sstep.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012
  1. /*
  2. * Single-step support.
  3. *
  4. * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/kprobes.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/prefetch.h>
  15. #include <asm/sstep.h>
  16. #include <asm/processor.h>
  17. #include <linux/uaccess.h>
  18. #include <asm/cpu_has_feature.h>
  19. #include <asm/cputable.h>
  20. extern char system_call_common[];
  21. #ifdef CONFIG_PPC64
  22. /* Bits in SRR1 that are copied from MSR */
  23. #define MSR_MASK 0xffffffff87c0ffffUL
  24. #else
  25. #define MSR_MASK 0x87c0ffff
  26. #endif
  27. /* Bits in XER */
  28. #define XER_SO 0x80000000U
  29. #define XER_OV 0x40000000U
  30. #define XER_CA 0x20000000U
  31. #ifdef CONFIG_PPC_FPU
  32. /*
  33. * Functions in ldstfp.S
  34. */
  35. extern int do_lfs(int rn, unsigned long ea);
  36. extern int do_lfd(int rn, unsigned long ea);
  37. extern int do_stfs(int rn, unsigned long ea);
  38. extern int do_stfd(int rn, unsigned long ea);
  39. extern int do_lvx(int rn, unsigned long ea);
  40. extern int do_stvx(int rn, unsigned long ea);
  41. extern int do_lxvd2x(int rn, unsigned long ea);
  42. extern int do_stxvd2x(int rn, unsigned long ea);
  43. #endif
  44. /*
  45. * Emulate the truncation of 64 bit values in 32-bit mode.
  46. */
  47. static unsigned long truncate_if_32bit(unsigned long msr, unsigned long val)
  48. {
  49. #ifdef __powerpc64__
  50. if ((msr & MSR_64BIT) == 0)
  51. val &= 0xffffffffUL;
  52. #endif
  53. return val;
  54. }
  55. /*
  56. * Determine whether a conditional branch instruction would branch.
  57. */
  58. static int __kprobes branch_taken(unsigned int instr, struct pt_regs *regs)
  59. {
  60. unsigned int bo = (instr >> 21) & 0x1f;
  61. unsigned int bi;
  62. if ((bo & 4) == 0) {
  63. /* decrement counter */
  64. --regs->ctr;
  65. if (((bo >> 1) & 1) ^ (regs->ctr == 0))
  66. return 0;
  67. }
  68. if ((bo & 0x10) == 0) {
  69. /* check bit from CR */
  70. bi = (instr >> 16) & 0x1f;
  71. if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
  72. return 0;
  73. }
  74. return 1;
  75. }
  76. static long __kprobes address_ok(struct pt_regs *regs, unsigned long ea, int nb)
  77. {
  78. if (!user_mode(regs))
  79. return 1;
  80. return __access_ok(ea, nb, USER_DS);
  81. }
  82. /*
  83. * Calculate effective address for a D-form instruction
  84. */
  85. static unsigned long __kprobes dform_ea(unsigned int instr, struct pt_regs *regs)
  86. {
  87. int ra;
  88. unsigned long ea;
  89. ra = (instr >> 16) & 0x1f;
  90. ea = (signed short) instr; /* sign-extend */
  91. if (ra)
  92. ea += regs->gpr[ra];
  93. return truncate_if_32bit(regs->msr, ea);
  94. }
  95. #ifdef __powerpc64__
  96. /*
  97. * Calculate effective address for a DS-form instruction
  98. */
  99. static unsigned long __kprobes dsform_ea(unsigned int instr, struct pt_regs *regs)
  100. {
  101. int ra;
  102. unsigned long ea;
  103. ra = (instr >> 16) & 0x1f;
  104. ea = (signed short) (instr & ~3); /* sign-extend */
  105. if (ra)
  106. ea += regs->gpr[ra];
  107. return truncate_if_32bit(regs->msr, ea);
  108. }
  109. #endif /* __powerpc64 */
  110. /*
  111. * Calculate effective address for an X-form instruction
  112. */
  113. static unsigned long __kprobes xform_ea(unsigned int instr,
  114. struct pt_regs *regs)
  115. {
  116. int ra, rb;
  117. unsigned long ea;
  118. ra = (instr >> 16) & 0x1f;
  119. rb = (instr >> 11) & 0x1f;
  120. ea = regs->gpr[rb];
  121. if (ra)
  122. ea += regs->gpr[ra];
  123. return truncate_if_32bit(regs->msr, ea);
  124. }
  125. /*
  126. * Return the largest power of 2, not greater than sizeof(unsigned long),
  127. * such that x is a multiple of it.
  128. */
  129. static inline unsigned long max_align(unsigned long x)
  130. {
  131. x |= sizeof(unsigned long);
  132. return x & -x; /* isolates rightmost bit */
  133. }
  134. static inline unsigned long byterev_2(unsigned long x)
  135. {
  136. return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
  137. }
  138. static inline unsigned long byterev_4(unsigned long x)
  139. {
  140. return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
  141. ((x & 0xff00) << 8) | ((x & 0xff) << 24);
  142. }
  143. #ifdef __powerpc64__
  144. static inline unsigned long byterev_8(unsigned long x)
  145. {
  146. return (byterev_4(x) << 32) | byterev_4(x >> 32);
  147. }
  148. #endif
  149. static int __kprobes read_mem_aligned(unsigned long *dest, unsigned long ea,
  150. int nb)
  151. {
  152. int err = 0;
  153. unsigned long x = 0;
  154. switch (nb) {
  155. case 1:
  156. err = __get_user(x, (unsigned char __user *) ea);
  157. break;
  158. case 2:
  159. err = __get_user(x, (unsigned short __user *) ea);
  160. break;
  161. case 4:
  162. err = __get_user(x, (unsigned int __user *) ea);
  163. break;
  164. #ifdef __powerpc64__
  165. case 8:
  166. err = __get_user(x, (unsigned long __user *) ea);
  167. break;
  168. #endif
  169. }
  170. if (!err)
  171. *dest = x;
  172. return err;
  173. }
  174. static int __kprobes read_mem_unaligned(unsigned long *dest, unsigned long ea,
  175. int nb, struct pt_regs *regs)
  176. {
  177. int err;
  178. unsigned long x, b, c;
  179. #ifdef __LITTLE_ENDIAN__
  180. int len = nb; /* save a copy of the length for byte reversal */
  181. #endif
  182. /* unaligned, do this in pieces */
  183. x = 0;
  184. for (; nb > 0; nb -= c) {
  185. #ifdef __LITTLE_ENDIAN__
  186. c = 1;
  187. #endif
  188. #ifdef __BIG_ENDIAN__
  189. c = max_align(ea);
  190. #endif
  191. if (c > nb)
  192. c = max_align(nb);
  193. err = read_mem_aligned(&b, ea, c);
  194. if (err)
  195. return err;
  196. x = (x << (8 * c)) + b;
  197. ea += c;
  198. }
  199. #ifdef __LITTLE_ENDIAN__
  200. switch (len) {
  201. case 2:
  202. *dest = byterev_2(x);
  203. break;
  204. case 4:
  205. *dest = byterev_4(x);
  206. break;
  207. #ifdef __powerpc64__
  208. case 8:
  209. *dest = byterev_8(x);
  210. break;
  211. #endif
  212. }
  213. #endif
  214. #ifdef __BIG_ENDIAN__
  215. *dest = x;
  216. #endif
  217. return 0;
  218. }
  219. /*
  220. * Read memory at address ea for nb bytes, return 0 for success
  221. * or -EFAULT if an error occurred.
  222. */
  223. static int __kprobes read_mem(unsigned long *dest, unsigned long ea, int nb,
  224. struct pt_regs *regs)
  225. {
  226. if (!address_ok(regs, ea, nb))
  227. return -EFAULT;
  228. if ((ea & (nb - 1)) == 0)
  229. return read_mem_aligned(dest, ea, nb);
  230. return read_mem_unaligned(dest, ea, nb, regs);
  231. }
  232. static int __kprobes write_mem_aligned(unsigned long val, unsigned long ea,
  233. int nb)
  234. {
  235. int err = 0;
  236. switch (nb) {
  237. case 1:
  238. err = __put_user(val, (unsigned char __user *) ea);
  239. break;
  240. case 2:
  241. err = __put_user(val, (unsigned short __user *) ea);
  242. break;
  243. case 4:
  244. err = __put_user(val, (unsigned int __user *) ea);
  245. break;
  246. #ifdef __powerpc64__
  247. case 8:
  248. err = __put_user(val, (unsigned long __user *) ea);
  249. break;
  250. #endif
  251. }
  252. return err;
  253. }
  254. static int __kprobes write_mem_unaligned(unsigned long val, unsigned long ea,
  255. int nb, struct pt_regs *regs)
  256. {
  257. int err;
  258. unsigned long c;
  259. #ifdef __LITTLE_ENDIAN__
  260. switch (nb) {
  261. case 2:
  262. val = byterev_2(val);
  263. break;
  264. case 4:
  265. val = byterev_4(val);
  266. break;
  267. #ifdef __powerpc64__
  268. case 8:
  269. val = byterev_8(val);
  270. break;
  271. #endif
  272. }
  273. #endif
  274. /* unaligned or little-endian, do this in pieces */
  275. for (; nb > 0; nb -= c) {
  276. #ifdef __LITTLE_ENDIAN__
  277. c = 1;
  278. #endif
  279. #ifdef __BIG_ENDIAN__
  280. c = max_align(ea);
  281. #endif
  282. if (c > nb)
  283. c = max_align(nb);
  284. err = write_mem_aligned(val >> (nb - c) * 8, ea, c);
  285. if (err)
  286. return err;
  287. ea += c;
  288. }
  289. return 0;
  290. }
  291. /*
  292. * Write memory at address ea for nb bytes, return 0 for success
  293. * or -EFAULT if an error occurred.
  294. */
  295. static int __kprobes write_mem(unsigned long val, unsigned long ea, int nb,
  296. struct pt_regs *regs)
  297. {
  298. if (!address_ok(regs, ea, nb))
  299. return -EFAULT;
  300. if ((ea & (nb - 1)) == 0)
  301. return write_mem_aligned(val, ea, nb);
  302. return write_mem_unaligned(val, ea, nb, regs);
  303. }
  304. #ifdef CONFIG_PPC_FPU
  305. /*
  306. * Check the address and alignment, and call func to do the actual
  307. * load or store.
  308. */
  309. static int __kprobes do_fp_load(int rn, int (*func)(int, unsigned long),
  310. unsigned long ea, int nb,
  311. struct pt_regs *regs)
  312. {
  313. int err;
  314. union {
  315. double dbl;
  316. unsigned long ul[2];
  317. struct {
  318. #ifdef __BIG_ENDIAN__
  319. unsigned _pad_;
  320. unsigned word;
  321. #endif
  322. #ifdef __LITTLE_ENDIAN__
  323. unsigned word;
  324. unsigned _pad_;
  325. #endif
  326. } single;
  327. } data;
  328. unsigned long ptr;
  329. if (!address_ok(regs, ea, nb))
  330. return -EFAULT;
  331. if ((ea & 3) == 0)
  332. return (*func)(rn, ea);
  333. ptr = (unsigned long) &data.ul;
  334. if (sizeof(unsigned long) == 8 || nb == 4) {
  335. err = read_mem_unaligned(&data.ul[0], ea, nb, regs);
  336. if (nb == 4)
  337. ptr = (unsigned long)&(data.single.word);
  338. } else {
  339. /* reading a double on 32-bit */
  340. err = read_mem_unaligned(&data.ul[0], ea, 4, regs);
  341. if (!err)
  342. err = read_mem_unaligned(&data.ul[1], ea + 4, 4, regs);
  343. }
  344. if (err)
  345. return err;
  346. return (*func)(rn, ptr);
  347. }
  348. static int __kprobes do_fp_store(int rn, int (*func)(int, unsigned long),
  349. unsigned long ea, int nb,
  350. struct pt_regs *regs)
  351. {
  352. int err;
  353. union {
  354. double dbl;
  355. unsigned long ul[2];
  356. struct {
  357. #ifdef __BIG_ENDIAN__
  358. unsigned _pad_;
  359. unsigned word;
  360. #endif
  361. #ifdef __LITTLE_ENDIAN__
  362. unsigned word;
  363. unsigned _pad_;
  364. #endif
  365. } single;
  366. } data;
  367. unsigned long ptr;
  368. if (!address_ok(regs, ea, nb))
  369. return -EFAULT;
  370. if ((ea & 3) == 0)
  371. return (*func)(rn, ea);
  372. ptr = (unsigned long) &data.ul[0];
  373. if (sizeof(unsigned long) == 8 || nb == 4) {
  374. if (nb == 4)
  375. ptr = (unsigned long)&(data.single.word);
  376. err = (*func)(rn, ptr);
  377. if (err)
  378. return err;
  379. err = write_mem_unaligned(data.ul[0], ea, nb, regs);
  380. } else {
  381. /* writing a double on 32-bit */
  382. err = (*func)(rn, ptr);
  383. if (err)
  384. return err;
  385. err = write_mem_unaligned(data.ul[0], ea, 4, regs);
  386. if (!err)
  387. err = write_mem_unaligned(data.ul[1], ea + 4, 4, regs);
  388. }
  389. return err;
  390. }
  391. #endif
  392. #ifdef CONFIG_ALTIVEC
  393. /* For Altivec/VMX, no need to worry about alignment */
  394. static int __kprobes do_vec_load(int rn, int (*func)(int, unsigned long),
  395. unsigned long ea, struct pt_regs *regs)
  396. {
  397. if (!address_ok(regs, ea & ~0xfUL, 16))
  398. return -EFAULT;
  399. return (*func)(rn, ea);
  400. }
  401. static int __kprobes do_vec_store(int rn, int (*func)(int, unsigned long),
  402. unsigned long ea, struct pt_regs *regs)
  403. {
  404. if (!address_ok(regs, ea & ~0xfUL, 16))
  405. return -EFAULT;
  406. return (*func)(rn, ea);
  407. }
  408. #endif /* CONFIG_ALTIVEC */
  409. #ifdef CONFIG_VSX
  410. static int __kprobes do_vsx_load(int rn, int (*func)(int, unsigned long),
  411. unsigned long ea, struct pt_regs *regs)
  412. {
  413. int err;
  414. unsigned long val[2];
  415. if (!address_ok(regs, ea, 16))
  416. return -EFAULT;
  417. if ((ea & 3) == 0)
  418. return (*func)(rn, ea);
  419. err = read_mem_unaligned(&val[0], ea, 8, regs);
  420. if (!err)
  421. err = read_mem_unaligned(&val[1], ea + 8, 8, regs);
  422. if (!err)
  423. err = (*func)(rn, (unsigned long) &val[0]);
  424. return err;
  425. }
  426. static int __kprobes do_vsx_store(int rn, int (*func)(int, unsigned long),
  427. unsigned long ea, struct pt_regs *regs)
  428. {
  429. int err;
  430. unsigned long val[2];
  431. if (!address_ok(regs, ea, 16))
  432. return -EFAULT;
  433. if ((ea & 3) == 0)
  434. return (*func)(rn, ea);
  435. err = (*func)(rn, (unsigned long) &val[0]);
  436. if (err)
  437. return err;
  438. err = write_mem_unaligned(val[0], ea, 8, regs);
  439. if (!err)
  440. err = write_mem_unaligned(val[1], ea + 8, 8, regs);
  441. return err;
  442. }
  443. #endif /* CONFIG_VSX */
  444. #define __put_user_asmx(x, addr, err, op, cr) \
  445. __asm__ __volatile__( \
  446. "1: " op " %2,0,%3\n" \
  447. " mfcr %1\n" \
  448. "2:\n" \
  449. ".section .fixup,\"ax\"\n" \
  450. "3: li %0,%4\n" \
  451. " b 2b\n" \
  452. ".previous\n" \
  453. EX_TABLE(1b, 3b) \
  454. : "=r" (err), "=r" (cr) \
  455. : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
  456. #define __get_user_asmx(x, addr, err, op) \
  457. __asm__ __volatile__( \
  458. "1: "op" %1,0,%2\n" \
  459. "2:\n" \
  460. ".section .fixup,\"ax\"\n" \
  461. "3: li %0,%3\n" \
  462. " b 2b\n" \
  463. ".previous\n" \
  464. EX_TABLE(1b, 3b) \
  465. : "=r" (err), "=r" (x) \
  466. : "r" (addr), "i" (-EFAULT), "0" (err))
  467. #define __cacheop_user_asmx(addr, err, op) \
  468. __asm__ __volatile__( \
  469. "1: "op" 0,%1\n" \
  470. "2:\n" \
  471. ".section .fixup,\"ax\"\n" \
  472. "3: li %0,%3\n" \
  473. " b 2b\n" \
  474. ".previous\n" \
  475. EX_TABLE(1b, 3b) \
  476. : "=r" (err) \
  477. : "r" (addr), "i" (-EFAULT), "0" (err))
  478. static void __kprobes set_cr0(struct pt_regs *regs, int rd)
  479. {
  480. long val = regs->gpr[rd];
  481. regs->ccr = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
  482. #ifdef __powerpc64__
  483. if (!(regs->msr & MSR_64BIT))
  484. val = (int) val;
  485. #endif
  486. if (val < 0)
  487. regs->ccr |= 0x80000000;
  488. else if (val > 0)
  489. regs->ccr |= 0x40000000;
  490. else
  491. regs->ccr |= 0x20000000;
  492. }
  493. static void __kprobes add_with_carry(struct pt_regs *regs, int rd,
  494. unsigned long val1, unsigned long val2,
  495. unsigned long carry_in)
  496. {
  497. unsigned long val = val1 + val2;
  498. if (carry_in)
  499. ++val;
  500. regs->gpr[rd] = val;
  501. #ifdef __powerpc64__
  502. if (!(regs->msr & MSR_64BIT)) {
  503. val = (unsigned int) val;
  504. val1 = (unsigned int) val1;
  505. }
  506. #endif
  507. if (val < val1 || (carry_in && val == val1))
  508. regs->xer |= XER_CA;
  509. else
  510. regs->xer &= ~XER_CA;
  511. }
  512. static void __kprobes do_cmp_signed(struct pt_regs *regs, long v1, long v2,
  513. int crfld)
  514. {
  515. unsigned int crval, shift;
  516. crval = (regs->xer >> 31) & 1; /* get SO bit */
  517. if (v1 < v2)
  518. crval |= 8;
  519. else if (v1 > v2)
  520. crval |= 4;
  521. else
  522. crval |= 2;
  523. shift = (7 - crfld) * 4;
  524. regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  525. }
  526. static void __kprobes do_cmp_unsigned(struct pt_regs *regs, unsigned long v1,
  527. unsigned long v2, int crfld)
  528. {
  529. unsigned int crval, shift;
  530. crval = (regs->xer >> 31) & 1; /* get SO bit */
  531. if (v1 < v2)
  532. crval |= 8;
  533. else if (v1 > v2)
  534. crval |= 4;
  535. else
  536. crval |= 2;
  537. shift = (7 - crfld) * 4;
  538. regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
  539. }
  540. static int __kprobes trap_compare(long v1, long v2)
  541. {
  542. int ret = 0;
  543. if (v1 < v2)
  544. ret |= 0x10;
  545. else if (v1 > v2)
  546. ret |= 0x08;
  547. else
  548. ret |= 0x04;
  549. if ((unsigned long)v1 < (unsigned long)v2)
  550. ret |= 0x02;
  551. else if ((unsigned long)v1 > (unsigned long)v2)
  552. ret |= 0x01;
  553. return ret;
  554. }
  555. /*
  556. * Elements of 32-bit rotate and mask instructions.
  557. */
  558. #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
  559. ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
  560. #ifdef __powerpc64__
  561. #define MASK64_L(mb) (~0UL >> (mb))
  562. #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
  563. #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
  564. #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
  565. #else
  566. #define DATA32(x) (x)
  567. #endif
  568. #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
  569. /*
  570. * Decode an instruction, and execute it if that can be done just by
  571. * modifying *regs (i.e. integer arithmetic and logical instructions,
  572. * branches, and barrier instructions).
  573. * Returns 1 if the instruction has been executed, or 0 if not.
  574. * Sets *op to indicate what the instruction does.
  575. */
  576. int __kprobes analyse_instr(struct instruction_op *op, struct pt_regs *regs,
  577. unsigned int instr)
  578. {
  579. unsigned int opcode, ra, rb, rd, spr, u;
  580. unsigned long int imm;
  581. unsigned long int val, val2;
  582. unsigned int mb, me, sh;
  583. long ival;
  584. op->type = COMPUTE;
  585. opcode = instr >> 26;
  586. switch (opcode) {
  587. case 16: /* bc */
  588. op->type = BRANCH;
  589. imm = (signed short)(instr & 0xfffc);
  590. if ((instr & 2) == 0)
  591. imm += regs->nip;
  592. regs->nip += 4;
  593. regs->nip = truncate_if_32bit(regs->msr, regs->nip);
  594. if (instr & 1)
  595. regs->link = regs->nip;
  596. if (branch_taken(instr, regs))
  597. regs->nip = truncate_if_32bit(regs->msr, imm);
  598. return 1;
  599. #ifdef CONFIG_PPC64
  600. case 17: /* sc */
  601. if ((instr & 0xfe2) == 2)
  602. op->type = SYSCALL;
  603. else
  604. op->type = UNKNOWN;
  605. return 0;
  606. #endif
  607. case 18: /* b */
  608. op->type = BRANCH;
  609. imm = instr & 0x03fffffc;
  610. if (imm & 0x02000000)
  611. imm -= 0x04000000;
  612. if ((instr & 2) == 0)
  613. imm += regs->nip;
  614. if (instr & 1)
  615. regs->link = truncate_if_32bit(regs->msr, regs->nip + 4);
  616. imm = truncate_if_32bit(regs->msr, imm);
  617. regs->nip = imm;
  618. return 1;
  619. case 19:
  620. switch ((instr >> 1) & 0x3ff) {
  621. case 0: /* mcrf */
  622. rd = (instr >> 21) & 0x1c;
  623. ra = (instr >> 16) & 0x1c;
  624. val = (regs->ccr >> ra) & 0xf;
  625. regs->ccr = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
  626. goto instr_done;
  627. case 16: /* bclr */
  628. case 528: /* bcctr */
  629. op->type = BRANCH;
  630. imm = (instr & 0x400)? regs->ctr: regs->link;
  631. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  632. imm = truncate_if_32bit(regs->msr, imm);
  633. if (instr & 1)
  634. regs->link = regs->nip;
  635. if (branch_taken(instr, regs))
  636. regs->nip = imm;
  637. return 1;
  638. case 18: /* rfid, scary */
  639. if (regs->msr & MSR_PR)
  640. goto priv;
  641. op->type = RFI;
  642. return 0;
  643. case 150: /* isync */
  644. op->type = BARRIER;
  645. isync();
  646. goto instr_done;
  647. case 33: /* crnor */
  648. case 129: /* crandc */
  649. case 193: /* crxor */
  650. case 225: /* crnand */
  651. case 257: /* crand */
  652. case 289: /* creqv */
  653. case 417: /* crorc */
  654. case 449: /* cror */
  655. ra = (instr >> 16) & 0x1f;
  656. rb = (instr >> 11) & 0x1f;
  657. rd = (instr >> 21) & 0x1f;
  658. ra = (regs->ccr >> (31 - ra)) & 1;
  659. rb = (regs->ccr >> (31 - rb)) & 1;
  660. val = (instr >> (6 + ra * 2 + rb)) & 1;
  661. regs->ccr = (regs->ccr & ~(1UL << (31 - rd))) |
  662. (val << (31 - rd));
  663. goto instr_done;
  664. }
  665. break;
  666. case 31:
  667. switch ((instr >> 1) & 0x3ff) {
  668. case 598: /* sync */
  669. op->type = BARRIER;
  670. #ifdef __powerpc64__
  671. switch ((instr >> 21) & 3) {
  672. case 1: /* lwsync */
  673. asm volatile("lwsync" : : : "memory");
  674. goto instr_done;
  675. case 2: /* ptesync */
  676. asm volatile("ptesync" : : : "memory");
  677. goto instr_done;
  678. }
  679. #endif
  680. mb();
  681. goto instr_done;
  682. case 854: /* eieio */
  683. op->type = BARRIER;
  684. eieio();
  685. goto instr_done;
  686. }
  687. break;
  688. }
  689. /* Following cases refer to regs->gpr[], so we need all regs */
  690. if (!FULL_REGS(regs))
  691. return 0;
  692. rd = (instr >> 21) & 0x1f;
  693. ra = (instr >> 16) & 0x1f;
  694. rb = (instr >> 11) & 0x1f;
  695. switch (opcode) {
  696. #ifdef __powerpc64__
  697. case 2: /* tdi */
  698. if (rd & trap_compare(regs->gpr[ra], (short) instr))
  699. goto trap;
  700. goto instr_done;
  701. #endif
  702. case 3: /* twi */
  703. if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
  704. goto trap;
  705. goto instr_done;
  706. case 7: /* mulli */
  707. regs->gpr[rd] = regs->gpr[ra] * (short) instr;
  708. goto instr_done;
  709. case 8: /* subfic */
  710. imm = (short) instr;
  711. add_with_carry(regs, rd, ~regs->gpr[ra], imm, 1);
  712. goto instr_done;
  713. case 10: /* cmpli */
  714. imm = (unsigned short) instr;
  715. val = regs->gpr[ra];
  716. #ifdef __powerpc64__
  717. if ((rd & 1) == 0)
  718. val = (unsigned int) val;
  719. #endif
  720. do_cmp_unsigned(regs, val, imm, rd >> 2);
  721. goto instr_done;
  722. case 11: /* cmpi */
  723. imm = (short) instr;
  724. val = regs->gpr[ra];
  725. #ifdef __powerpc64__
  726. if ((rd & 1) == 0)
  727. val = (int) val;
  728. #endif
  729. do_cmp_signed(regs, val, imm, rd >> 2);
  730. goto instr_done;
  731. case 12: /* addic */
  732. imm = (short) instr;
  733. add_with_carry(regs, rd, regs->gpr[ra], imm, 0);
  734. goto instr_done;
  735. case 13: /* addic. */
  736. imm = (short) instr;
  737. add_with_carry(regs, rd, regs->gpr[ra], imm, 0);
  738. set_cr0(regs, rd);
  739. goto instr_done;
  740. case 14: /* addi */
  741. imm = (short) instr;
  742. if (ra)
  743. imm += regs->gpr[ra];
  744. regs->gpr[rd] = imm;
  745. goto instr_done;
  746. case 15: /* addis */
  747. imm = ((short) instr) << 16;
  748. if (ra)
  749. imm += regs->gpr[ra];
  750. regs->gpr[rd] = imm;
  751. goto instr_done;
  752. case 20: /* rlwimi */
  753. mb = (instr >> 6) & 0x1f;
  754. me = (instr >> 1) & 0x1f;
  755. val = DATA32(regs->gpr[rd]);
  756. imm = MASK32(mb, me);
  757. regs->gpr[ra] = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
  758. goto logical_done;
  759. case 21: /* rlwinm */
  760. mb = (instr >> 6) & 0x1f;
  761. me = (instr >> 1) & 0x1f;
  762. val = DATA32(regs->gpr[rd]);
  763. regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me);
  764. goto logical_done;
  765. case 23: /* rlwnm */
  766. mb = (instr >> 6) & 0x1f;
  767. me = (instr >> 1) & 0x1f;
  768. rb = regs->gpr[rb] & 0x1f;
  769. val = DATA32(regs->gpr[rd]);
  770. regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me);
  771. goto logical_done;
  772. case 24: /* ori */
  773. imm = (unsigned short) instr;
  774. regs->gpr[ra] = regs->gpr[rd] | imm;
  775. goto instr_done;
  776. case 25: /* oris */
  777. imm = (unsigned short) instr;
  778. regs->gpr[ra] = regs->gpr[rd] | (imm << 16);
  779. goto instr_done;
  780. case 26: /* xori */
  781. imm = (unsigned short) instr;
  782. regs->gpr[ra] = regs->gpr[rd] ^ imm;
  783. goto instr_done;
  784. case 27: /* xoris */
  785. imm = (unsigned short) instr;
  786. regs->gpr[ra] = regs->gpr[rd] ^ (imm << 16);
  787. goto instr_done;
  788. case 28: /* andi. */
  789. imm = (unsigned short) instr;
  790. regs->gpr[ra] = regs->gpr[rd] & imm;
  791. set_cr0(regs, ra);
  792. goto instr_done;
  793. case 29: /* andis. */
  794. imm = (unsigned short) instr;
  795. regs->gpr[ra] = regs->gpr[rd] & (imm << 16);
  796. set_cr0(regs, ra);
  797. goto instr_done;
  798. #ifdef __powerpc64__
  799. case 30: /* rld* */
  800. mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
  801. val = regs->gpr[rd];
  802. if ((instr & 0x10) == 0) {
  803. sh = rb | ((instr & 2) << 4);
  804. val = ROTATE(val, sh);
  805. switch ((instr >> 2) & 3) {
  806. case 0: /* rldicl */
  807. regs->gpr[ra] = val & MASK64_L(mb);
  808. goto logical_done;
  809. case 1: /* rldicr */
  810. regs->gpr[ra] = val & MASK64_R(mb);
  811. goto logical_done;
  812. case 2: /* rldic */
  813. regs->gpr[ra] = val & MASK64(mb, 63 - sh);
  814. goto logical_done;
  815. case 3: /* rldimi */
  816. imm = MASK64(mb, 63 - sh);
  817. regs->gpr[ra] = (regs->gpr[ra] & ~imm) |
  818. (val & imm);
  819. goto logical_done;
  820. }
  821. } else {
  822. sh = regs->gpr[rb] & 0x3f;
  823. val = ROTATE(val, sh);
  824. switch ((instr >> 1) & 7) {
  825. case 0: /* rldcl */
  826. regs->gpr[ra] = val & MASK64_L(mb);
  827. goto logical_done;
  828. case 1: /* rldcr */
  829. regs->gpr[ra] = val & MASK64_R(mb);
  830. goto logical_done;
  831. }
  832. }
  833. #endif
  834. break; /* illegal instruction */
  835. case 31:
  836. switch ((instr >> 1) & 0x3ff) {
  837. case 4: /* tw */
  838. if (rd == 0x1f ||
  839. (rd & trap_compare((int)regs->gpr[ra],
  840. (int)regs->gpr[rb])))
  841. goto trap;
  842. goto instr_done;
  843. #ifdef __powerpc64__
  844. case 68: /* td */
  845. if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
  846. goto trap;
  847. goto instr_done;
  848. #endif
  849. case 83: /* mfmsr */
  850. if (regs->msr & MSR_PR)
  851. goto priv;
  852. op->type = MFMSR;
  853. op->reg = rd;
  854. return 0;
  855. case 146: /* mtmsr */
  856. if (regs->msr & MSR_PR)
  857. goto priv;
  858. op->type = MTMSR;
  859. op->reg = rd;
  860. op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
  861. return 0;
  862. #ifdef CONFIG_PPC64
  863. case 178: /* mtmsrd */
  864. if (regs->msr & MSR_PR)
  865. goto priv;
  866. op->type = MTMSR;
  867. op->reg = rd;
  868. /* only MSR_EE and MSR_RI get changed if bit 15 set */
  869. /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
  870. imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
  871. op->val = imm;
  872. return 0;
  873. #endif
  874. case 19: /* mfcr */
  875. regs->gpr[rd] = regs->ccr;
  876. regs->gpr[rd] &= 0xffffffffUL;
  877. goto instr_done;
  878. case 144: /* mtcrf */
  879. imm = 0xf0000000UL;
  880. val = regs->gpr[rd];
  881. for (sh = 0; sh < 8; ++sh) {
  882. if (instr & (0x80000 >> sh))
  883. regs->ccr = (regs->ccr & ~imm) |
  884. (val & imm);
  885. imm >>= 4;
  886. }
  887. goto instr_done;
  888. case 339: /* mfspr */
  889. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  890. switch (spr) {
  891. case SPRN_XER: /* mfxer */
  892. regs->gpr[rd] = regs->xer;
  893. regs->gpr[rd] &= 0xffffffffUL;
  894. goto instr_done;
  895. case SPRN_LR: /* mflr */
  896. regs->gpr[rd] = regs->link;
  897. goto instr_done;
  898. case SPRN_CTR: /* mfctr */
  899. regs->gpr[rd] = regs->ctr;
  900. goto instr_done;
  901. default:
  902. op->type = MFSPR;
  903. op->reg = rd;
  904. op->spr = spr;
  905. return 0;
  906. }
  907. break;
  908. case 467: /* mtspr */
  909. spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
  910. switch (spr) {
  911. case SPRN_XER: /* mtxer */
  912. regs->xer = (regs->gpr[rd] & 0xffffffffUL);
  913. goto instr_done;
  914. case SPRN_LR: /* mtlr */
  915. regs->link = regs->gpr[rd];
  916. goto instr_done;
  917. case SPRN_CTR: /* mtctr */
  918. regs->ctr = regs->gpr[rd];
  919. goto instr_done;
  920. default:
  921. op->type = MTSPR;
  922. op->val = regs->gpr[rd];
  923. op->spr = spr;
  924. return 0;
  925. }
  926. break;
  927. /*
  928. * Compare instructions
  929. */
  930. case 0: /* cmp */
  931. val = regs->gpr[ra];
  932. val2 = regs->gpr[rb];
  933. #ifdef __powerpc64__
  934. if ((rd & 1) == 0) {
  935. /* word (32-bit) compare */
  936. val = (int) val;
  937. val2 = (int) val2;
  938. }
  939. #endif
  940. do_cmp_signed(regs, val, val2, rd >> 2);
  941. goto instr_done;
  942. case 32: /* cmpl */
  943. val = regs->gpr[ra];
  944. val2 = regs->gpr[rb];
  945. #ifdef __powerpc64__
  946. if ((rd & 1) == 0) {
  947. /* word (32-bit) compare */
  948. val = (unsigned int) val;
  949. val2 = (unsigned int) val2;
  950. }
  951. #endif
  952. do_cmp_unsigned(regs, val, val2, rd >> 2);
  953. goto instr_done;
  954. /*
  955. * Arithmetic instructions
  956. */
  957. case 8: /* subfc */
  958. add_with_carry(regs, rd, ~regs->gpr[ra],
  959. regs->gpr[rb], 1);
  960. goto arith_done;
  961. #ifdef __powerpc64__
  962. case 9: /* mulhdu */
  963. asm("mulhdu %0,%1,%2" : "=r" (regs->gpr[rd]) :
  964. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  965. goto arith_done;
  966. #endif
  967. case 10: /* addc */
  968. add_with_carry(regs, rd, regs->gpr[ra],
  969. regs->gpr[rb], 0);
  970. goto arith_done;
  971. case 11: /* mulhwu */
  972. asm("mulhwu %0,%1,%2" : "=r" (regs->gpr[rd]) :
  973. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  974. goto arith_done;
  975. case 40: /* subf */
  976. regs->gpr[rd] = regs->gpr[rb] - regs->gpr[ra];
  977. goto arith_done;
  978. #ifdef __powerpc64__
  979. case 73: /* mulhd */
  980. asm("mulhd %0,%1,%2" : "=r" (regs->gpr[rd]) :
  981. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  982. goto arith_done;
  983. #endif
  984. case 75: /* mulhw */
  985. asm("mulhw %0,%1,%2" : "=r" (regs->gpr[rd]) :
  986. "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
  987. goto arith_done;
  988. case 104: /* neg */
  989. regs->gpr[rd] = -regs->gpr[ra];
  990. goto arith_done;
  991. case 136: /* subfe */
  992. add_with_carry(regs, rd, ~regs->gpr[ra], regs->gpr[rb],
  993. regs->xer & XER_CA);
  994. goto arith_done;
  995. case 138: /* adde */
  996. add_with_carry(regs, rd, regs->gpr[ra], regs->gpr[rb],
  997. regs->xer & XER_CA);
  998. goto arith_done;
  999. case 200: /* subfze */
  1000. add_with_carry(regs, rd, ~regs->gpr[ra], 0L,
  1001. regs->xer & XER_CA);
  1002. goto arith_done;
  1003. case 202: /* addze */
  1004. add_with_carry(regs, rd, regs->gpr[ra], 0L,
  1005. regs->xer & XER_CA);
  1006. goto arith_done;
  1007. case 232: /* subfme */
  1008. add_with_carry(regs, rd, ~regs->gpr[ra], -1L,
  1009. regs->xer & XER_CA);
  1010. goto arith_done;
  1011. #ifdef __powerpc64__
  1012. case 233: /* mulld */
  1013. regs->gpr[rd] = regs->gpr[ra] * regs->gpr[rb];
  1014. goto arith_done;
  1015. #endif
  1016. case 234: /* addme */
  1017. add_with_carry(regs, rd, regs->gpr[ra], -1L,
  1018. regs->xer & XER_CA);
  1019. goto arith_done;
  1020. case 235: /* mullw */
  1021. regs->gpr[rd] = (unsigned int) regs->gpr[ra] *
  1022. (unsigned int) regs->gpr[rb];
  1023. goto arith_done;
  1024. case 266: /* add */
  1025. regs->gpr[rd] = regs->gpr[ra] + regs->gpr[rb];
  1026. goto arith_done;
  1027. #ifdef __powerpc64__
  1028. case 457: /* divdu */
  1029. regs->gpr[rd] = regs->gpr[ra] / regs->gpr[rb];
  1030. goto arith_done;
  1031. #endif
  1032. case 459: /* divwu */
  1033. regs->gpr[rd] = (unsigned int) regs->gpr[ra] /
  1034. (unsigned int) regs->gpr[rb];
  1035. goto arith_done;
  1036. #ifdef __powerpc64__
  1037. case 489: /* divd */
  1038. regs->gpr[rd] = (long int) regs->gpr[ra] /
  1039. (long int) regs->gpr[rb];
  1040. goto arith_done;
  1041. #endif
  1042. case 491: /* divw */
  1043. regs->gpr[rd] = (int) regs->gpr[ra] /
  1044. (int) regs->gpr[rb];
  1045. goto arith_done;
  1046. /*
  1047. * Logical instructions
  1048. */
  1049. case 26: /* cntlzw */
  1050. asm("cntlzw %0,%1" : "=r" (regs->gpr[ra]) :
  1051. "r" (regs->gpr[rd]));
  1052. goto logical_done;
  1053. #ifdef __powerpc64__
  1054. case 58: /* cntlzd */
  1055. asm("cntlzd %0,%1" : "=r" (regs->gpr[ra]) :
  1056. "r" (regs->gpr[rd]));
  1057. goto logical_done;
  1058. #endif
  1059. case 28: /* and */
  1060. regs->gpr[ra] = regs->gpr[rd] & regs->gpr[rb];
  1061. goto logical_done;
  1062. case 60: /* andc */
  1063. regs->gpr[ra] = regs->gpr[rd] & ~regs->gpr[rb];
  1064. goto logical_done;
  1065. case 124: /* nor */
  1066. regs->gpr[ra] = ~(regs->gpr[rd] | regs->gpr[rb]);
  1067. goto logical_done;
  1068. case 284: /* xor */
  1069. regs->gpr[ra] = ~(regs->gpr[rd] ^ regs->gpr[rb]);
  1070. goto logical_done;
  1071. case 316: /* xor */
  1072. regs->gpr[ra] = regs->gpr[rd] ^ regs->gpr[rb];
  1073. goto logical_done;
  1074. case 412: /* orc */
  1075. regs->gpr[ra] = regs->gpr[rd] | ~regs->gpr[rb];
  1076. goto logical_done;
  1077. case 444: /* or */
  1078. regs->gpr[ra] = regs->gpr[rd] | regs->gpr[rb];
  1079. goto logical_done;
  1080. case 476: /* nand */
  1081. regs->gpr[ra] = ~(regs->gpr[rd] & regs->gpr[rb]);
  1082. goto logical_done;
  1083. case 922: /* extsh */
  1084. regs->gpr[ra] = (signed short) regs->gpr[rd];
  1085. goto logical_done;
  1086. case 954: /* extsb */
  1087. regs->gpr[ra] = (signed char) regs->gpr[rd];
  1088. goto logical_done;
  1089. #ifdef __powerpc64__
  1090. case 986: /* extsw */
  1091. regs->gpr[ra] = (signed int) regs->gpr[rd];
  1092. goto logical_done;
  1093. #endif
  1094. /*
  1095. * Shift instructions
  1096. */
  1097. case 24: /* slw */
  1098. sh = regs->gpr[rb] & 0x3f;
  1099. if (sh < 32)
  1100. regs->gpr[ra] = (regs->gpr[rd] << sh) & 0xffffffffUL;
  1101. else
  1102. regs->gpr[ra] = 0;
  1103. goto logical_done;
  1104. case 536: /* srw */
  1105. sh = regs->gpr[rb] & 0x3f;
  1106. if (sh < 32)
  1107. regs->gpr[ra] = (regs->gpr[rd] & 0xffffffffUL) >> sh;
  1108. else
  1109. regs->gpr[ra] = 0;
  1110. goto logical_done;
  1111. case 792: /* sraw */
  1112. sh = regs->gpr[rb] & 0x3f;
  1113. ival = (signed int) regs->gpr[rd];
  1114. regs->gpr[ra] = ival >> (sh < 32 ? sh : 31);
  1115. if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
  1116. regs->xer |= XER_CA;
  1117. else
  1118. regs->xer &= ~XER_CA;
  1119. goto logical_done;
  1120. case 824: /* srawi */
  1121. sh = rb;
  1122. ival = (signed int) regs->gpr[rd];
  1123. regs->gpr[ra] = ival >> sh;
  1124. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1125. regs->xer |= XER_CA;
  1126. else
  1127. regs->xer &= ~XER_CA;
  1128. goto logical_done;
  1129. #ifdef __powerpc64__
  1130. case 27: /* sld */
  1131. sh = regs->gpr[rb] & 0x7f;
  1132. if (sh < 64)
  1133. regs->gpr[ra] = regs->gpr[rd] << sh;
  1134. else
  1135. regs->gpr[ra] = 0;
  1136. goto logical_done;
  1137. case 539: /* srd */
  1138. sh = regs->gpr[rb] & 0x7f;
  1139. if (sh < 64)
  1140. regs->gpr[ra] = regs->gpr[rd] >> sh;
  1141. else
  1142. regs->gpr[ra] = 0;
  1143. goto logical_done;
  1144. case 794: /* srad */
  1145. sh = regs->gpr[rb] & 0x7f;
  1146. ival = (signed long int) regs->gpr[rd];
  1147. regs->gpr[ra] = ival >> (sh < 64 ? sh : 63);
  1148. if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
  1149. regs->xer |= XER_CA;
  1150. else
  1151. regs->xer &= ~XER_CA;
  1152. goto logical_done;
  1153. case 826: /* sradi with sh_5 = 0 */
  1154. case 827: /* sradi with sh_5 = 1 */
  1155. sh = rb | ((instr & 2) << 4);
  1156. ival = (signed long int) regs->gpr[rd];
  1157. regs->gpr[ra] = ival >> sh;
  1158. if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
  1159. regs->xer |= XER_CA;
  1160. else
  1161. regs->xer &= ~XER_CA;
  1162. goto logical_done;
  1163. #endif /* __powerpc64__ */
  1164. /*
  1165. * Cache instructions
  1166. */
  1167. case 54: /* dcbst */
  1168. op->type = MKOP(CACHEOP, DCBST, 0);
  1169. op->ea = xform_ea(instr, regs);
  1170. return 0;
  1171. case 86: /* dcbf */
  1172. op->type = MKOP(CACHEOP, DCBF, 0);
  1173. op->ea = xform_ea(instr, regs);
  1174. return 0;
  1175. case 246: /* dcbtst */
  1176. op->type = MKOP(CACHEOP, DCBTST, 0);
  1177. op->ea = xform_ea(instr, regs);
  1178. op->reg = rd;
  1179. return 0;
  1180. case 278: /* dcbt */
  1181. op->type = MKOP(CACHEOP, DCBTST, 0);
  1182. op->ea = xform_ea(instr, regs);
  1183. op->reg = rd;
  1184. return 0;
  1185. case 982: /* icbi */
  1186. op->type = MKOP(CACHEOP, ICBI, 0);
  1187. op->ea = xform_ea(instr, regs);
  1188. return 0;
  1189. }
  1190. break;
  1191. }
  1192. /*
  1193. * Loads and stores.
  1194. */
  1195. op->type = UNKNOWN;
  1196. op->update_reg = ra;
  1197. op->reg = rd;
  1198. op->val = regs->gpr[rd];
  1199. u = (instr >> 20) & UPDATE;
  1200. switch (opcode) {
  1201. case 31:
  1202. u = instr & UPDATE;
  1203. op->ea = xform_ea(instr, regs);
  1204. switch ((instr >> 1) & 0x3ff) {
  1205. case 20: /* lwarx */
  1206. op->type = MKOP(LARX, 0, 4);
  1207. break;
  1208. case 150: /* stwcx. */
  1209. op->type = MKOP(STCX, 0, 4);
  1210. break;
  1211. #ifdef __powerpc64__
  1212. case 84: /* ldarx */
  1213. op->type = MKOP(LARX, 0, 8);
  1214. break;
  1215. case 214: /* stdcx. */
  1216. op->type = MKOP(STCX, 0, 8);
  1217. break;
  1218. case 21: /* ldx */
  1219. case 53: /* ldux */
  1220. op->type = MKOP(LOAD, u, 8);
  1221. break;
  1222. #endif
  1223. case 23: /* lwzx */
  1224. case 55: /* lwzux */
  1225. op->type = MKOP(LOAD, u, 4);
  1226. break;
  1227. case 87: /* lbzx */
  1228. case 119: /* lbzux */
  1229. op->type = MKOP(LOAD, u, 1);
  1230. break;
  1231. #ifdef CONFIG_ALTIVEC
  1232. case 103: /* lvx */
  1233. case 359: /* lvxl */
  1234. if (!(regs->msr & MSR_VEC))
  1235. goto vecunavail;
  1236. op->type = MKOP(LOAD_VMX, 0, 16);
  1237. break;
  1238. case 231: /* stvx */
  1239. case 487: /* stvxl */
  1240. if (!(regs->msr & MSR_VEC))
  1241. goto vecunavail;
  1242. op->type = MKOP(STORE_VMX, 0, 16);
  1243. break;
  1244. #endif /* CONFIG_ALTIVEC */
  1245. #ifdef __powerpc64__
  1246. case 149: /* stdx */
  1247. case 181: /* stdux */
  1248. op->type = MKOP(STORE, u, 8);
  1249. break;
  1250. #endif
  1251. case 151: /* stwx */
  1252. case 183: /* stwux */
  1253. op->type = MKOP(STORE, u, 4);
  1254. break;
  1255. case 215: /* stbx */
  1256. case 247: /* stbux */
  1257. op->type = MKOP(STORE, u, 1);
  1258. break;
  1259. case 279: /* lhzx */
  1260. case 311: /* lhzux */
  1261. op->type = MKOP(LOAD, u, 2);
  1262. break;
  1263. #ifdef __powerpc64__
  1264. case 341: /* lwax */
  1265. case 373: /* lwaux */
  1266. op->type = MKOP(LOAD, SIGNEXT | u, 4);
  1267. break;
  1268. #endif
  1269. case 343: /* lhax */
  1270. case 375: /* lhaux */
  1271. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  1272. break;
  1273. case 407: /* sthx */
  1274. case 439: /* sthux */
  1275. op->type = MKOP(STORE, u, 2);
  1276. break;
  1277. #ifdef __powerpc64__
  1278. case 532: /* ldbrx */
  1279. op->type = MKOP(LOAD, BYTEREV, 8);
  1280. break;
  1281. #endif
  1282. case 533: /* lswx */
  1283. op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
  1284. break;
  1285. case 534: /* lwbrx */
  1286. op->type = MKOP(LOAD, BYTEREV, 4);
  1287. break;
  1288. case 597: /* lswi */
  1289. if (rb == 0)
  1290. rb = 32; /* # bytes to load */
  1291. op->type = MKOP(LOAD_MULTI, 0, rb);
  1292. op->ea = 0;
  1293. if (ra)
  1294. op->ea = truncate_if_32bit(regs->msr,
  1295. regs->gpr[ra]);
  1296. break;
  1297. #ifdef CONFIG_PPC_FPU
  1298. case 535: /* lfsx */
  1299. case 567: /* lfsux */
  1300. if (!(regs->msr & MSR_FP))
  1301. goto fpunavail;
  1302. op->type = MKOP(LOAD_FP, u, 4);
  1303. break;
  1304. case 599: /* lfdx */
  1305. case 631: /* lfdux */
  1306. if (!(regs->msr & MSR_FP))
  1307. goto fpunavail;
  1308. op->type = MKOP(LOAD_FP, u, 8);
  1309. break;
  1310. case 663: /* stfsx */
  1311. case 695: /* stfsux */
  1312. if (!(regs->msr & MSR_FP))
  1313. goto fpunavail;
  1314. op->type = MKOP(STORE_FP, u, 4);
  1315. break;
  1316. case 727: /* stfdx */
  1317. case 759: /* stfdux */
  1318. if (!(regs->msr & MSR_FP))
  1319. goto fpunavail;
  1320. op->type = MKOP(STORE_FP, u, 8);
  1321. break;
  1322. #endif
  1323. #ifdef __powerpc64__
  1324. case 660: /* stdbrx */
  1325. op->type = MKOP(STORE, BYTEREV, 8);
  1326. op->val = byterev_8(regs->gpr[rd]);
  1327. break;
  1328. #endif
  1329. case 661: /* stswx */
  1330. op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
  1331. break;
  1332. case 662: /* stwbrx */
  1333. op->type = MKOP(STORE, BYTEREV, 4);
  1334. op->val = byterev_4(regs->gpr[rd]);
  1335. break;
  1336. case 725:
  1337. if (rb == 0)
  1338. rb = 32; /* # bytes to store */
  1339. op->type = MKOP(STORE_MULTI, 0, rb);
  1340. op->ea = 0;
  1341. if (ra)
  1342. op->ea = truncate_if_32bit(regs->msr,
  1343. regs->gpr[ra]);
  1344. break;
  1345. case 790: /* lhbrx */
  1346. op->type = MKOP(LOAD, BYTEREV, 2);
  1347. break;
  1348. case 918: /* sthbrx */
  1349. op->type = MKOP(STORE, BYTEREV, 2);
  1350. op->val = byterev_2(regs->gpr[rd]);
  1351. break;
  1352. #ifdef CONFIG_VSX
  1353. case 844: /* lxvd2x */
  1354. case 876: /* lxvd2ux */
  1355. if (!(regs->msr & MSR_VSX))
  1356. goto vsxunavail;
  1357. op->reg = rd | ((instr & 1) << 5);
  1358. op->type = MKOP(LOAD_VSX, u, 16);
  1359. break;
  1360. case 972: /* stxvd2x */
  1361. case 1004: /* stxvd2ux */
  1362. if (!(regs->msr & MSR_VSX))
  1363. goto vsxunavail;
  1364. op->reg = rd | ((instr & 1) << 5);
  1365. op->type = MKOP(STORE_VSX, u, 16);
  1366. break;
  1367. #endif /* CONFIG_VSX */
  1368. }
  1369. break;
  1370. case 32: /* lwz */
  1371. case 33: /* lwzu */
  1372. op->type = MKOP(LOAD, u, 4);
  1373. op->ea = dform_ea(instr, regs);
  1374. break;
  1375. case 34: /* lbz */
  1376. case 35: /* lbzu */
  1377. op->type = MKOP(LOAD, u, 1);
  1378. op->ea = dform_ea(instr, regs);
  1379. break;
  1380. case 36: /* stw */
  1381. case 37: /* stwu */
  1382. op->type = MKOP(STORE, u, 4);
  1383. op->ea = dform_ea(instr, regs);
  1384. break;
  1385. case 38: /* stb */
  1386. case 39: /* stbu */
  1387. op->type = MKOP(STORE, u, 1);
  1388. op->ea = dform_ea(instr, regs);
  1389. break;
  1390. case 40: /* lhz */
  1391. case 41: /* lhzu */
  1392. op->type = MKOP(LOAD, u, 2);
  1393. op->ea = dform_ea(instr, regs);
  1394. break;
  1395. case 42: /* lha */
  1396. case 43: /* lhau */
  1397. op->type = MKOP(LOAD, SIGNEXT | u, 2);
  1398. op->ea = dform_ea(instr, regs);
  1399. break;
  1400. case 44: /* sth */
  1401. case 45: /* sthu */
  1402. op->type = MKOP(STORE, u, 2);
  1403. op->ea = dform_ea(instr, regs);
  1404. break;
  1405. case 46: /* lmw */
  1406. if (ra >= rd)
  1407. break; /* invalid form, ra in range to load */
  1408. op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
  1409. op->ea = dform_ea(instr, regs);
  1410. break;
  1411. case 47: /* stmw */
  1412. op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
  1413. op->ea = dform_ea(instr, regs);
  1414. break;
  1415. #ifdef CONFIG_PPC_FPU
  1416. case 48: /* lfs */
  1417. case 49: /* lfsu */
  1418. if (!(regs->msr & MSR_FP))
  1419. goto fpunavail;
  1420. op->type = MKOP(LOAD_FP, u, 4);
  1421. op->ea = dform_ea(instr, regs);
  1422. break;
  1423. case 50: /* lfd */
  1424. case 51: /* lfdu */
  1425. if (!(regs->msr & MSR_FP))
  1426. goto fpunavail;
  1427. op->type = MKOP(LOAD_FP, u, 8);
  1428. op->ea = dform_ea(instr, regs);
  1429. break;
  1430. case 52: /* stfs */
  1431. case 53: /* stfsu */
  1432. if (!(regs->msr & MSR_FP))
  1433. goto fpunavail;
  1434. op->type = MKOP(STORE_FP, u, 4);
  1435. op->ea = dform_ea(instr, regs);
  1436. break;
  1437. case 54: /* stfd */
  1438. case 55: /* stfdu */
  1439. if (!(regs->msr & MSR_FP))
  1440. goto fpunavail;
  1441. op->type = MKOP(STORE_FP, u, 8);
  1442. op->ea = dform_ea(instr, regs);
  1443. break;
  1444. #endif
  1445. #ifdef __powerpc64__
  1446. case 58: /* ld[u], lwa */
  1447. op->ea = dsform_ea(instr, regs);
  1448. switch (instr & 3) {
  1449. case 0: /* ld */
  1450. op->type = MKOP(LOAD, 0, 8);
  1451. break;
  1452. case 1: /* ldu */
  1453. op->type = MKOP(LOAD, UPDATE, 8);
  1454. break;
  1455. case 2: /* lwa */
  1456. op->type = MKOP(LOAD, SIGNEXT, 4);
  1457. break;
  1458. }
  1459. break;
  1460. case 62: /* std[u] */
  1461. op->ea = dsform_ea(instr, regs);
  1462. switch (instr & 3) {
  1463. case 0: /* std */
  1464. op->type = MKOP(STORE, 0, 8);
  1465. break;
  1466. case 1: /* stdu */
  1467. op->type = MKOP(STORE, UPDATE, 8);
  1468. break;
  1469. }
  1470. break;
  1471. #endif /* __powerpc64__ */
  1472. }
  1473. return 0;
  1474. logical_done:
  1475. if (instr & 1)
  1476. set_cr0(regs, ra);
  1477. goto instr_done;
  1478. arith_done:
  1479. if (instr & 1)
  1480. set_cr0(regs, rd);
  1481. instr_done:
  1482. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  1483. return 1;
  1484. priv:
  1485. op->type = INTERRUPT | 0x700;
  1486. op->val = SRR1_PROGPRIV;
  1487. return 0;
  1488. trap:
  1489. op->type = INTERRUPT | 0x700;
  1490. op->val = SRR1_PROGTRAP;
  1491. return 0;
  1492. #ifdef CONFIG_PPC_FPU
  1493. fpunavail:
  1494. op->type = INTERRUPT | 0x800;
  1495. return 0;
  1496. #endif
  1497. #ifdef CONFIG_ALTIVEC
  1498. vecunavail:
  1499. op->type = INTERRUPT | 0xf20;
  1500. return 0;
  1501. #endif
  1502. #ifdef CONFIG_VSX
  1503. vsxunavail:
  1504. op->type = INTERRUPT | 0xf40;
  1505. return 0;
  1506. #endif
  1507. }
  1508. EXPORT_SYMBOL_GPL(analyse_instr);
  1509. /*
  1510. * For PPC32 we always use stwu with r1 to change the stack pointer.
  1511. * So this emulated store may corrupt the exception frame, now we
  1512. * have to provide the exception frame trampoline, which is pushed
  1513. * below the kprobed function stack. So we only update gpr[1] but
  1514. * don't emulate the real store operation. We will do real store
  1515. * operation safely in exception return code by checking this flag.
  1516. */
  1517. static __kprobes int handle_stack_update(unsigned long ea, struct pt_regs *regs)
  1518. {
  1519. #ifdef CONFIG_PPC32
  1520. /*
  1521. * Check if we will touch kernel stack overflow
  1522. */
  1523. if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
  1524. printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
  1525. return -EINVAL;
  1526. }
  1527. #endif /* CONFIG_PPC32 */
  1528. /*
  1529. * Check if we already set since that means we'll
  1530. * lose the previous value.
  1531. */
  1532. WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
  1533. set_thread_flag(TIF_EMULATE_STACK_STORE);
  1534. return 0;
  1535. }
  1536. static __kprobes void do_signext(unsigned long *valp, int size)
  1537. {
  1538. switch (size) {
  1539. case 2:
  1540. *valp = (signed short) *valp;
  1541. break;
  1542. case 4:
  1543. *valp = (signed int) *valp;
  1544. break;
  1545. }
  1546. }
  1547. static __kprobes void do_byterev(unsigned long *valp, int size)
  1548. {
  1549. switch (size) {
  1550. case 2:
  1551. *valp = byterev_2(*valp);
  1552. break;
  1553. case 4:
  1554. *valp = byterev_4(*valp);
  1555. break;
  1556. #ifdef __powerpc64__
  1557. case 8:
  1558. *valp = byterev_8(*valp);
  1559. break;
  1560. #endif
  1561. }
  1562. }
  1563. /*
  1564. * Emulate instructions that cause a transfer of control,
  1565. * loads and stores, and a few other instructions.
  1566. * Returns 1 if the step was emulated, 0 if not,
  1567. * or -1 if the instruction is one that should not be stepped,
  1568. * such as an rfid, or a mtmsrd that would clear MSR_RI.
  1569. */
  1570. int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr)
  1571. {
  1572. struct instruction_op op;
  1573. int r, err, size;
  1574. unsigned long val;
  1575. unsigned int cr;
  1576. int i, rd, nb;
  1577. r = analyse_instr(&op, regs, instr);
  1578. if (r != 0)
  1579. return r;
  1580. err = 0;
  1581. size = GETSIZE(op.type);
  1582. switch (op.type & INSTR_TYPE_MASK) {
  1583. case CACHEOP:
  1584. if (!address_ok(regs, op.ea, 8))
  1585. return 0;
  1586. switch (op.type & CACHEOP_MASK) {
  1587. case DCBST:
  1588. __cacheop_user_asmx(op.ea, err, "dcbst");
  1589. break;
  1590. case DCBF:
  1591. __cacheop_user_asmx(op.ea, err, "dcbf");
  1592. break;
  1593. case DCBTST:
  1594. if (op.reg == 0)
  1595. prefetchw((void *) op.ea);
  1596. break;
  1597. case DCBT:
  1598. if (op.reg == 0)
  1599. prefetch((void *) op.ea);
  1600. break;
  1601. case ICBI:
  1602. __cacheop_user_asmx(op.ea, err, "icbi");
  1603. break;
  1604. }
  1605. if (err)
  1606. return 0;
  1607. goto instr_done;
  1608. case LARX:
  1609. if (regs->msr & MSR_LE)
  1610. return 0;
  1611. if (op.ea & (size - 1))
  1612. break; /* can't handle misaligned */
  1613. err = -EFAULT;
  1614. if (!address_ok(regs, op.ea, size))
  1615. goto ldst_done;
  1616. err = 0;
  1617. switch (size) {
  1618. case 4:
  1619. __get_user_asmx(val, op.ea, err, "lwarx");
  1620. break;
  1621. #ifdef __powerpc64__
  1622. case 8:
  1623. __get_user_asmx(val, op.ea, err, "ldarx");
  1624. break;
  1625. #endif
  1626. default:
  1627. return 0;
  1628. }
  1629. if (!err)
  1630. regs->gpr[op.reg] = val;
  1631. goto ldst_done;
  1632. case STCX:
  1633. if (regs->msr & MSR_LE)
  1634. return 0;
  1635. if (op.ea & (size - 1))
  1636. break; /* can't handle misaligned */
  1637. err = -EFAULT;
  1638. if (!address_ok(regs, op.ea, size))
  1639. goto ldst_done;
  1640. err = 0;
  1641. switch (size) {
  1642. case 4:
  1643. __put_user_asmx(op.val, op.ea, err, "stwcx.", cr);
  1644. break;
  1645. #ifdef __powerpc64__
  1646. case 8:
  1647. __put_user_asmx(op.val, op.ea, err, "stdcx.", cr);
  1648. break;
  1649. #endif
  1650. default:
  1651. return 0;
  1652. }
  1653. if (!err)
  1654. regs->ccr = (regs->ccr & 0x0fffffff) |
  1655. (cr & 0xe0000000) |
  1656. ((regs->xer >> 3) & 0x10000000);
  1657. goto ldst_done;
  1658. case LOAD:
  1659. if (regs->msr & MSR_LE)
  1660. return 0;
  1661. err = read_mem(&regs->gpr[op.reg], op.ea, size, regs);
  1662. if (!err) {
  1663. if (op.type & SIGNEXT)
  1664. do_signext(&regs->gpr[op.reg], size);
  1665. if (op.type & BYTEREV)
  1666. do_byterev(&regs->gpr[op.reg], size);
  1667. }
  1668. goto ldst_done;
  1669. #ifdef CONFIG_PPC_FPU
  1670. case LOAD_FP:
  1671. if (regs->msr & MSR_LE)
  1672. return 0;
  1673. if (size == 4)
  1674. err = do_fp_load(op.reg, do_lfs, op.ea, size, regs);
  1675. else
  1676. err = do_fp_load(op.reg, do_lfd, op.ea, size, regs);
  1677. goto ldst_done;
  1678. #endif
  1679. #ifdef CONFIG_ALTIVEC
  1680. case LOAD_VMX:
  1681. if (regs->msr & MSR_LE)
  1682. return 0;
  1683. err = do_vec_load(op.reg, do_lvx, op.ea & ~0xfUL, regs);
  1684. goto ldst_done;
  1685. #endif
  1686. #ifdef CONFIG_VSX
  1687. case LOAD_VSX:
  1688. if (regs->msr & MSR_LE)
  1689. return 0;
  1690. err = do_vsx_load(op.reg, do_lxvd2x, op.ea, regs);
  1691. goto ldst_done;
  1692. #endif
  1693. case LOAD_MULTI:
  1694. if (regs->msr & MSR_LE)
  1695. return 0;
  1696. rd = op.reg;
  1697. for (i = 0; i < size; i += 4) {
  1698. nb = size - i;
  1699. if (nb > 4)
  1700. nb = 4;
  1701. err = read_mem(&regs->gpr[rd], op.ea, nb, regs);
  1702. if (err)
  1703. return 0;
  1704. if (nb < 4) /* left-justify last bytes */
  1705. regs->gpr[rd] <<= 32 - 8 * nb;
  1706. op.ea += 4;
  1707. ++rd;
  1708. }
  1709. goto instr_done;
  1710. case STORE:
  1711. if (regs->msr & MSR_LE)
  1712. return 0;
  1713. if ((op.type & UPDATE) && size == sizeof(long) &&
  1714. op.reg == 1 && op.update_reg == 1 &&
  1715. !(regs->msr & MSR_PR) &&
  1716. op.ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
  1717. err = handle_stack_update(op.ea, regs);
  1718. goto ldst_done;
  1719. }
  1720. err = write_mem(op.val, op.ea, size, regs);
  1721. goto ldst_done;
  1722. #ifdef CONFIG_PPC_FPU
  1723. case STORE_FP:
  1724. if (regs->msr & MSR_LE)
  1725. return 0;
  1726. if (size == 4)
  1727. err = do_fp_store(op.reg, do_stfs, op.ea, size, regs);
  1728. else
  1729. err = do_fp_store(op.reg, do_stfd, op.ea, size, regs);
  1730. goto ldst_done;
  1731. #endif
  1732. #ifdef CONFIG_ALTIVEC
  1733. case STORE_VMX:
  1734. if (regs->msr & MSR_LE)
  1735. return 0;
  1736. err = do_vec_store(op.reg, do_stvx, op.ea & ~0xfUL, regs);
  1737. goto ldst_done;
  1738. #endif
  1739. #ifdef CONFIG_VSX
  1740. case STORE_VSX:
  1741. if (regs->msr & MSR_LE)
  1742. return 0;
  1743. err = do_vsx_store(op.reg, do_stxvd2x, op.ea, regs);
  1744. goto ldst_done;
  1745. #endif
  1746. case STORE_MULTI:
  1747. if (regs->msr & MSR_LE)
  1748. return 0;
  1749. rd = op.reg;
  1750. for (i = 0; i < size; i += 4) {
  1751. val = regs->gpr[rd];
  1752. nb = size - i;
  1753. if (nb > 4)
  1754. nb = 4;
  1755. else
  1756. val >>= 32 - 8 * nb;
  1757. err = write_mem(val, op.ea, nb, regs);
  1758. if (err)
  1759. return 0;
  1760. op.ea += 4;
  1761. ++rd;
  1762. }
  1763. goto instr_done;
  1764. case MFMSR:
  1765. regs->gpr[op.reg] = regs->msr & MSR_MASK;
  1766. goto instr_done;
  1767. case MTMSR:
  1768. val = regs->gpr[op.reg];
  1769. if ((val & MSR_RI) == 0)
  1770. /* can't step mtmsr[d] that would clear MSR_RI */
  1771. return -1;
  1772. /* here op.val is the mask of bits to change */
  1773. regs->msr = (regs->msr & ~op.val) | (val & op.val);
  1774. goto instr_done;
  1775. #ifdef CONFIG_PPC64
  1776. case SYSCALL: /* sc */
  1777. /*
  1778. * N.B. this uses knowledge about how the syscall
  1779. * entry code works. If that is changed, this will
  1780. * need to be changed also.
  1781. */
  1782. if (regs->gpr[0] == 0x1ebe &&
  1783. cpu_has_feature(CPU_FTR_REAL_LE)) {
  1784. regs->msr ^= MSR_LE;
  1785. goto instr_done;
  1786. }
  1787. regs->gpr[9] = regs->gpr[13];
  1788. regs->gpr[10] = MSR_KERNEL;
  1789. regs->gpr[11] = regs->nip + 4;
  1790. regs->gpr[12] = regs->msr & MSR_MASK;
  1791. regs->gpr[13] = (unsigned long) get_paca();
  1792. regs->nip = (unsigned long) &system_call_common;
  1793. regs->msr = MSR_KERNEL;
  1794. return 1;
  1795. case RFI:
  1796. return -1;
  1797. #endif
  1798. }
  1799. return 0;
  1800. ldst_done:
  1801. if (err)
  1802. return 0;
  1803. if (op.type & UPDATE)
  1804. regs->gpr[op.update_reg] = op.ea;
  1805. instr_done:
  1806. regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
  1807. return 1;
  1808. }