) ptep;
  783. /* Invalidate a range of ptes + TLB flush of the ptes */
  784. do {
  785. asm volatile(
  786. " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
  787. : [r2] "+a" (address), [r3] "+a" (nr)
  788. : [r1] "a" (pto), [m4] "i" (local) : "memory");
  789. } while (nr != 255);
  790. }
  791. /*
  792. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  793. * both clear the TLB for the unmapped pte. The reason is that
  794. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  795. * to modify an active pte. The sequence is
  796. * 1) ptep_get_and_clear
  797. * 2) set_pte_at
  798. * 3) flush_tlb_range
  799. * On s390 the tlb needs to get flushed with the modification of the pte
  800. * if the pte is active. The only way how this can be implemented is to
  801. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  802. * is a nop.
  803. */
  804. pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
  805. pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
  806. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  807. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  808. unsigned long addr, pte_t *ptep)
  809. {
  810. pte_t pte = *ptep;
  811. pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
  812. return pte_young(pte);
  813. }
  814. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  815. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  816. unsigned long address, pte_t *ptep)
  817. {
  818. return ptep_test_and_clear_young(vma, address, ptep);
  819. }
  820. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  821. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  822. unsigned long addr, pte_t *ptep)
  823. {
  824. return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  825. }
  826. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  827. pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
  828. void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
  829. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  830. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  831. unsigned long addr, pte_t *ptep)
  832. {
  833. return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
  834. }
  835. /*
  836. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  837. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  838. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  839. * cannot be accessed while the batched unmap is running. In this case
  840. * full==1 and a simple pte_clear is enough. See tlb.h.
  841. */
  842. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  843. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  844. unsigned long addr,
  845. pte_t *ptep, int full)
  846. {
  847. if (full) {
  848. pte_t pte = *ptep;
  849. *ptep = __pte(_PAGE_INVALID);
  850. return pte;
  851. }
  852. return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
  853. }
  854. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  855. static inline void ptep_set_wrprotect(struct mm_struct *mm,
  856. unsigned long addr, pte_t *ptep)
  857. {
  858. pte_t pte = *ptep;
  859. if (pte_write(pte))
  860. ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
  861. }
  862. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  863. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  864. unsigned long addr, pte_t *ptep,
  865. pte_t entry, int dirty)
  866. {
  867. if (pte_same(*ptep, entry))
  868. return 0;
  869. ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
  870. return 1;
  871. }
  872. /*
  873. * Additional functions to handle KVM guest page tables
  874. */
  875. void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
  876. pte_t *ptep, pte_t entry);
  877. void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  878. void ptep_notify(struct mm_struct *mm, unsigned long addr,
  879. pte_t *ptep, unsigned long bits);
  880. int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
  881. pte_t *ptep, int prot, unsigned long bit);
  882. void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
  883. pte_t *ptep , int reset);
  884. void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
  885. int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
  886. pte_t *sptep, pte_t *tptep, pte_t pte);
  887. void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
  888. bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
  889. int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  890. unsigned char key, bool nq);
  891. int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  892. unsigned char key, unsigned char *oldkey,
  893. bool nq, bool mr, bool mc);
  894. int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
  895. int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
  896. unsigned char *key);
  897. /*
  898. * Certain architectures need to do special things when PTEs
  899. * within a page table are directly modified. Thus, the following
  900. * hook is made available.
  901. */
  902. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  903. pte_t *ptep, pte_t entry)
  904. {
  905. if (mm_has_pgste(mm))
  906. ptep_set_pte_at(mm, addr, ptep, entry);
  907. else
  908. *ptep = entry;
  909. }
  910. /*
  911. * Conversion functions: convert a page and protection to a page entry,
  912. * and a page entry and page directory to the page they refer to.
  913. */
  914. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  915. {
  916. pte_t __pte;
  917. pte_val(__pte) = physpage + pgprot_val(pgprot);
  918. return pte_mkyoung(__pte);
  919. }
  920. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  921. {
  922. unsigned long physpage = page_to_phys(page);
  923. pte_t __pte = mk_pte_phys(physpage, pgprot);
  924. if (pte_write(__pte) && PageDirty(page))
  925. __pte = pte_mkdirty(__pte);
  926. return __pte;
  927. }
  928. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  929. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  930. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  931. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  932. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  933. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  934. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  935. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  936. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  937. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  938. {
  939. pud_t *pud = (pud_t *) pgd;
  940. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  941. pud = (pud_t *) pgd_deref(*pgd);
  942. return pud + pud_index(address);
  943. }
  944. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  945. {
  946. pmd_t *pmd = (pmd_t *) pud;
  947. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  948. pmd = (pmd_t *) pud_deref(*pud);
  949. return pmd + pmd_index(address);
  950. }
  951. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  952. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  953. #define pte_page(x) pfn_to_page(pte_pfn(x))
  954. #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
  955. #define pud_page(pud) pfn_to_page(pud_pfn(pud))
  956. /* Find an entry in the lowest level page table.. */
  957. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  958. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  959. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  960. #define pte_unmap(pte) do { } while (0)
  961. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  962. {
  963. pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
  964. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  965. return pmd;
  966. }
  967. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  968. {
  969. pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
  970. if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  971. return pmd;
  972. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  973. return pmd;
  974. }
  975. static inline pmd_t pmd_mkclean(pmd_t pmd)
  976. {
  977. if (pmd_large(pmd)) {
  978. pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
  979. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  980. }
  981. return pmd;
  982. }
  983. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  984. {
  985. if (pmd_large(pmd)) {
  986. pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
  987. _SEGMENT_ENTRY_SOFT_DIRTY;
  988. if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
  989. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  990. }
  991. return pmd;
  992. }
  993. static inline pud_t pud_wrprotect(pud_t pud)
  994. {
  995. pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
  996. pud_val(pud) |= _REGION_ENTRY_PROTECT;
  997. return pud;
  998. }
  999. static inline pud_t pud_mkwrite(pud_t pud)
  1000. {
  1001. pud_val(pud) |= _REGION3_ENTRY_WRITE;
  1002. if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
  1003. return pud;
  1004. pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
  1005. return pud;
  1006. }
  1007. static inline pud_t pud_mkclean(pud_t pud)
  1008. {
  1009. if (pud_large(pud)) {
  1010. pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
  1011. pud_val(pud) |= _REGION_ENTRY_PROTECT;
  1012. }
  1013. return pud;
  1014. }
  1015. static inline pud_t pud_mkdirty(pud_t pud)
  1016. {
  1017. if (pud_large(pud)) {
  1018. pud_val(pud) |= _REGION3_ENTRY_DIRTY |
  1019. _REGION3_ENTRY_SOFT_DIRTY;
  1020. if (pud_val(pud) & _REGION3_ENTRY_WRITE)
  1021. pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
  1022. }
  1023. return pud;
  1024. }
  1025. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
  1026. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1027. {
  1028. /*
  1029. * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
  1030. * Convert to segment table entry format.
  1031. */
  1032. if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
  1033. return pgprot_val(SEGMENT_NONE);
  1034. if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
  1035. return pgprot_val(SEGMENT_READ);
  1036. return pgprot_val(SEGMENT_WRITE);
  1037. }
  1038. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1039. {
  1040. if (pmd_large(pmd)) {
  1041. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1042. if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
  1043. pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
  1044. }
  1045. return pmd;
  1046. }
  1047. static inline pmd_t pmd_mkold(pmd_t pmd)
  1048. {
  1049. if (pmd_large(pmd)) {
  1050. pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
  1051. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1052. }
  1053. return pmd;
  1054. }
  1055. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1056. {
  1057. if (pmd_large(pmd)) {
  1058. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
  1059. _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
  1060. _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
  1061. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1062. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  1063. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1064. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
  1065. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1066. return pmd;
  1067. }
  1068. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
  1069. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1070. return pmd;
  1071. }
  1072. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1073. {
  1074. pmd_t __pmd;
  1075. pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
  1076. return __pmd;
  1077. }
  1078. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
  1079. static inline void __pmdp_csp(pmd_t *pmdp)
  1080. {
  1081. csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
  1082. pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
  1083. }
  1084. #define IDTE_GLOBAL 0
  1085. #define IDTE_LOCAL 1
  1086. static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
  1087. {
  1088. unsigned long sto;
  1089. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1090. asm volatile(
  1091. " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
  1092. : "+m" (*pmdp)
  1093. : [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
  1094. [m4] "i" (local)
  1095. : "cc" );
  1096. }
  1097. static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
  1098. {
  1099. unsigned long r3o;
  1100. r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
  1101. r3o |= _ASCE_TYPE_REGION3;
  1102. asm volatile(
  1103. " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
  1104. : "+m" (*pudp)
  1105. : [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
  1106. [m4] "i" (local)
  1107. : "cc");
  1108. }
  1109. pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1110. pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
  1111. pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
  1112. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1113. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1114. void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  1115. pgtable_t pgtable);
  1116. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1117. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
  1118. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  1119. static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  1120. unsigned long addr, pmd_t *pmdp,
  1121. pmd_t entry, int dirty)
  1122. {
  1123. VM_BUG_ON(addr & ~HPAGE_MASK);
  1124. entry = pmd_mkyoung(entry);
  1125. if (dirty)
  1126. entry = pmd_mkdirty(entry);
  1127. if (pmd_val(*pmdp) == pmd_val(entry))
  1128. return 0;
  1129. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
  1130. return 1;
  1131. }
  1132. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1133. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1134. unsigned long addr, pmd_t *pmdp)
  1135. {
  1136. pmd_t pmd = *pmdp;
  1137. pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
  1138. return pmd_young(pmd);
  1139. }
  1140. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  1141. static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
  1142. unsigned long addr, pmd_t *pmdp)
  1143. {
  1144. VM_BUG_ON(addr & ~HPAGE_MASK);
  1145. return pmdp_test_and_clear_young(vma, addr, pmdp);
  1146. }
  1147. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1148. pmd_t *pmdp, pmd_t entry)
  1149. {
  1150. *pmdp = entry;
  1151. }
  1152. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1153. {
  1154. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
  1155. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1156. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1157. return pmd;
  1158. }
  1159. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
  1160. static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
  1161. unsigned long addr, pmd_t *pmdp)
  1162. {
  1163. return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
  1164. }
  1165. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
  1166. static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
  1167. unsigned long addr,
  1168. pmd_t *pmdp, int full)
  1169. {
  1170. if (full) {
  1171. pmd_t pmd = *pmdp;
  1172. *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
  1173. return pmd;
  1174. }
  1175. return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
  1176. }
  1177. #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
  1178. static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
  1179. unsigned long addr, pmd_t *pmdp)
  1180. {
  1181. return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
  1182. }
  1183. #define __HAVE_ARCH_PMDP_INVALIDATE
  1184. static inline void pmdp_invalidate(struct vm_area_struct *vma,
  1185. unsigned long addr, pmd_t *pmdp)
  1186. {
  1187. pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
  1188. }
  1189. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  1190. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  1191. unsigned long addr, pmd_t *pmdp)
  1192. {
  1193. pmd_t pmd = *pmdp;
  1194. if (pmd_write(pmd))
  1195. pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
  1196. }
  1197. static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
  1198. unsigned long address,
  1199. pmd_t *pmdp)
  1200. {
  1201. return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
  1202. }
  1203. #define pmdp_collapse_flush pmdp_collapse_flush
  1204. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
  1205. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1206. static inline int pmd_trans_huge(pmd_t pmd)
  1207. {
  1208. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1209. }
  1210. #define has_transparent_hugepage has_transparent_hugepage
  1211. static inline int has_transparent_hugepage(void)
  1212. {
  1213. return MACHINE_HAS_HPAGE ? 1 : 0;
  1214. }
  1215. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1216. /*
  1217. * 64 bit swap entry format:
  1218. * A page-table entry has some bits we have to treat in a special way.
  1219. * Bits 52 and bit 55 have to be zero, otherwise a specification
  1220. * exception will occur instead of a page translation exception. The
  1221. * specification exception has the bad habit not to store necessary
  1222. * information in the lowcore.
  1223. * Bits 54 and 63 are used to indicate the page type.
  1224. * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
  1225. * This leaves the bits 0-51 and bits 56-62 to store type and offset.
  1226. * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
  1227. * for the offset.
  1228. * | offset |01100|type |00|
  1229. * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
  1230. * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
  1231. */
  1232. #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
  1233. #define __SWP_OFFSET_SHIFT 12
  1234. #define __SWP_TYPE_MASK ((1UL << 5) - 1)
  1235. #define __SWP_TYPE_SHIFT 2
  1236. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1237. {
  1238. pte_t pte;
  1239. pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
  1240. pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
  1241. pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
  1242. return pte;
  1243. }
  1244. static inline unsigned long __swp_type(swp_entry_t entry)
  1245. {
  1246. return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
  1247. }
  1248. static inline unsigned long __swp_offset(swp_entry_t entry)
  1249. {
  1250. return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
  1251. }
  1252. static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
  1253. {
  1254. return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
  1255. }
  1256. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1257. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1258. #endif /* !__ASSEMBLY__ */
  1259. #define kern_addr_valid(addr) (1)
  1260. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1261. extern int vmem_remove_mapping(unsigned long start, unsigned long size);
  1262. extern int s390_enable_sie(void);
  1263. extern int s390_enable_skey(void);
  1264. extern void s390_reset_cmma(struct mm_struct *mm);
  1265. /* s390 has a private copy of get unmapped area to deal with cache synonyms */
  1266. #define HAVE_ARCH_UNMAPPED_AREA
  1267. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  1268. /*
  1269. * No page table caches to initialise
  1270. */
  1271. static inline void pgtable_cache_init(void) { }
  1272. static inline void check_pgt_cache(void) { }
  1273. #include <asm-generic/pgtable.h>
  1274. #endif /* _S390_PAGE_H */