init_64.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. *
  9. * Derived from "arch/i386/mm/init.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Dave Engebretsen <engebret@us.ibm.com>
  13. * Rework for PPC64 port.
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. */
  21. #undef DEBUG
  22. #include <linux/signal.h>
  23. #include <linux/sched.h>
  24. #include <linux/kernel.h>
  25. #include <linux/errno.h>
  26. #include <linux/string.h>
  27. #include <linux/types.h>
  28. #include <linux/mman.h>
  29. #include <linux/mm.h>
  30. #include <linux/swap.h>
  31. #include <linux/stddef.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/highmem.h>
  36. #include <linux/idr.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/module.h>
  39. #include <linux/poison.h>
  40. #include <linux/memblock.h>
  41. #include <linux/hugetlb.h>
  42. #include <linux/slab.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/page.h>
  45. #include <asm/prom.h>
  46. #include <asm/rtas.h>
  47. #include <asm/io.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/mmu.h>
  51. #include <linux/uaccess.h>
  52. #include <asm/smp.h>
  53. #include <asm/machdep.h>
  54. #include <asm/tlb.h>
  55. #include <asm/eeh.h>
  56. #include <asm/processor.h>
  57. #include <asm/mmzone.h>
  58. #include <asm/cputable.h>
  59. #include <asm/sections.h>
  60. #include <asm/iommu.h>
  61. #include <asm/vdso.h>
  62. #include "mmu_decl.h"
  63. #ifdef CONFIG_PPC_STD_MMU_64
  64. #if H_PGTABLE_RANGE > USER_VSID_RANGE
  65. #warning Limited user VSID range means pagetable space is wasted
  66. #endif
  67. #if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
  68. #warning TASK_SIZE is smaller than it needs to be.
  69. #endif
  70. #endif /* CONFIG_PPC_STD_MMU_64 */
  71. phys_addr_t memstart_addr = ~0;
  72. EXPORT_SYMBOL_GPL(memstart_addr);
  73. phys_addr_t kernstart_addr;
  74. EXPORT_SYMBOL_GPL(kernstart_addr);
  75. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  76. /*
  77. * Given an address within the vmemmap, determine the pfn of the page that
  78. * represents the start of the section it is within. Note that we have to
  79. * do this by hand as the proffered address may not be correctly aligned.
  80. * Subtraction of non-aligned pointers produces undefined results.
  81. */
  82. static unsigned long __meminit vmemmap_section_start(unsigned long page)
  83. {
  84. unsigned long offset = page - ((unsigned long)(vmemmap));
  85. /* Return the pfn of the start of the section. */
  86. return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  87. }
  88. /*
  89. * Check if this vmemmap page is already initialised. If any section
  90. * which overlaps this vmemmap page is initialised then this page is
  91. * initialised already.
  92. */
  93. static int __meminit vmemmap_populated(unsigned long start, int page_size)
  94. {
  95. unsigned long end = start + page_size;
  96. start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
  97. for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
  98. if (pfn_valid(page_to_pfn((struct page *)start)))
  99. return 1;
  100. return 0;
  101. }
  102. struct vmemmap_backing *vmemmap_list;
  103. static struct vmemmap_backing *next;
  104. static int num_left;
  105. static int num_freed;
  106. static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
  107. {
  108. struct vmemmap_backing *vmem_back;
  109. /* get from freed entries first */
  110. if (num_freed) {
  111. num_freed--;
  112. vmem_back = next;
  113. next = next->list;
  114. return vmem_back;
  115. }
  116. /* allocate a page when required and hand out chunks */
  117. if (!num_left) {
  118. next = vmemmap_alloc_block(PAGE_SIZE, node);
  119. if (unlikely(!next)) {
  120. WARN_ON(1);
  121. return NULL;
  122. }
  123. num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
  124. }
  125. num_left--;
  126. return next++;
  127. }
  128. static __meminit void vmemmap_list_populate(unsigned long phys,
  129. unsigned long start,
  130. int node)
  131. {
  132. struct vmemmap_backing *vmem_back;
  133. vmem_back = vmemmap_list_alloc(node);
  134. if (unlikely(!vmem_back)) {
  135. WARN_ON(1);
  136. return;
  137. }
  138. vmem_back->phys = phys;
  139. vmem_back->virt_addr = start;
  140. vmem_back->list = vmemmap_list;
  141. vmemmap_list = vmem_back;
  142. }
  143. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  144. {
  145. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  146. /* Align to the page size of the linear mapping. */
  147. start = _ALIGN_DOWN(start, page_size);
  148. pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
  149. for (; start < end; start += page_size) {
  150. void *p;
  151. int rc;
  152. if (vmemmap_populated(start, page_size))
  153. continue;
  154. p = vmemmap_alloc_block(page_size, node);
  155. if (!p)
  156. return -ENOMEM;
  157. vmemmap_list_populate(__pa(p), start, node);
  158. pr_debug(" * %016lx..%016lx allocated at %p\n",
  159. start, start + page_size, p);
  160. rc = vmemmap_create_mapping(start, page_size, __pa(p));
  161. if (rc < 0) {
  162. pr_warning(
  163. "vmemmap_populate: Unable to create vmemmap mapping: %d\n",
  164. rc);
  165. return -EFAULT;
  166. }
  167. }
  168. return 0;
  169. }
  170. #ifdef CONFIG_MEMORY_HOTPLUG
  171. static unsigned long vmemmap_list_free(unsigned long start)
  172. {
  173. struct vmemmap_backing *vmem_back, *vmem_back_prev;
  174. vmem_back_prev = vmem_back = vmemmap_list;
  175. /* look for it with prev pointer recorded */
  176. for (; vmem_back; vmem_back = vmem_back->list) {
  177. if (vmem_back->virt_addr == start)
  178. break;
  179. vmem_back_prev = vmem_back;
  180. }
  181. if (unlikely(!vmem_back)) {
  182. WARN_ON(1);
  183. return 0;
  184. }
  185. /* remove it from vmemmap_list */
  186. if (vmem_back == vmemmap_list) /* remove head */
  187. vmemmap_list = vmem_back->list;
  188. else
  189. vmem_back_prev->list = vmem_back->list;
  190. /* next point to this freed entry */
  191. vmem_back->list = next;
  192. next = vmem_back;
  193. num_freed++;
  194. return vmem_back->phys;
  195. }
  196. void __ref vmemmap_free(unsigned long start, unsigned long end)
  197. {
  198. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  199. start = _ALIGN_DOWN(start, page_size);
  200. pr_debug("vmemmap_free %lx...%lx\n", start, end);
  201. for (; start < end; start += page_size) {
  202. unsigned long addr;
  203. /*
  204. * the section has already be marked as invalid, so
  205. * vmemmap_populated() true means some other sections still
  206. * in this page, so skip it.
  207. */
  208. if (vmemmap_populated(start, page_size))
  209. continue;
  210. addr = vmemmap_list_free(start);
  211. if (addr) {
  212. struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
  213. if (PageReserved(page)) {
  214. /* allocated from bootmem */
  215. if (page_size < PAGE_SIZE) {
  216. /*
  217. * this shouldn't happen, but if it is
  218. * the case, leave the memory there
  219. */
  220. WARN_ON_ONCE(1);
  221. } else {
  222. unsigned int nr_pages =
  223. 1 << get_order(page_size);
  224. while (nr_pages--)
  225. free_reserved_page(page++);
  226. }
  227. } else
  228. free_pages((unsigned long)(__va(addr)),
  229. get_order(page_size));
  230. vmemmap_remove_mapping(start, page_size);
  231. }
  232. }
  233. }
  234. #endif
  235. void register_page_bootmem_memmap(unsigned long section_nr,
  236. struct page *start_page, unsigned long size)
  237. {
  238. }
  239. /*
  240. * We do not have access to the sparsemem vmemmap, so we fallback to
  241. * walking the list of sparsemem blocks which we already maintain for
  242. * the sake of crashdump. In the long run, we might want to maintain
  243. * a tree if performance of that linear walk becomes a problem.
  244. *
  245. * realmode_pfn_to_page functions can fail due to:
  246. * 1) As real sparsemem blocks do not lay in RAM continously (they
  247. * are in virtual address space which is not available in the real mode),
  248. * the requested page struct can be split between blocks so get_page/put_page
  249. * may fail.
  250. * 2) When huge pages are used, the get_page/put_page API will fail
  251. * in real mode as the linked addresses in the page struct are virtual
  252. * too.
  253. */
  254. struct page *realmode_pfn_to_page(unsigned long pfn)
  255. {
  256. struct vmemmap_backing *vmem_back;
  257. struct page *page;
  258. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  259. unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
  260. for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
  261. if (pg_va < vmem_back->virt_addr)
  262. continue;
  263. /* After vmemmap_list entry free is possible, need check all */
  264. if ((pg_va + sizeof(struct page)) <=
  265. (vmem_back->virt_addr + page_size)) {
  266. page = (struct page *) (vmem_back->phys + pg_va -
  267. vmem_back->virt_addr);
  268. return page;
  269. }
  270. }
  271. /* Probably that page struct is split between real pages */
  272. return NULL;
  273. }
  274. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  275. #elif defined(CONFIG_FLATMEM)
  276. struct page *realmode_pfn_to_page(unsigned long pfn)
  277. {
  278. struct page *page = pfn_to_page(pfn);
  279. return page;
  280. }
  281. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  282. #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
  283. #ifdef CONFIG_PPC_STD_MMU_64
  284. static bool disable_radix;
  285. static int __init parse_disable_radix(char *p)
  286. {
  287. disable_radix = true;
  288. return 0;
  289. }
  290. early_param("disable_radix", parse_disable_radix);
  291. void __init mmu_early_init_devtree(void)
  292. {
  293. /* Disable radix mode based on kernel command line. */
  294. if (disable_radix)
  295. cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
  296. if (early_radix_enabled())
  297. radix__early_init_devtree();
  298. else
  299. hash__early_init_devtree();
  300. }
  301. #endif /* CONFIG_PPC_STD_MMU_64 */