dump_hashpagetable.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551
  1. /*
  2. * Copyright 2016, Rashmica Gupta, IBM Corp.
  3. *
  4. * This traverses the kernel virtual memory and dumps the pages that are in
  5. * the hash pagetable, along with their flags to
  6. * /sys/kernel/debug/kernel_hash_pagetable.
  7. *
  8. * If radix is enabled then there is no hash page table and so no debugfs file
  9. * is generated.
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; version 2
  14. * of the License.
  15. */
  16. #include <linux/debugfs.h>
  17. #include <linux/fs.h>
  18. #include <linux/io.h>
  19. #include <linux/mm.h>
  20. #include <linux/sched.h>
  21. #include <linux/seq_file.h>
  22. #include <asm/fixmap.h>
  23. #include <asm/pgtable.h>
  24. #include <linux/const.h>
  25. #include <asm/page.h>
  26. #include <asm/pgalloc.h>
  27. #include <asm/plpar_wrappers.h>
  28. #include <linux/memblock.h>
  29. #include <asm/firmware.h>
  30. struct pg_state {
  31. struct seq_file *seq;
  32. const struct addr_marker *marker;
  33. unsigned long start_address;
  34. unsigned int level;
  35. u64 current_flags;
  36. };
  37. struct addr_marker {
  38. unsigned long start_address;
  39. const char *name;
  40. };
  41. static struct addr_marker address_markers[] = {
  42. { 0, "Start of kernel VM" },
  43. { 0, "vmalloc() Area" },
  44. { 0, "vmalloc() End" },
  45. { 0, "isa I/O start" },
  46. { 0, "isa I/O end" },
  47. { 0, "phb I/O start" },
  48. { 0, "phb I/O end" },
  49. { 0, "I/O remap start" },
  50. { 0, "I/O remap end" },
  51. { 0, "vmemmap start" },
  52. { -1, NULL },
  53. };
  54. struct flag_info {
  55. u64 mask;
  56. u64 val;
  57. const char *set;
  58. const char *clear;
  59. bool is_val;
  60. int shift;
  61. };
  62. static const struct flag_info v_flag_array[] = {
  63. {
  64. .mask = SLB_VSID_B,
  65. .val = SLB_VSID_B_256M,
  66. .set = "ssize: 256M",
  67. .clear = "ssize: 1T ",
  68. }, {
  69. .mask = HPTE_V_SECONDARY,
  70. .val = HPTE_V_SECONDARY,
  71. .set = "secondary",
  72. .clear = "primary ",
  73. }, {
  74. .mask = HPTE_V_VALID,
  75. .val = HPTE_V_VALID,
  76. .set = "valid ",
  77. .clear = "invalid",
  78. }, {
  79. .mask = HPTE_V_BOLTED,
  80. .val = HPTE_V_BOLTED,
  81. .set = "bolted",
  82. .clear = "",
  83. }
  84. };
  85. static const struct flag_info r_flag_array[] = {
  86. {
  87. .mask = HPTE_R_PP0 | HPTE_R_PP,
  88. .val = PP_RWXX,
  89. .set = "prot:RW--",
  90. }, {
  91. .mask = HPTE_R_PP0 | HPTE_R_PP,
  92. .val = PP_RWRX,
  93. .set = "prot:RWR-",
  94. }, {
  95. .mask = HPTE_R_PP0 | HPTE_R_PP,
  96. .val = PP_RWRW,
  97. .set = "prot:RWRW",
  98. }, {
  99. .mask = HPTE_R_PP0 | HPTE_R_PP,
  100. .val = PP_RXRX,
  101. .set = "prot:R-R-",
  102. }, {
  103. .mask = HPTE_R_PP0 | HPTE_R_PP,
  104. .val = PP_RXXX,
  105. .set = "prot:R---",
  106. }, {
  107. .mask = HPTE_R_KEY_HI | HPTE_R_KEY_LO,
  108. .val = HPTE_R_KEY_HI | HPTE_R_KEY_LO,
  109. .set = "key",
  110. .clear = "",
  111. .is_val = true,
  112. }, {
  113. .mask = HPTE_R_R,
  114. .val = HPTE_R_R,
  115. .set = "ref",
  116. .clear = " ",
  117. }, {
  118. .mask = HPTE_R_C,
  119. .val = HPTE_R_C,
  120. .set = "changed",
  121. .clear = " ",
  122. }, {
  123. .mask = HPTE_R_N,
  124. .val = HPTE_R_N,
  125. .set = "no execute",
  126. }, {
  127. .mask = HPTE_R_WIMG,
  128. .val = HPTE_R_W,
  129. .set = "writethru",
  130. }, {
  131. .mask = HPTE_R_WIMG,
  132. .val = HPTE_R_I,
  133. .set = "no cache",
  134. }, {
  135. .mask = HPTE_R_WIMG,
  136. .val = HPTE_R_G,
  137. .set = "guarded",
  138. }
  139. };
  140. static int calculate_pagesize(struct pg_state *st, int ps, char s[])
  141. {
  142. static const char units[] = "BKMGTPE";
  143. const char *unit = units;
  144. while (ps > 9 && unit[1]) {
  145. ps -= 10;
  146. unit++;
  147. }
  148. seq_printf(st->seq, " %s_ps: %i%c\t", s, 1<<ps, *unit);
  149. return ps;
  150. }
  151. static void dump_flag_info(struct pg_state *st, const struct flag_info
  152. *flag, u64 pte, int num)
  153. {
  154. unsigned int i;
  155. for (i = 0; i < num; i++, flag++) {
  156. const char *s = NULL;
  157. u64 val;
  158. /* flag not defined so don't check it */
  159. if (flag->mask == 0)
  160. continue;
  161. /* Some 'flags' are actually values */
  162. if (flag->is_val) {
  163. val = pte & flag->val;
  164. if (flag->shift)
  165. val = val >> flag->shift;
  166. seq_printf(st->seq, " %s:%llx", flag->set, val);
  167. } else {
  168. if ((pte & flag->mask) == flag->val)
  169. s = flag->set;
  170. else
  171. s = flag->clear;
  172. if (s)
  173. seq_printf(st->seq, " %s", s);
  174. }
  175. }
  176. }
  177. static void dump_hpte_info(struct pg_state *st, unsigned long ea, u64 v, u64 r,
  178. unsigned long rpn, int bps, int aps, unsigned long lp)
  179. {
  180. int aps_index;
  181. while (ea >= st->marker[1].start_address) {
  182. st->marker++;
  183. seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
  184. }
  185. seq_printf(st->seq, "0x%lx:\t", ea);
  186. seq_printf(st->seq, "AVPN:%llx\t", HPTE_V_AVPN_VAL(v));
  187. dump_flag_info(st, v_flag_array, v, ARRAY_SIZE(v_flag_array));
  188. seq_printf(st->seq, " rpn: %lx\t", rpn);
  189. dump_flag_info(st, r_flag_array, r, ARRAY_SIZE(r_flag_array));
  190. calculate_pagesize(st, bps, "base");
  191. aps_index = calculate_pagesize(st, aps, "actual");
  192. if (aps_index != 2)
  193. seq_printf(st->seq, "LP enc: %lx", lp);
  194. seq_puts(st->seq, "\n");
  195. }
  196. static int native_find(unsigned long ea, int psize, bool primary, u64 *v, u64
  197. *r)
  198. {
  199. struct hash_pte *hptep;
  200. unsigned long hash, vsid, vpn, hpte_group, want_v, hpte_v;
  201. int i, ssize = mmu_kernel_ssize;
  202. unsigned long shift = mmu_psize_defs[psize].shift;
  203. /* calculate hash */
  204. vsid = get_kernel_vsid(ea, ssize);
  205. vpn = hpt_vpn(ea, vsid, ssize);
  206. hash = hpt_hash(vpn, shift, ssize);
  207. want_v = hpte_encode_avpn(vpn, psize, ssize);
  208. /* to check in the secondary hash table, we invert the hash */
  209. if (!primary)
  210. hash = ~hash;
  211. hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
  212. for (i = 0; i < HPTES_PER_GROUP; i++) {
  213. hptep = htab_address + hpte_group;
  214. hpte_v = be64_to_cpu(hptep->v);
  215. if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID)) {
  216. /* HPTE matches */
  217. *v = be64_to_cpu(hptep->v);
  218. *r = be64_to_cpu(hptep->r);
  219. return 0;
  220. }
  221. ++hpte_group;
  222. }
  223. return -1;
  224. }
  225. #ifdef CONFIG_PPC_PSERIES
  226. static int pseries_find(unsigned long ea, int psize, bool primary, u64 *v, u64 *r)
  227. {
  228. struct hash_pte ptes[4];
  229. unsigned long vsid, vpn, hash, hpte_group, want_v;
  230. int i, j, ssize = mmu_kernel_ssize;
  231. long lpar_rc = 0;
  232. unsigned long shift = mmu_psize_defs[psize].shift;
  233. /* calculate hash */
  234. vsid = get_kernel_vsid(ea, ssize);
  235. vpn = hpt_vpn(ea, vsid, ssize);
  236. hash = hpt_hash(vpn, shift, ssize);
  237. want_v = hpte_encode_avpn(vpn, psize, ssize);
  238. /* to check in the secondary hash table, we invert the hash */
  239. if (!primary)
  240. hash = ~hash;
  241. hpte_group = ((hash & htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;
  242. /* see if we can find an entry in the hpte with this hash */
  243. for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
  244. lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
  245. if (lpar_rc != H_SUCCESS)
  246. continue;
  247. for (j = 0; j < 4; j++) {
  248. if (HPTE_V_COMPARE(ptes[j].v, want_v) &&
  249. (ptes[j].v & HPTE_V_VALID)) {
  250. /* HPTE matches */
  251. *v = ptes[j].v;
  252. *r = ptes[j].r;
  253. return 0;
  254. }
  255. }
  256. }
  257. return -1;
  258. }
  259. #endif
  260. static void decode_r(int bps, unsigned long r, unsigned long *rpn, int *aps,
  261. unsigned long *lp_bits)
  262. {
  263. struct mmu_psize_def entry;
  264. unsigned long arpn, mask, lp;
  265. int penc = -2, idx = 0, shift;
  266. /*.
  267. * The LP field has 8 bits. Depending on the actual page size, some of
  268. * these bits are concatenated with the APRN to get the RPN. The rest
  269. * of the bits in the LP field is the LP value and is an encoding for
  270. * the base page size and the actual page size.
  271. *
  272. * - find the mmu entry for our base page size
  273. * - go through all page encodings and use the associated mask to
  274. * find an encoding that matches our encoding in the LP field.
  275. */
  276. arpn = (r & HPTE_R_RPN) >> HPTE_R_RPN_SHIFT;
  277. lp = arpn & 0xff;
  278. entry = mmu_psize_defs[bps];
  279. while (idx < MMU_PAGE_COUNT) {
  280. penc = entry.penc[idx];
  281. if ((penc != -1) && (mmu_psize_defs[idx].shift)) {
  282. shift = mmu_psize_defs[idx].shift - HPTE_R_RPN_SHIFT;
  283. mask = (0x1 << (shift)) - 1;
  284. if ((lp & mask) == penc) {
  285. *aps = mmu_psize_to_shift(idx);
  286. *lp_bits = lp & mask;
  287. *rpn = arpn >> shift;
  288. return;
  289. }
  290. }
  291. idx++;
  292. }
  293. }
  294. static int base_hpte_find(unsigned long ea, int psize, bool primary, u64 *v,
  295. u64 *r)
  296. {
  297. #ifdef CONFIG_PPC_PSERIES
  298. if (firmware_has_feature(FW_FEATURE_LPAR))
  299. return pseries_find(ea, psize, primary, v, r);
  300. #endif
  301. return native_find(ea, psize, primary, v, r);
  302. }
  303. static unsigned long hpte_find(struct pg_state *st, unsigned long ea, int psize)
  304. {
  305. unsigned long slot;
  306. u64 v = 0, r = 0;
  307. unsigned long rpn, lp_bits;
  308. int base_psize = 0, actual_psize = 0;
  309. if (ea <= PAGE_OFFSET)
  310. return -1;
  311. /* Look in primary table */
  312. slot = base_hpte_find(ea, psize, true, &v, &r);
  313. /* Look in secondary table */
  314. if (slot == -1)
  315. slot = base_hpte_find(ea, psize, true, &v, &r);
  316. /* No entry found */
  317. if (slot == -1)
  318. return -1;
  319. /*
  320. * We found an entry in the hash page table:
  321. * - check that this has the same base page
  322. * - find the actual page size
  323. * - find the RPN
  324. */
  325. base_psize = mmu_psize_to_shift(psize);
  326. if ((v & HPTE_V_LARGE) == HPTE_V_LARGE) {
  327. decode_r(psize, r, &rpn, &actual_psize, &lp_bits);
  328. } else {
  329. /* 4K actual page size */
  330. actual_psize = 12;
  331. rpn = (r & HPTE_R_RPN) >> HPTE_R_RPN_SHIFT;
  332. /* In this case there are no LP bits */
  333. lp_bits = -1;
  334. }
  335. /*
  336. * We didn't find a matching encoding, so the PTE we found isn't for
  337. * this address.
  338. */
  339. if (actual_psize == -1)
  340. return -1;
  341. dump_hpte_info(st, ea, v, r, rpn, base_psize, actual_psize, lp_bits);
  342. return 0;
  343. }
  344. static void walk_pte(struct pg_state *st, pmd_t *pmd, unsigned long start)
  345. {
  346. pte_t *pte = pte_offset_kernel(pmd, 0);
  347. unsigned long addr, pteval, psize;
  348. int i, status;
  349. for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
  350. addr = start + i * PAGE_SIZE;
  351. pteval = pte_val(*pte);
  352. if (addr < VMALLOC_END)
  353. psize = mmu_vmalloc_psize;
  354. else
  355. psize = mmu_io_psize;
  356. #ifdef CONFIG_PPC_64K_PAGES
  357. /* check for secret 4K mappings */
  358. if (((pteval & H_PAGE_COMBO) == H_PAGE_COMBO) ||
  359. ((pteval & H_PAGE_4K_PFN) == H_PAGE_4K_PFN))
  360. psize = mmu_io_psize;
  361. #endif
  362. /* check for hashpte */
  363. status = hpte_find(st, addr, psize);
  364. if (((pteval & H_PAGE_HASHPTE) != H_PAGE_HASHPTE)
  365. && (status != -1)) {
  366. /* found a hpte that is not in the linux page tables */
  367. seq_printf(st->seq, "page probably bolted before linux"
  368. " pagetables were set: addr:%lx, pteval:%lx\n",
  369. addr, pteval);
  370. }
  371. }
  372. }
  373. static void walk_pmd(struct pg_state *st, pud_t *pud, unsigned long start)
  374. {
  375. pmd_t *pmd = pmd_offset(pud, 0);
  376. unsigned long addr;
  377. unsigned int i;
  378. for (i = 0; i < PTRS_PER_PMD; i++, pmd++) {
  379. addr = start + i * PMD_SIZE;
  380. if (!pmd_none(*pmd))
  381. /* pmd exists */
  382. walk_pte(st, pmd, addr);
  383. }
  384. }
  385. static void walk_pud(struct pg_state *st, pgd_t *pgd, unsigned long start)
  386. {
  387. pud_t *pud = pud_offset(pgd, 0);
  388. unsigned long addr;
  389. unsigned int i;
  390. for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
  391. addr = start + i * PUD_SIZE;
  392. if (!pud_none(*pud))
  393. /* pud exists */
  394. walk_pmd(st, pud, addr);
  395. }
  396. }
  397. static void walk_pagetables(struct pg_state *st)
  398. {
  399. pgd_t *pgd = pgd_offset_k(0UL);
  400. unsigned int i;
  401. unsigned long addr;
  402. /*
  403. * Traverse the linux pagetable structure and dump pages that are in
  404. * the hash pagetable.
  405. */
  406. for (i = 0; i < PTRS_PER_PGD; i++, pgd++) {
  407. addr = KERN_VIRT_START + i * PGDIR_SIZE;
  408. if (!pgd_none(*pgd))
  409. /* pgd exists */
  410. walk_pud(st, pgd, addr);
  411. }
  412. }
  413. static void walk_linearmapping(struct pg_state *st)
  414. {
  415. unsigned long addr;
  416. /*
  417. * Traverse the linear mapping section of virtual memory and dump pages
  418. * that are in the hash pagetable.
  419. */
  420. unsigned long psize = 1 << mmu_psize_defs[mmu_linear_psize].shift;
  421. for (addr = PAGE_OFFSET; addr < PAGE_OFFSET +
  422. memblock_phys_mem_size(); addr += psize)
  423. hpte_find(st, addr, mmu_linear_psize);
  424. }
  425. static void walk_vmemmap(struct pg_state *st)
  426. {
  427. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  428. struct vmemmap_backing *ptr = vmemmap_list;
  429. /*
  430. * Traverse the vmemmaped memory and dump pages that are in the hash
  431. * pagetable.
  432. */
  433. while (ptr->list) {
  434. hpte_find(st, ptr->virt_addr, mmu_vmemmap_psize);
  435. ptr = ptr->list;
  436. }
  437. seq_puts(st->seq, "---[ vmemmap end ]---\n");
  438. #endif
  439. }
  440. static void populate_markers(void)
  441. {
  442. address_markers[0].start_address = PAGE_OFFSET;
  443. address_markers[1].start_address = VMALLOC_START;
  444. address_markers[2].start_address = VMALLOC_END;
  445. address_markers[3].start_address = ISA_IO_BASE;
  446. address_markers[4].start_address = ISA_IO_END;
  447. address_markers[5].start_address = PHB_IO_BASE;
  448. address_markers[6].start_address = PHB_IO_END;
  449. address_markers[7].start_address = IOREMAP_BASE;
  450. address_markers[8].start_address = IOREMAP_END;
  451. #ifdef CONFIG_PPC_STD_MMU_64
  452. address_markers[9].start_address = H_VMEMMAP_BASE;
  453. #else
  454. address_markers[9].start_address = VMEMMAP_BASE;
  455. #endif
  456. }
  457. static int ptdump_show(struct seq_file *m, void *v)
  458. {
  459. struct pg_state st = {
  460. .seq = m,
  461. .start_address = PAGE_OFFSET,
  462. .marker = address_markers,
  463. };
  464. /*
  465. * Traverse the 0xc, 0xd and 0xf areas of the kernel virtual memory and
  466. * dump pages that are in the hash pagetable.
  467. */
  468. walk_linearmapping(&st);
  469. walk_pagetables(&st);
  470. walk_vmemmap(&st);
  471. return 0;
  472. }
  473. static int ptdump_open(struct inode *inode, struct file *file)
  474. {
  475. return single_open(file, ptdump_show, NULL);
  476. }
  477. static const struct file_operations ptdump_fops = {
  478. .open = ptdump_open,
  479. .read = seq_read,
  480. .llseek = seq_lseek,
  481. .release = single_release,
  482. };
  483. static int ptdump_init(void)
  484. {
  485. struct dentry *debugfs_file;
  486. if (!radix_enabled()) {
  487. populate_markers();
  488. debugfs_file = debugfs_create_file("kernel_hash_pagetable",
  489. 0400, NULL, NULL, &ptdump_fops);
  490. return debugfs_file ? 0 : -ENOMEM;
  491. }
  492. return 0;
  493. }
  494. device_initcall(ptdump_init);