book3s_hv_ras.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/kernel.h>
  13. #include <asm/opal.h>
  14. #include <asm/mce.h>
  15. #include <asm/machdep.h>
  16. #include <asm/cputhreads.h>
  17. #include <asm/hmi.h>
  18. #include <asm/kvm_ppc.h>
  19. /* SRR1 bits for machine check on POWER7 */
  20. #define SRR1_MC_LDSTERR (1ul << (63-42))
  21. #define SRR1_MC_IFETCH_SH (63-45)
  22. #define SRR1_MC_IFETCH_MASK 0x7
  23. #define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */
  24. #define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */
  25. #define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */
  26. #define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */
  27. /* DSISR bits for machine check on POWER7 */
  28. #define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */
  29. #define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */
  30. #define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */
  31. #define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */
  32. #define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */
  33. /* POWER7 SLB flush and reload */
  34. static void reload_slb(struct kvm_vcpu *vcpu)
  35. {
  36. struct slb_shadow *slb;
  37. unsigned long i, n;
  38. /* First clear out SLB */
  39. asm volatile("slbmte %0,%0; slbia" : : "r" (0));
  40. /* Do they have an SLB shadow buffer registered? */
  41. slb = vcpu->arch.slb_shadow.pinned_addr;
  42. if (!slb)
  43. return;
  44. /* Sanity check */
  45. n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
  46. if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
  47. return;
  48. /* Load up the SLB from that */
  49. for (i = 0; i < n; ++i) {
  50. unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
  51. unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
  52. rb = (rb & ~0xFFFul) | i; /* insert entry number */
  53. asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
  54. }
  55. }
  56. /*
  57. * On POWER7, see if we can handle a machine check that occurred inside
  58. * the guest in real mode, without switching to the host partition.
  59. *
  60. * Returns: 0 => exit guest, 1 => deliver machine check to guest
  61. */
  62. static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
  63. {
  64. unsigned long srr1 = vcpu->arch.shregs.msr;
  65. struct machine_check_event mce_evt;
  66. long handled = 1;
  67. if (srr1 & SRR1_MC_LDSTERR) {
  68. /* error on load/store */
  69. unsigned long dsisr = vcpu->arch.shregs.dsisr;
  70. if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  71. DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
  72. /* flush and reload SLB; flushes D-ERAT too */
  73. reload_slb(vcpu);
  74. dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
  75. DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
  76. }
  77. if (dsisr & DSISR_MC_TLB_MULTI) {
  78. if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
  79. cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
  80. dsisr &= ~DSISR_MC_TLB_MULTI;
  81. }
  82. /* Any other errors we don't understand? */
  83. if (dsisr & 0xffffffffUL)
  84. handled = 0;
  85. }
  86. switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
  87. case 0:
  88. break;
  89. case SRR1_MC_IFETCH_SLBPAR:
  90. case SRR1_MC_IFETCH_SLBMULTI:
  91. case SRR1_MC_IFETCH_SLBPARMULTI:
  92. reload_slb(vcpu);
  93. break;
  94. case SRR1_MC_IFETCH_TLBMULTI:
  95. if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
  96. cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
  97. break;
  98. default:
  99. handled = 0;
  100. }
  101. /*
  102. * See if we have already handled the condition in the linux host.
  103. * We assume that if the condition is recovered then linux host
  104. * will have generated an error log event that we will pick
  105. * up and log later.
  106. * Don't release mce event now. We will queue up the event so that
  107. * we can log the MCE event info on host console.
  108. */
  109. if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
  110. goto out;
  111. if (mce_evt.version == MCE_V1 &&
  112. (mce_evt.severity == MCE_SEV_NO_ERROR ||
  113. mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
  114. handled = 1;
  115. out:
  116. /*
  117. * We are now going enter guest either through machine check
  118. * interrupt (for unhandled errors) or will continue from
  119. * current HSRR0 (for handled errors) in guest. Hence
  120. * queue up the event so that we can log it from host console later.
  121. */
  122. machine_check_queue_event();
  123. return handled;
  124. }
  125. long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
  126. {
  127. return kvmppc_realmode_mc_power7(vcpu);
  128. }
  129. /* Check if dynamic split is in force and return subcore size accordingly. */
  130. static inline int kvmppc_cur_subcore_size(void)
  131. {
  132. if (local_paca->kvm_hstate.kvm_split_mode)
  133. return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
  134. return threads_per_subcore;
  135. }
  136. void kvmppc_subcore_enter_guest(void)
  137. {
  138. int thread_id, subcore_id;
  139. thread_id = cpu_thread_in_core(local_paca->paca_index);
  140. subcore_id = thread_id / kvmppc_cur_subcore_size();
  141. local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
  142. }
  143. void kvmppc_subcore_exit_guest(void)
  144. {
  145. int thread_id, subcore_id;
  146. thread_id = cpu_thread_in_core(local_paca->paca_index);
  147. subcore_id = thread_id / kvmppc_cur_subcore_size();
  148. local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
  149. }
  150. static bool kvmppc_tb_resync_required(void)
  151. {
  152. if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
  153. &local_paca->sibling_subcore_state->flags))
  154. return false;
  155. return true;
  156. }
  157. static void kvmppc_tb_resync_done(void)
  158. {
  159. clear_bit(CORE_TB_RESYNC_REQ_BIT,
  160. &local_paca->sibling_subcore_state->flags);
  161. }
  162. /*
  163. * kvmppc_realmode_hmi_handler() is called only by primary thread during
  164. * guest exit path.
  165. *
  166. * There are multiple reasons why HMI could occur, one of them is
  167. * Timebase (TB) error. If this HMI is due to TB error, then TB would
  168. * have been in stopped state. The opal hmi handler Will fix it and
  169. * restore the TB value with host timebase value. For HMI caused due
  170. * to non-TB errors, opal hmi handler will not touch/restore TB register
  171. * and hence there won't be any change in TB value.
  172. *
  173. * Since we are not sure about the cause of this HMI, we can't be sure
  174. * about the content of TB register whether it holds guest or host timebase
  175. * value. Hence the idea is to resync the TB on every HMI, so that we
  176. * know about the exact state of the TB value. Resync TB call will
  177. * restore TB to host timebase.
  178. *
  179. * Things to consider:
  180. * - On TB error, HMI interrupt is reported on all the threads of the core
  181. * that has encountered TB error irrespective of split-core mode.
  182. * - The very first thread on the core that get chance to fix TB error
  183. * would rsync the TB with local chipTOD value.
  184. * - The resync TB is a core level action i.e. it will sync all the TBs
  185. * in that core independent of split-core mode. This means if we trigger
  186. * TB sync from a thread from one subcore, it would affect TB values of
  187. * sibling subcores of the same core.
  188. *
  189. * All threads need to co-ordinate before making opal hmi handler.
  190. * All threads will use sibling_subcore_state->in_guest[] (shared by all
  191. * threads in the core) in paca which holds information about whether
  192. * sibling subcores are in Guest mode or host mode. The in_guest[] array
  193. * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
  194. * subcore status. Only primary threads from each subcore is responsible
  195. * to set/unset its designated array element while entering/exiting the
  196. * guset.
  197. *
  198. * After invoking opal hmi handler call, one of the thread (of entire core)
  199. * will need to resync the TB. Bit 63 from subcore state bitmap flags
  200. * (sibling_subcore_state->flags) will be used to co-ordinate between
  201. * primary threads to decide who takes up the responsibility.
  202. *
  203. * This is what we do:
  204. * - Primary thread from each subcore tries to set resync required bit[63]
  205. * of paca->sibling_subcore_state->flags.
  206. * - The first primary thread that is able to set the flag takes the
  207. * responsibility of TB resync. (Let us call it as thread leader)
  208. * - All other threads which are in host will call
  209. * wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
  210. * paca->sibling_subcore_state to get cleared.
  211. * - All the primary thread will clear its subcore status from subcore
  212. * state in_guest[] array respectively.
  213. * - Once all primary threads clear in_guest[0-3], all of them will invoke
  214. * opal hmi handler.
  215. * - Now all threads will wait for TB resync to complete by invoking
  216. * wait_for_tb_resync() except the thread leader.
  217. * - Thread leader will do a TB resync by invoking opal_resync_timebase()
  218. * call and the it will clear the resync required bit.
  219. * - All other threads will now come out of resync wait loop and proceed
  220. * with individual execution.
  221. * - On return of this function, primary thread will signal all
  222. * secondary threads to proceed.
  223. * - All secondary threads will eventually call opal hmi handler on
  224. * their exit path.
  225. */
  226. long kvmppc_realmode_hmi_handler(void)
  227. {
  228. int ptid = local_paca->kvm_hstate.ptid;
  229. bool resync_req;
  230. /* This is only called on primary thread. */
  231. BUG_ON(ptid != 0);
  232. __this_cpu_inc(irq_stat.hmi_exceptions);
  233. /*
  234. * By now primary thread has already completed guest->host
  235. * partition switch but haven't signaled secondaries yet.
  236. * All the secondary threads on this subcore is waiting
  237. * for primary thread to signal them to go ahead.
  238. *
  239. * For threads from subcore which isn't in guest, they all will
  240. * wait until all other subcores on this core exit the guest.
  241. *
  242. * Now set the resync required bit. If you are the first to
  243. * set this bit then kvmppc_tb_resync_required() function will
  244. * return true. For rest all other subcores
  245. * kvmppc_tb_resync_required() will return false.
  246. *
  247. * If resync_req == true, then this thread is responsible to
  248. * initiate TB resync after hmi handler has completed.
  249. * All other threads on this core will wait until this thread
  250. * clears the resync required bit flag.
  251. */
  252. resync_req = kvmppc_tb_resync_required();
  253. /* Reset the subcore status to indicate it has exited guest */
  254. kvmppc_subcore_exit_guest();
  255. /*
  256. * Wait for other subcores on this core to exit the guest.
  257. * All the primary threads and threads from subcore that are
  258. * not in guest will wait here until all subcores are out
  259. * of guest context.
  260. */
  261. wait_for_subcore_guest_exit();
  262. /*
  263. * At this point we are sure that primary threads from each
  264. * subcore on this core have completed guest->host partition
  265. * switch. Now it is safe to call HMI handler.
  266. */
  267. if (ppc_md.hmi_exception_early)
  268. ppc_md.hmi_exception_early(NULL);
  269. /*
  270. * Check if this thread is responsible to resync TB.
  271. * All other threads will wait until this thread completes the
  272. * TB resync.
  273. */
  274. if (resync_req) {
  275. opal_resync_timebase();
  276. /* Reset TB resync req bit */
  277. kvmppc_tb_resync_done();
  278. } else {
  279. wait_for_tb_resync();
  280. }
  281. return 0;
  282. }