process.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993
  1. /*
  2. * Derived from "arch/i386/kernel/process.c"
  3. * Copyright (C) 1995 Linus Torvalds
  4. *
  5. * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
  6. * Paul Mackerras (paulus@cs.anu.edu.au)
  7. *
  8. * PowerPC version
  9. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <linux/errno.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/mm.h>
  20. #include <linux/smp.h>
  21. #include <linux/stddef.h>
  22. #include <linux/unistd.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/slab.h>
  25. #include <linux/user.h>
  26. #include <linux/elf.h>
  27. #include <linux/prctl.h>
  28. #include <linux/init_task.h>
  29. #include <linux/export.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/mqueue.h>
  32. #include <linux/hardirq.h>
  33. #include <linux/utsname.h>
  34. #include <linux/ftrace.h>
  35. #include <linux/kernel_stat.h>
  36. #include <linux/personality.h>
  37. #include <linux/random.h>
  38. #include <linux/hw_breakpoint.h>
  39. #include <linux/uaccess.h>
  40. #include <linux/elf-randomize.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/io.h>
  43. #include <asm/processor.h>
  44. #include <asm/mmu.h>
  45. #include <asm/prom.h>
  46. #include <asm/machdep.h>
  47. #include <asm/time.h>
  48. #include <asm/runlatch.h>
  49. #include <asm/syscalls.h>
  50. #include <asm/switch_to.h>
  51. #include <asm/tm.h>
  52. #include <asm/debug.h>
  53. #ifdef CONFIG_PPC64
  54. #include <asm/firmware.h>
  55. #endif
  56. #include <asm/code-patching.h>
  57. #include <asm/exec.h>
  58. #include <asm/livepatch.h>
  59. #include <asm/cpu_has_feature.h>
  60. #include <asm/asm-prototypes.h>
  61. #include <linux/kprobes.h>
  62. #include <linux/kdebug.h>
  63. #ifdef CONFIG_CC_STACKPROTECTOR
  64. #include <linux/stackprotector.h>
  65. unsigned long __stack_chk_guard __read_mostly;
  66. EXPORT_SYMBOL(__stack_chk_guard);
  67. #endif
  68. /* Transactional Memory debug */
  69. #ifdef TM_DEBUG_SW
  70. #define TM_DEBUG(x...) printk(KERN_INFO x)
  71. #else
  72. #define TM_DEBUG(x...) do { } while(0)
  73. #endif
  74. extern unsigned long _get_SP(void);
  75. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  76. static void check_if_tm_restore_required(struct task_struct *tsk)
  77. {
  78. /*
  79. * If we are saving the current thread's registers, and the
  80. * thread is in a transactional state, set the TIF_RESTORE_TM
  81. * bit so that we know to restore the registers before
  82. * returning to userspace.
  83. */
  84. if (tsk == current && tsk->thread.regs &&
  85. MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  86. !test_thread_flag(TIF_RESTORE_TM)) {
  87. tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
  88. set_thread_flag(TIF_RESTORE_TM);
  89. }
  90. }
  91. static inline bool msr_tm_active(unsigned long msr)
  92. {
  93. return MSR_TM_ACTIVE(msr);
  94. }
  95. #else
  96. static inline bool msr_tm_active(unsigned long msr) { return false; }
  97. static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
  98. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  99. bool strict_msr_control;
  100. EXPORT_SYMBOL(strict_msr_control);
  101. static int __init enable_strict_msr_control(char *str)
  102. {
  103. strict_msr_control = true;
  104. pr_info("Enabling strict facility control\n");
  105. return 0;
  106. }
  107. early_param("ppc_strict_facility_enable", enable_strict_msr_control);
  108. unsigned long msr_check_and_set(unsigned long bits)
  109. {
  110. unsigned long oldmsr = mfmsr();
  111. unsigned long newmsr;
  112. newmsr = oldmsr | bits;
  113. #ifdef CONFIG_VSX
  114. if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
  115. newmsr |= MSR_VSX;
  116. #endif
  117. if (oldmsr != newmsr)
  118. mtmsr_isync(newmsr);
  119. return newmsr;
  120. }
  121. void __msr_check_and_clear(unsigned long bits)
  122. {
  123. unsigned long oldmsr = mfmsr();
  124. unsigned long newmsr;
  125. newmsr = oldmsr & ~bits;
  126. #ifdef CONFIG_VSX
  127. if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
  128. newmsr &= ~MSR_VSX;
  129. #endif
  130. if (oldmsr != newmsr)
  131. mtmsr_isync(newmsr);
  132. }
  133. EXPORT_SYMBOL(__msr_check_and_clear);
  134. #ifdef CONFIG_PPC_FPU
  135. void __giveup_fpu(struct task_struct *tsk)
  136. {
  137. unsigned long msr;
  138. save_fpu(tsk);
  139. msr = tsk->thread.regs->msr;
  140. msr &= ~MSR_FP;
  141. #ifdef CONFIG_VSX
  142. if (cpu_has_feature(CPU_FTR_VSX))
  143. msr &= ~MSR_VSX;
  144. #endif
  145. tsk->thread.regs->msr = msr;
  146. }
  147. void giveup_fpu(struct task_struct *tsk)
  148. {
  149. check_if_tm_restore_required(tsk);
  150. msr_check_and_set(MSR_FP);
  151. __giveup_fpu(tsk);
  152. msr_check_and_clear(MSR_FP);
  153. }
  154. EXPORT_SYMBOL(giveup_fpu);
  155. /*
  156. * Make sure the floating-point register state in the
  157. * the thread_struct is up to date for task tsk.
  158. */
  159. void flush_fp_to_thread(struct task_struct *tsk)
  160. {
  161. if (tsk->thread.regs) {
  162. /*
  163. * We need to disable preemption here because if we didn't,
  164. * another process could get scheduled after the regs->msr
  165. * test but before we have finished saving the FP registers
  166. * to the thread_struct. That process could take over the
  167. * FPU, and then when we get scheduled again we would store
  168. * bogus values for the remaining FP registers.
  169. */
  170. preempt_disable();
  171. if (tsk->thread.regs->msr & MSR_FP) {
  172. /*
  173. * This should only ever be called for current or
  174. * for a stopped child process. Since we save away
  175. * the FP register state on context switch,
  176. * there is something wrong if a stopped child appears
  177. * to still have its FP state in the CPU registers.
  178. */
  179. BUG_ON(tsk != current);
  180. giveup_fpu(tsk);
  181. }
  182. preempt_enable();
  183. }
  184. }
  185. EXPORT_SYMBOL_GPL(flush_fp_to_thread);
  186. void enable_kernel_fp(void)
  187. {
  188. unsigned long cpumsr;
  189. WARN_ON(preemptible());
  190. cpumsr = msr_check_and_set(MSR_FP);
  191. if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
  192. check_if_tm_restore_required(current);
  193. /*
  194. * If a thread has already been reclaimed then the
  195. * checkpointed registers are on the CPU but have definitely
  196. * been saved by the reclaim code. Don't need to and *cannot*
  197. * giveup as this would save to the 'live' structure not the
  198. * checkpointed structure.
  199. */
  200. if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
  201. return;
  202. __giveup_fpu(current);
  203. }
  204. }
  205. EXPORT_SYMBOL(enable_kernel_fp);
  206. static int restore_fp(struct task_struct *tsk) {
  207. if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
  208. load_fp_state(&current->thread.fp_state);
  209. current->thread.load_fp++;
  210. return 1;
  211. }
  212. return 0;
  213. }
  214. #else
  215. static int restore_fp(struct task_struct *tsk) { return 0; }
  216. #endif /* CONFIG_PPC_FPU */
  217. #ifdef CONFIG_ALTIVEC
  218. #define loadvec(thr) ((thr).load_vec)
  219. static void __giveup_altivec(struct task_struct *tsk)
  220. {
  221. unsigned long msr;
  222. save_altivec(tsk);
  223. msr = tsk->thread.regs->msr;
  224. msr &= ~MSR_VEC;
  225. #ifdef CONFIG_VSX
  226. if (cpu_has_feature(CPU_FTR_VSX))
  227. msr &= ~MSR_VSX;
  228. #endif
  229. tsk->thread.regs->msr = msr;
  230. }
  231. void giveup_altivec(struct task_struct *tsk)
  232. {
  233. check_if_tm_restore_required(tsk);
  234. msr_check_and_set(MSR_VEC);
  235. __giveup_altivec(tsk);
  236. msr_check_and_clear(MSR_VEC);
  237. }
  238. EXPORT_SYMBOL(giveup_altivec);
  239. void enable_kernel_altivec(void)
  240. {
  241. unsigned long cpumsr;
  242. WARN_ON(preemptible());
  243. cpumsr = msr_check_and_set(MSR_VEC);
  244. if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
  245. check_if_tm_restore_required(current);
  246. /*
  247. * If a thread has already been reclaimed then the
  248. * checkpointed registers are on the CPU but have definitely
  249. * been saved by the reclaim code. Don't need to and *cannot*
  250. * giveup as this would save to the 'live' structure not the
  251. * checkpointed structure.
  252. */
  253. if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
  254. return;
  255. __giveup_altivec(current);
  256. }
  257. }
  258. EXPORT_SYMBOL(enable_kernel_altivec);
  259. /*
  260. * Make sure the VMX/Altivec register state in the
  261. * the thread_struct is up to date for task tsk.
  262. */
  263. void flush_altivec_to_thread(struct task_struct *tsk)
  264. {
  265. if (tsk->thread.regs) {
  266. preempt_disable();
  267. if (tsk->thread.regs->msr & MSR_VEC) {
  268. BUG_ON(tsk != current);
  269. giveup_altivec(tsk);
  270. }
  271. preempt_enable();
  272. }
  273. }
  274. EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
  275. static int restore_altivec(struct task_struct *tsk)
  276. {
  277. if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
  278. (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
  279. load_vr_state(&tsk->thread.vr_state);
  280. tsk->thread.used_vr = 1;
  281. tsk->thread.load_vec++;
  282. return 1;
  283. }
  284. return 0;
  285. }
  286. #else
  287. #define loadvec(thr) 0
  288. static inline int restore_altivec(struct task_struct *tsk) { return 0; }
  289. #endif /* CONFIG_ALTIVEC */
  290. #ifdef CONFIG_VSX
  291. static void __giveup_vsx(struct task_struct *tsk)
  292. {
  293. if (tsk->thread.regs->msr & MSR_FP)
  294. __giveup_fpu(tsk);
  295. if (tsk->thread.regs->msr & MSR_VEC)
  296. __giveup_altivec(tsk);
  297. tsk->thread.regs->msr &= ~MSR_VSX;
  298. }
  299. static void giveup_vsx(struct task_struct *tsk)
  300. {
  301. check_if_tm_restore_required(tsk);
  302. msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
  303. __giveup_vsx(tsk);
  304. msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
  305. }
  306. static void save_vsx(struct task_struct *tsk)
  307. {
  308. if (tsk->thread.regs->msr & MSR_FP)
  309. save_fpu(tsk);
  310. if (tsk->thread.regs->msr & MSR_VEC)
  311. save_altivec(tsk);
  312. }
  313. void enable_kernel_vsx(void)
  314. {
  315. unsigned long cpumsr;
  316. WARN_ON(preemptible());
  317. cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
  318. if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
  319. check_if_tm_restore_required(current);
  320. /*
  321. * If a thread has already been reclaimed then the
  322. * checkpointed registers are on the CPU but have definitely
  323. * been saved by the reclaim code. Don't need to and *cannot*
  324. * giveup as this would save to the 'live' structure not the
  325. * checkpointed structure.
  326. */
  327. if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
  328. return;
  329. if (current->thread.regs->msr & MSR_FP)
  330. __giveup_fpu(current);
  331. if (current->thread.regs->msr & MSR_VEC)
  332. __giveup_altivec(current);
  333. __giveup_vsx(current);
  334. }
  335. }
  336. EXPORT_SYMBOL(enable_kernel_vsx);
  337. void flush_vsx_to_thread(struct task_struct *tsk)
  338. {
  339. if (tsk->thread.regs) {
  340. preempt_disable();
  341. if (tsk->thread.regs->msr & MSR_VSX) {
  342. BUG_ON(tsk != current);
  343. giveup_vsx(tsk);
  344. }
  345. preempt_enable();
  346. }
  347. }
  348. EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
  349. static int restore_vsx(struct task_struct *tsk)
  350. {
  351. if (cpu_has_feature(CPU_FTR_VSX)) {
  352. tsk->thread.used_vsr = 1;
  353. return 1;
  354. }
  355. return 0;
  356. }
  357. #else
  358. static inline int restore_vsx(struct task_struct *tsk) { return 0; }
  359. static inline void save_vsx(struct task_struct *tsk) { }
  360. #endif /* CONFIG_VSX */
  361. #ifdef CONFIG_SPE
  362. void giveup_spe(struct task_struct *tsk)
  363. {
  364. check_if_tm_restore_required(tsk);
  365. msr_check_and_set(MSR_SPE);
  366. __giveup_spe(tsk);
  367. msr_check_and_clear(MSR_SPE);
  368. }
  369. EXPORT_SYMBOL(giveup_spe);
  370. void enable_kernel_spe(void)
  371. {
  372. WARN_ON(preemptible());
  373. msr_check_and_set(MSR_SPE);
  374. if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
  375. check_if_tm_restore_required(current);
  376. __giveup_spe(current);
  377. }
  378. }
  379. EXPORT_SYMBOL(enable_kernel_spe);
  380. void flush_spe_to_thread(struct task_struct *tsk)
  381. {
  382. if (tsk->thread.regs) {
  383. preempt_disable();
  384. if (tsk->thread.regs->msr & MSR_SPE) {
  385. BUG_ON(tsk != current);
  386. tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
  387. giveup_spe(tsk);
  388. }
  389. preempt_enable();
  390. }
  391. }
  392. #endif /* CONFIG_SPE */
  393. static unsigned long msr_all_available;
  394. static int __init init_msr_all_available(void)
  395. {
  396. #ifdef CONFIG_PPC_FPU
  397. msr_all_available |= MSR_FP;
  398. #endif
  399. #ifdef CONFIG_ALTIVEC
  400. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  401. msr_all_available |= MSR_VEC;
  402. #endif
  403. #ifdef CONFIG_VSX
  404. if (cpu_has_feature(CPU_FTR_VSX))
  405. msr_all_available |= MSR_VSX;
  406. #endif
  407. #ifdef CONFIG_SPE
  408. if (cpu_has_feature(CPU_FTR_SPE))
  409. msr_all_available |= MSR_SPE;
  410. #endif
  411. return 0;
  412. }
  413. early_initcall(init_msr_all_available);
  414. void giveup_all(struct task_struct *tsk)
  415. {
  416. unsigned long usermsr;
  417. if (!tsk->thread.regs)
  418. return;
  419. usermsr = tsk->thread.regs->msr;
  420. if ((usermsr & msr_all_available) == 0)
  421. return;
  422. msr_check_and_set(msr_all_available);
  423. check_if_tm_restore_required(tsk);
  424. #ifdef CONFIG_PPC_FPU
  425. if (usermsr & MSR_FP)
  426. __giveup_fpu(tsk);
  427. #endif
  428. #ifdef CONFIG_ALTIVEC
  429. if (usermsr & MSR_VEC)
  430. __giveup_altivec(tsk);
  431. #endif
  432. #ifdef CONFIG_VSX
  433. if (usermsr & MSR_VSX)
  434. __giveup_vsx(tsk);
  435. #endif
  436. #ifdef CONFIG_SPE
  437. if (usermsr & MSR_SPE)
  438. __giveup_spe(tsk);
  439. #endif
  440. msr_check_and_clear(msr_all_available);
  441. }
  442. EXPORT_SYMBOL(giveup_all);
  443. void restore_math(struct pt_regs *regs)
  444. {
  445. unsigned long msr;
  446. if (!msr_tm_active(regs->msr) &&
  447. !current->thread.load_fp && !loadvec(current->thread))
  448. return;
  449. msr = regs->msr;
  450. msr_check_and_set(msr_all_available);
  451. /*
  452. * Only reload if the bit is not set in the user MSR, the bit BEING set
  453. * indicates that the registers are hot
  454. */
  455. if ((!(msr & MSR_FP)) && restore_fp(current))
  456. msr |= MSR_FP | current->thread.fpexc_mode;
  457. if ((!(msr & MSR_VEC)) && restore_altivec(current))
  458. msr |= MSR_VEC;
  459. if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
  460. restore_vsx(current)) {
  461. msr |= MSR_VSX;
  462. }
  463. msr_check_and_clear(msr_all_available);
  464. regs->msr = msr;
  465. }
  466. void save_all(struct task_struct *tsk)
  467. {
  468. unsigned long usermsr;
  469. if (!tsk->thread.regs)
  470. return;
  471. usermsr = tsk->thread.regs->msr;
  472. if ((usermsr & msr_all_available) == 0)
  473. return;
  474. msr_check_and_set(msr_all_available);
  475. /*
  476. * Saving the way the register space is in hardware, save_vsx boils
  477. * down to a save_fpu() and save_altivec()
  478. */
  479. if (usermsr & MSR_VSX) {
  480. save_vsx(tsk);
  481. } else {
  482. if (usermsr & MSR_FP)
  483. save_fpu(tsk);
  484. if (usermsr & MSR_VEC)
  485. save_altivec(tsk);
  486. }
  487. if (usermsr & MSR_SPE)
  488. __giveup_spe(tsk);
  489. msr_check_and_clear(msr_all_available);
  490. }
  491. void flush_all_to_thread(struct task_struct *tsk)
  492. {
  493. if (tsk->thread.regs) {
  494. preempt_disable();
  495. BUG_ON(tsk != current);
  496. save_all(tsk);
  497. #ifdef CONFIG_SPE
  498. if (tsk->thread.regs->msr & MSR_SPE)
  499. tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
  500. #endif
  501. preempt_enable();
  502. }
  503. }
  504. EXPORT_SYMBOL(flush_all_to_thread);
  505. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  506. void do_send_trap(struct pt_regs *regs, unsigned long address,
  507. unsigned long error_code, int signal_code, int breakpt)
  508. {
  509. siginfo_t info;
  510. current->thread.trap_nr = signal_code;
  511. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  512. 11, SIGSEGV) == NOTIFY_STOP)
  513. return;
  514. /* Deliver the signal to userspace */
  515. info.si_signo = SIGTRAP;
  516. info.si_errno = breakpt; /* breakpoint or watchpoint id */
  517. info.si_code = signal_code;
  518. info.si_addr = (void __user *)address;
  519. force_sig_info(SIGTRAP, &info, current);
  520. }
  521. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  522. void do_break (struct pt_regs *regs, unsigned long address,
  523. unsigned long error_code)
  524. {
  525. siginfo_t info;
  526. current->thread.trap_nr = TRAP_HWBKPT;
  527. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  528. 11, SIGSEGV) == NOTIFY_STOP)
  529. return;
  530. if (debugger_break_match(regs))
  531. return;
  532. /* Clear the breakpoint */
  533. hw_breakpoint_disable();
  534. /* Deliver the signal to userspace */
  535. info.si_signo = SIGTRAP;
  536. info.si_errno = 0;
  537. info.si_code = TRAP_HWBKPT;
  538. info.si_addr = (void __user *)address;
  539. force_sig_info(SIGTRAP, &info, current);
  540. }
  541. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  542. static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
  543. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  544. /*
  545. * Set the debug registers back to their default "safe" values.
  546. */
  547. static void set_debug_reg_defaults(struct thread_struct *thread)
  548. {
  549. thread->debug.iac1 = thread->debug.iac2 = 0;
  550. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  551. thread->debug.iac3 = thread->debug.iac4 = 0;
  552. #endif
  553. thread->debug.dac1 = thread->debug.dac2 = 0;
  554. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  555. thread->debug.dvc1 = thread->debug.dvc2 = 0;
  556. #endif
  557. thread->debug.dbcr0 = 0;
  558. #ifdef CONFIG_BOOKE
  559. /*
  560. * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
  561. */
  562. thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
  563. DBCR1_IAC3US | DBCR1_IAC4US;
  564. /*
  565. * Force Data Address Compare User/Supervisor bits to be User-only
  566. * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
  567. */
  568. thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
  569. #else
  570. thread->debug.dbcr1 = 0;
  571. #endif
  572. }
  573. static void prime_debug_regs(struct debug_reg *debug)
  574. {
  575. /*
  576. * We could have inherited MSR_DE from userspace, since
  577. * it doesn't get cleared on exception entry. Make sure
  578. * MSR_DE is clear before we enable any debug events.
  579. */
  580. mtmsr(mfmsr() & ~MSR_DE);
  581. mtspr(SPRN_IAC1, debug->iac1);
  582. mtspr(SPRN_IAC2, debug->iac2);
  583. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  584. mtspr(SPRN_IAC3, debug->iac3);
  585. mtspr(SPRN_IAC4, debug->iac4);
  586. #endif
  587. mtspr(SPRN_DAC1, debug->dac1);
  588. mtspr(SPRN_DAC2, debug->dac2);
  589. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  590. mtspr(SPRN_DVC1, debug->dvc1);
  591. mtspr(SPRN_DVC2, debug->dvc2);
  592. #endif
  593. mtspr(SPRN_DBCR0, debug->dbcr0);
  594. mtspr(SPRN_DBCR1, debug->dbcr1);
  595. #ifdef CONFIG_BOOKE
  596. mtspr(SPRN_DBCR2, debug->dbcr2);
  597. #endif
  598. }
  599. /*
  600. * Unless neither the old or new thread are making use of the
  601. * debug registers, set the debug registers from the values
  602. * stored in the new thread.
  603. */
  604. void switch_booke_debug_regs(struct debug_reg *new_debug)
  605. {
  606. if ((current->thread.debug.dbcr0 & DBCR0_IDM)
  607. || (new_debug->dbcr0 & DBCR0_IDM))
  608. prime_debug_regs(new_debug);
  609. }
  610. EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
  611. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  612. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  613. static void set_debug_reg_defaults(struct thread_struct *thread)
  614. {
  615. thread->hw_brk.address = 0;
  616. thread->hw_brk.type = 0;
  617. set_breakpoint(&thread->hw_brk);
  618. }
  619. #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
  620. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  621. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  622. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  623. {
  624. mtspr(SPRN_DAC1, dabr);
  625. #ifdef CONFIG_PPC_47x
  626. isync();
  627. #endif
  628. return 0;
  629. }
  630. #elif defined(CONFIG_PPC_BOOK3S)
  631. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  632. {
  633. mtspr(SPRN_DABR, dabr);
  634. if (cpu_has_feature(CPU_FTR_DABRX))
  635. mtspr(SPRN_DABRX, dabrx);
  636. return 0;
  637. }
  638. #else
  639. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  640. {
  641. return -EINVAL;
  642. }
  643. #endif
  644. static inline int set_dabr(struct arch_hw_breakpoint *brk)
  645. {
  646. unsigned long dabr, dabrx;
  647. dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
  648. dabrx = ((brk->type >> 3) & 0x7);
  649. if (ppc_md.set_dabr)
  650. return ppc_md.set_dabr(dabr, dabrx);
  651. return __set_dabr(dabr, dabrx);
  652. }
  653. static inline int set_dawr(struct arch_hw_breakpoint *brk)
  654. {
  655. unsigned long dawr, dawrx, mrd;
  656. dawr = brk->address;
  657. dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
  658. << (63 - 58); //* read/write bits */
  659. dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
  660. << (63 - 59); //* translate */
  661. dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
  662. >> 3; //* PRIM bits */
  663. /* dawr length is stored in field MDR bits 48:53. Matches range in
  664. doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
  665. 0b111111=64DW.
  666. brk->len is in bytes.
  667. This aligns up to double word size, shifts and does the bias.
  668. */
  669. mrd = ((brk->len + 7) >> 3) - 1;
  670. dawrx |= (mrd & 0x3f) << (63 - 53);
  671. if (ppc_md.set_dawr)
  672. return ppc_md.set_dawr(dawr, dawrx);
  673. mtspr(SPRN_DAWR, dawr);
  674. mtspr(SPRN_DAWRX, dawrx);
  675. return 0;
  676. }
  677. void __set_breakpoint(struct arch_hw_breakpoint *brk)
  678. {
  679. memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
  680. if (cpu_has_feature(CPU_FTR_DAWR))
  681. set_dawr(brk);
  682. else
  683. set_dabr(brk);
  684. }
  685. void set_breakpoint(struct arch_hw_breakpoint *brk)
  686. {
  687. preempt_disable();
  688. __set_breakpoint(brk);
  689. preempt_enable();
  690. }
  691. #ifdef CONFIG_PPC64
  692. DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
  693. #endif
  694. static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
  695. struct arch_hw_breakpoint *b)
  696. {
  697. if (a->address != b->address)
  698. return false;
  699. if (a->type != b->type)
  700. return false;
  701. if (a->len != b->len)
  702. return false;
  703. return true;
  704. }
  705. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  706. static inline bool tm_enabled(struct task_struct *tsk)
  707. {
  708. return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
  709. }
  710. static void tm_reclaim_thread(struct thread_struct *thr,
  711. struct thread_info *ti, uint8_t cause)
  712. {
  713. /*
  714. * Use the current MSR TM suspended bit to track if we have
  715. * checkpointed state outstanding.
  716. * On signal delivery, we'd normally reclaim the checkpointed
  717. * state to obtain stack pointer (see:get_tm_stackpointer()).
  718. * This will then directly return to userspace without going
  719. * through __switch_to(). However, if the stack frame is bad,
  720. * we need to exit this thread which calls __switch_to() which
  721. * will again attempt to reclaim the already saved tm state.
  722. * Hence we need to check that we've not already reclaimed
  723. * this state.
  724. * We do this using the current MSR, rather tracking it in
  725. * some specific thread_struct bit, as it has the additional
  726. * benefit of checking for a potential TM bad thing exception.
  727. */
  728. if (!MSR_TM_SUSPENDED(mfmsr()))
  729. return;
  730. giveup_all(container_of(thr, struct task_struct, thread));
  731. tm_reclaim(thr, thr->ckpt_regs.msr, cause);
  732. }
  733. void tm_reclaim_current(uint8_t cause)
  734. {
  735. tm_enable();
  736. tm_reclaim_thread(&current->thread, current_thread_info(), cause);
  737. }
  738. static inline void tm_reclaim_task(struct task_struct *tsk)
  739. {
  740. /* We have to work out if we're switching from/to a task that's in the
  741. * middle of a transaction.
  742. *
  743. * In switching we need to maintain a 2nd register state as
  744. * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
  745. * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
  746. * ckvr_state
  747. *
  748. * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
  749. */
  750. struct thread_struct *thr = &tsk->thread;
  751. if (!thr->regs)
  752. return;
  753. if (!MSR_TM_ACTIVE(thr->regs->msr))
  754. goto out_and_saveregs;
  755. TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
  756. "ccr=%lx, msr=%lx, trap=%lx)\n",
  757. tsk->pid, thr->regs->nip,
  758. thr->regs->ccr, thr->regs->msr,
  759. thr->regs->trap);
  760. tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
  761. TM_DEBUG("--- tm_reclaim on pid %d complete\n",
  762. tsk->pid);
  763. out_and_saveregs:
  764. /* Always save the regs here, even if a transaction's not active.
  765. * This context-switches a thread's TM info SPRs. We do it here to
  766. * be consistent with the restore path (in recheckpoint) which
  767. * cannot happen later in _switch().
  768. */
  769. tm_save_sprs(thr);
  770. }
  771. extern void __tm_recheckpoint(struct thread_struct *thread,
  772. unsigned long orig_msr);
  773. void tm_recheckpoint(struct thread_struct *thread,
  774. unsigned long orig_msr)
  775. {
  776. unsigned long flags;
  777. if (!(thread->regs->msr & MSR_TM))
  778. return;
  779. /* We really can't be interrupted here as the TEXASR registers can't
  780. * change and later in the trecheckpoint code, we have a userspace R1.
  781. * So let's hard disable over this region.
  782. */
  783. local_irq_save(flags);
  784. hard_irq_disable();
  785. /* The TM SPRs are restored here, so that TEXASR.FS can be set
  786. * before the trecheckpoint and no explosion occurs.
  787. */
  788. tm_restore_sprs(thread);
  789. __tm_recheckpoint(thread, orig_msr);
  790. local_irq_restore(flags);
  791. }
  792. static inline void tm_recheckpoint_new_task(struct task_struct *new)
  793. {
  794. unsigned long msr;
  795. if (!cpu_has_feature(CPU_FTR_TM))
  796. return;
  797. /* Recheckpoint the registers of the thread we're about to switch to.
  798. *
  799. * If the task was using FP, we non-lazily reload both the original and
  800. * the speculative FP register states. This is because the kernel
  801. * doesn't see if/when a TM rollback occurs, so if we take an FP
  802. * unavailable later, we are unable to determine which set of FP regs
  803. * need to be restored.
  804. */
  805. if (!tm_enabled(new))
  806. return;
  807. if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
  808. tm_restore_sprs(&new->thread);
  809. return;
  810. }
  811. msr = new->thread.ckpt_regs.msr;
  812. /* Recheckpoint to restore original checkpointed register state. */
  813. TM_DEBUG("*** tm_recheckpoint of pid %d "
  814. "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
  815. new->pid, new->thread.regs->msr, msr);
  816. tm_recheckpoint(&new->thread, msr);
  817. /*
  818. * The checkpointed state has been restored but the live state has
  819. * not, ensure all the math functionality is turned off to trigger
  820. * restore_math() to reload.
  821. */
  822. new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
  823. TM_DEBUG("*** tm_recheckpoint of pid %d complete "
  824. "(kernel msr 0x%lx)\n",
  825. new->pid, mfmsr());
  826. }
  827. static inline void __switch_to_tm(struct task_struct *prev,
  828. struct task_struct *new)
  829. {
  830. if (cpu_has_feature(CPU_FTR_TM)) {
  831. if (tm_enabled(prev) || tm_enabled(new))
  832. tm_enable();
  833. if (tm_enabled(prev)) {
  834. prev->thread.load_tm++;
  835. tm_reclaim_task(prev);
  836. if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
  837. prev->thread.regs->msr &= ~MSR_TM;
  838. }
  839. tm_recheckpoint_new_task(new);
  840. }
  841. }
  842. /*
  843. * This is called if we are on the way out to userspace and the
  844. * TIF_RESTORE_TM flag is set. It checks if we need to reload
  845. * FP and/or vector state and does so if necessary.
  846. * If userspace is inside a transaction (whether active or
  847. * suspended) and FP/VMX/VSX instructions have ever been enabled
  848. * inside that transaction, then we have to keep them enabled
  849. * and keep the FP/VMX/VSX state loaded while ever the transaction
  850. * continues. The reason is that if we didn't, and subsequently
  851. * got a FP/VMX/VSX unavailable interrupt inside a transaction,
  852. * we don't know whether it's the same transaction, and thus we
  853. * don't know which of the checkpointed state and the transactional
  854. * state to use.
  855. */
  856. void restore_tm_state(struct pt_regs *regs)
  857. {
  858. unsigned long msr_diff;
  859. /*
  860. * This is the only moment we should clear TIF_RESTORE_TM as
  861. * it is here that ckpt_regs.msr and pt_regs.msr become the same
  862. * again, anything else could lead to an incorrect ckpt_msr being
  863. * saved and therefore incorrect signal contexts.
  864. */
  865. clear_thread_flag(TIF_RESTORE_TM);
  866. if (!MSR_TM_ACTIVE(regs->msr))
  867. return;
  868. msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
  869. msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
  870. /* Ensure that restore_math() will restore */
  871. if (msr_diff & MSR_FP)
  872. current->thread.load_fp = 1;
  873. #ifdef CONFIG_ALTIVEC
  874. if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
  875. current->thread.load_vec = 1;
  876. #endif
  877. restore_math(regs);
  878. regs->msr |= msr_diff;
  879. }
  880. #else
  881. #define tm_recheckpoint_new_task(new)
  882. #define __switch_to_tm(prev, new)
  883. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  884. static inline void save_sprs(struct thread_struct *t)
  885. {
  886. #ifdef CONFIG_ALTIVEC
  887. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  888. t->vrsave = mfspr(SPRN_VRSAVE);
  889. #endif
  890. #ifdef CONFIG_PPC_BOOK3S_64
  891. if (cpu_has_feature(CPU_FTR_DSCR))
  892. t->dscr = mfspr(SPRN_DSCR);
  893. if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
  894. t->bescr = mfspr(SPRN_BESCR);
  895. t->ebbhr = mfspr(SPRN_EBBHR);
  896. t->ebbrr = mfspr(SPRN_EBBRR);
  897. t->fscr = mfspr(SPRN_FSCR);
  898. /*
  899. * Note that the TAR is not available for use in the kernel.
  900. * (To provide this, the TAR should be backed up/restored on
  901. * exception entry/exit instead, and be in pt_regs. FIXME,
  902. * this should be in pt_regs anyway (for debug).)
  903. */
  904. t->tar = mfspr(SPRN_TAR);
  905. }
  906. #endif
  907. }
  908. static inline void restore_sprs(struct thread_struct *old_thread,
  909. struct thread_struct *new_thread)
  910. {
  911. #ifdef CONFIG_ALTIVEC
  912. if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
  913. old_thread->vrsave != new_thread->vrsave)
  914. mtspr(SPRN_VRSAVE, new_thread->vrsave);
  915. #endif
  916. #ifdef CONFIG_PPC_BOOK3S_64
  917. if (cpu_has_feature(CPU_FTR_DSCR)) {
  918. u64 dscr = get_paca()->dscr_default;
  919. if (new_thread->dscr_inherit)
  920. dscr = new_thread->dscr;
  921. if (old_thread->dscr != dscr)
  922. mtspr(SPRN_DSCR, dscr);
  923. }
  924. if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
  925. if (old_thread->bescr != new_thread->bescr)
  926. mtspr(SPRN_BESCR, new_thread->bescr);
  927. if (old_thread->ebbhr != new_thread->ebbhr)
  928. mtspr(SPRN_EBBHR, new_thread->ebbhr);
  929. if (old_thread->ebbrr != new_thread->ebbrr)
  930. mtspr(SPRN_EBBRR, new_thread->ebbrr);
  931. if (old_thread->fscr != new_thread->fscr)
  932. mtspr(SPRN_FSCR, new_thread->fscr);
  933. if (old_thread->tar != new_thread->tar)
  934. mtspr(SPRN_TAR, new_thread->tar);
  935. }
  936. #endif
  937. }
  938. struct task_struct *__switch_to(struct task_struct *prev,
  939. struct task_struct *new)
  940. {
  941. struct thread_struct *new_thread, *old_thread;
  942. struct task_struct *last;
  943. #ifdef CONFIG_PPC_BOOK3S_64
  944. struct ppc64_tlb_batch *batch;
  945. #endif
  946. new_thread = &new->thread;
  947. old_thread = &current->thread;
  948. WARN_ON(!irqs_disabled());
  949. #ifdef CONFIG_PPC64
  950. /*
  951. * Collect processor utilization data per process
  952. */
  953. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  954. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  955. long unsigned start_tb, current_tb;
  956. start_tb = old_thread->start_tb;
  957. cu->current_tb = current_tb = mfspr(SPRN_PURR);
  958. old_thread->accum_tb += (current_tb - start_tb);
  959. new_thread->start_tb = current_tb;
  960. }
  961. #endif /* CONFIG_PPC64 */
  962. #ifdef CONFIG_PPC_STD_MMU_64
  963. batch = this_cpu_ptr(&ppc64_tlb_batch);
  964. if (batch->active) {
  965. current_thread_info()->local_flags |= _TLF_LAZY_MMU;
  966. if (batch->index)
  967. __flush_tlb_pending(batch);
  968. batch->active = 0;
  969. }
  970. #endif /* CONFIG_PPC_STD_MMU_64 */
  971. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  972. switch_booke_debug_regs(&new->thread.debug);
  973. #else
  974. /*
  975. * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
  976. * schedule DABR
  977. */
  978. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  979. if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
  980. __set_breakpoint(&new->thread.hw_brk);
  981. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  982. #endif
  983. /*
  984. * We need to save SPRs before treclaim/trecheckpoint as these will
  985. * change a number of them.
  986. */
  987. save_sprs(&prev->thread);
  988. /* Save FPU, Altivec, VSX and SPE state */
  989. giveup_all(prev);
  990. __switch_to_tm(prev, new);
  991. /*
  992. * We can't take a PMU exception inside _switch() since there is a
  993. * window where the kernel stack SLB and the kernel stack are out
  994. * of sync. Hard disable here.
  995. */
  996. hard_irq_disable();
  997. /*
  998. * Call restore_sprs() before calling _switch(). If we move it after
  999. * _switch() then we miss out on calling it for new tasks. The reason
  1000. * for this is we manually create a stack frame for new tasks that
  1001. * directly returns through ret_from_fork() or
  1002. * ret_from_kernel_thread(). See copy_thread() for details.
  1003. */
  1004. restore_sprs(old_thread, new_thread);
  1005. last = _switch(old_thread, new_thread);
  1006. #ifdef CONFIG_PPC_STD_MMU_64
  1007. if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
  1008. current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
  1009. batch = this_cpu_ptr(&ppc64_tlb_batch);
  1010. batch->active = 1;
  1011. }
  1012. if (current_thread_info()->task->thread.regs)
  1013. restore_math(current_thread_info()->task->thread.regs);
  1014. #endif /* CONFIG_PPC_STD_MMU_64 */
  1015. return last;
  1016. }
  1017. static int instructions_to_print = 16;
  1018. static void show_instructions(struct pt_regs *regs)
  1019. {
  1020. int i;
  1021. unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
  1022. sizeof(int));
  1023. printk("Instruction dump:");
  1024. for (i = 0; i < instructions_to_print; i++) {
  1025. int instr;
  1026. if (!(i % 8))
  1027. pr_cont("\n");
  1028. #if !defined(CONFIG_BOOKE)
  1029. /* If executing with the IMMU off, adjust pc rather
  1030. * than print XXXXXXXX.
  1031. */
  1032. if (!(regs->msr & MSR_IR))
  1033. pc = (unsigned long)phys_to_virt(pc);
  1034. #endif
  1035. if (!__kernel_text_address(pc) ||
  1036. probe_kernel_address((unsigned int __user *)pc, instr)) {
  1037. pr_cont("XXXXXXXX ");
  1038. } else {
  1039. if (regs->nip == pc)
  1040. pr_cont("<%08x> ", instr);
  1041. else
  1042. pr_cont("%08x ", instr);
  1043. }
  1044. pc += sizeof(int);
  1045. }
  1046. pr_cont("\n");
  1047. }
  1048. struct regbit {
  1049. unsigned long bit;
  1050. const char *name;
  1051. };
  1052. static struct regbit msr_bits[] = {
  1053. #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
  1054. {MSR_SF, "SF"},
  1055. {MSR_HV, "HV"},
  1056. #endif
  1057. {MSR_VEC, "VEC"},
  1058. {MSR_VSX, "VSX"},
  1059. #ifdef CONFIG_BOOKE
  1060. {MSR_CE, "CE"},
  1061. #endif
  1062. {MSR_EE, "EE"},
  1063. {MSR_PR, "PR"},
  1064. {MSR_FP, "FP"},
  1065. {MSR_ME, "ME"},
  1066. #ifdef CONFIG_BOOKE
  1067. {MSR_DE, "DE"},
  1068. #else
  1069. {MSR_SE, "SE"},
  1070. {MSR_BE, "BE"},
  1071. #endif
  1072. {MSR_IR, "IR"},
  1073. {MSR_DR, "DR"},
  1074. {MSR_PMM, "PMM"},
  1075. #ifndef CONFIG_BOOKE
  1076. {MSR_RI, "RI"},
  1077. {MSR_LE, "LE"},
  1078. #endif
  1079. {0, NULL}
  1080. };
  1081. static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
  1082. {
  1083. const char *s = "";
  1084. for (; bits->bit; ++bits)
  1085. if (val & bits->bit) {
  1086. pr_cont("%s%s", s, bits->name);
  1087. s = sep;
  1088. }
  1089. }
  1090. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1091. static struct regbit msr_tm_bits[] = {
  1092. {MSR_TS_T, "T"},
  1093. {MSR_TS_S, "S"},
  1094. {MSR_TM, "E"},
  1095. {0, NULL}
  1096. };
  1097. static void print_tm_bits(unsigned long val)
  1098. {
  1099. /*
  1100. * This only prints something if at least one of the TM bit is set.
  1101. * Inside the TM[], the output means:
  1102. * E: Enabled (bit 32)
  1103. * S: Suspended (bit 33)
  1104. * T: Transactional (bit 34)
  1105. */
  1106. if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
  1107. pr_cont(",TM[");
  1108. print_bits(val, msr_tm_bits, "");
  1109. pr_cont("]");
  1110. }
  1111. }
  1112. #else
  1113. static void print_tm_bits(unsigned long val) {}
  1114. #endif
  1115. static void print_msr_bits(unsigned long val)
  1116. {
  1117. pr_cont("<");
  1118. print_bits(val, msr_bits, ",");
  1119. print_tm_bits(val);
  1120. pr_cont(">");
  1121. }
  1122. #ifdef CONFIG_PPC64
  1123. #define REG "%016lx"
  1124. #define REGS_PER_LINE 4
  1125. #define LAST_VOLATILE 13
  1126. #else
  1127. #define REG "%08lx"
  1128. #define REGS_PER_LINE 8
  1129. #define LAST_VOLATILE 12
  1130. #endif
  1131. void show_regs(struct pt_regs * regs)
  1132. {
  1133. int i, trap;
  1134. show_regs_print_info(KERN_DEFAULT);
  1135. printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
  1136. regs->nip, regs->link, regs->ctr);
  1137. printk("REGS: %p TRAP: %04lx %s (%s)\n",
  1138. regs, regs->trap, print_tainted(), init_utsname()->release);
  1139. printk("MSR: "REG" ", regs->msr);
  1140. print_msr_bits(regs->msr);
  1141. printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
  1142. trap = TRAP(regs);
  1143. if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
  1144. pr_cont("CFAR: "REG" ", regs->orig_gpr3);
  1145. if (trap == 0x200 || trap == 0x300 || trap == 0x600)
  1146. #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
  1147. pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
  1148. #else
  1149. pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
  1150. #endif
  1151. #ifdef CONFIG_PPC64
  1152. pr_cont("SOFTE: %ld ", regs->softe);
  1153. #endif
  1154. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1155. if (MSR_TM_ACTIVE(regs->msr))
  1156. pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
  1157. #endif
  1158. for (i = 0; i < 32; i++) {
  1159. if ((i % REGS_PER_LINE) == 0)
  1160. pr_cont("\nGPR%02d: ", i);
  1161. pr_cont(REG " ", regs->gpr[i]);
  1162. if (i == LAST_VOLATILE && !FULL_REGS(regs))
  1163. break;
  1164. }
  1165. pr_cont("\n");
  1166. #ifdef CONFIG_KALLSYMS
  1167. /*
  1168. * Lookup NIP late so we have the best change of getting the
  1169. * above info out without failing
  1170. */
  1171. printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
  1172. printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
  1173. #endif
  1174. show_stack(current, (unsigned long *) regs->gpr[1]);
  1175. if (!user_mode(regs))
  1176. show_instructions(regs);
  1177. }
  1178. void flush_thread(void)
  1179. {
  1180. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  1181. flush_ptrace_hw_breakpoint(current);
  1182. #else /* CONFIG_HAVE_HW_BREAKPOINT */
  1183. set_debug_reg_defaults(&current->thread);
  1184. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  1185. }
  1186. void
  1187. release_thread(struct task_struct *t)
  1188. {
  1189. }
  1190. /*
  1191. * this gets called so that we can store coprocessor state into memory and
  1192. * copy the current task into the new thread.
  1193. */
  1194. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  1195. {
  1196. flush_all_to_thread(src);
  1197. /*
  1198. * Flush TM state out so we can copy it. __switch_to_tm() does this
  1199. * flush but it removes the checkpointed state from the current CPU and
  1200. * transitions the CPU out of TM mode. Hence we need to call
  1201. * tm_recheckpoint_new_task() (on the same task) to restore the
  1202. * checkpointed state back and the TM mode.
  1203. *
  1204. * Can't pass dst because it isn't ready. Doesn't matter, passing
  1205. * dst is only important for __switch_to()
  1206. */
  1207. __switch_to_tm(src, src);
  1208. *dst = *src;
  1209. clear_task_ebb(dst);
  1210. return 0;
  1211. }
  1212. static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
  1213. {
  1214. #ifdef CONFIG_PPC_STD_MMU_64
  1215. unsigned long sp_vsid;
  1216. unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
  1217. if (radix_enabled())
  1218. return;
  1219. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1220. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
  1221. << SLB_VSID_SHIFT_1T;
  1222. else
  1223. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
  1224. << SLB_VSID_SHIFT;
  1225. sp_vsid |= SLB_VSID_KERNEL | llp;
  1226. p->thread.ksp_vsid = sp_vsid;
  1227. #endif
  1228. }
  1229. /*
  1230. * Copy a thread..
  1231. */
  1232. /*
  1233. * Copy architecture-specific thread state
  1234. */
  1235. int copy_thread(unsigned long clone_flags, unsigned long usp,
  1236. unsigned long kthread_arg, struct task_struct *p)
  1237. {
  1238. struct pt_regs *childregs, *kregs;
  1239. extern void ret_from_fork(void);
  1240. extern void ret_from_kernel_thread(void);
  1241. void (*f)(void);
  1242. unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  1243. struct thread_info *ti = task_thread_info(p);
  1244. klp_init_thread_info(ti);
  1245. /* Copy registers */
  1246. sp -= sizeof(struct pt_regs);
  1247. childregs = (struct pt_regs *) sp;
  1248. if (unlikely(p->flags & PF_KTHREAD)) {
  1249. /* kernel thread */
  1250. memset(childregs, 0, sizeof(struct pt_regs));
  1251. childregs->gpr[1] = sp + sizeof(struct pt_regs);
  1252. /* function */
  1253. if (usp)
  1254. childregs->gpr[14] = ppc_function_entry((void *)usp);
  1255. #ifdef CONFIG_PPC64
  1256. clear_tsk_thread_flag(p, TIF_32BIT);
  1257. childregs->softe = 1;
  1258. #endif
  1259. childregs->gpr[15] = kthread_arg;
  1260. p->thread.regs = NULL; /* no user register state */
  1261. ti->flags |= _TIF_RESTOREALL;
  1262. f = ret_from_kernel_thread;
  1263. } else {
  1264. /* user thread */
  1265. struct pt_regs *regs = current_pt_regs();
  1266. CHECK_FULL_REGS(regs);
  1267. *childregs = *regs;
  1268. if (usp)
  1269. childregs->gpr[1] = usp;
  1270. p->thread.regs = childregs;
  1271. childregs->gpr[3] = 0; /* Result from fork() */
  1272. if (clone_flags & CLONE_SETTLS) {
  1273. #ifdef CONFIG_PPC64
  1274. if (!is_32bit_task())
  1275. childregs->gpr[13] = childregs->gpr[6];
  1276. else
  1277. #endif
  1278. childregs->gpr[2] = childregs->gpr[6];
  1279. }
  1280. f = ret_from_fork;
  1281. }
  1282. childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
  1283. sp -= STACK_FRAME_OVERHEAD;
  1284. /*
  1285. * The way this works is that at some point in the future
  1286. * some task will call _switch to switch to the new task.
  1287. * That will pop off the stack frame created below and start
  1288. * the new task running at ret_from_fork. The new task will
  1289. * do some house keeping and then return from the fork or clone
  1290. * system call, using the stack frame created above.
  1291. */
  1292. ((unsigned long *)sp)[0] = 0;
  1293. sp -= sizeof(struct pt_regs);
  1294. kregs = (struct pt_regs *) sp;
  1295. sp -= STACK_FRAME_OVERHEAD;
  1296. p->thread.ksp = sp;
  1297. #ifdef CONFIG_PPC32
  1298. p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
  1299. _ALIGN_UP(sizeof(struct thread_info), 16);
  1300. #endif
  1301. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  1302. p->thread.ptrace_bps[0] = NULL;
  1303. #endif
  1304. p->thread.fp_save_area = NULL;
  1305. #ifdef CONFIG_ALTIVEC
  1306. p->thread.vr_save_area = NULL;
  1307. #endif
  1308. setup_ksp_vsid(p, sp);
  1309. #ifdef CONFIG_PPC64
  1310. if (cpu_has_feature(CPU_FTR_DSCR)) {
  1311. p->thread.dscr_inherit = current->thread.dscr_inherit;
  1312. p->thread.dscr = mfspr(SPRN_DSCR);
  1313. }
  1314. if (cpu_has_feature(CPU_FTR_HAS_PPR))
  1315. p->thread.ppr = INIT_PPR;
  1316. #endif
  1317. kregs->nip = ppc_function_entry(f);
  1318. return 0;
  1319. }
  1320. /*
  1321. * Set up a thread for executing a new program
  1322. */
  1323. void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
  1324. {
  1325. #ifdef CONFIG_PPC64
  1326. unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
  1327. #endif
  1328. /*
  1329. * If we exec out of a kernel thread then thread.regs will not be
  1330. * set. Do it now.
  1331. */
  1332. if (!current->thread.regs) {
  1333. struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
  1334. current->thread.regs = regs - 1;
  1335. }
  1336. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1337. /*
  1338. * Clear any transactional state, we're exec()ing. The cause is
  1339. * not important as there will never be a recheckpoint so it's not
  1340. * user visible.
  1341. */
  1342. if (MSR_TM_SUSPENDED(mfmsr()))
  1343. tm_reclaim_current(0);
  1344. #endif
  1345. memset(regs->gpr, 0, sizeof(regs->gpr));
  1346. regs->ctr = 0;
  1347. regs->link = 0;
  1348. regs->xer = 0;
  1349. regs->ccr = 0;
  1350. regs->gpr[1] = sp;
  1351. /*
  1352. * We have just cleared all the nonvolatile GPRs, so make
  1353. * FULL_REGS(regs) return true. This is necessary to allow
  1354. * ptrace to examine the thread immediately after exec.
  1355. */
  1356. regs->trap &= ~1UL;
  1357. #ifdef CONFIG_PPC32
  1358. regs->mq = 0;
  1359. regs->nip = start;
  1360. regs->msr = MSR_USER;
  1361. #else
  1362. if (!is_32bit_task()) {
  1363. unsigned long entry;
  1364. if (is_elf2_task()) {
  1365. /* Look ma, no function descriptors! */
  1366. entry = start;
  1367. /*
  1368. * Ulrich says:
  1369. * The latest iteration of the ABI requires that when
  1370. * calling a function (at its global entry point),
  1371. * the caller must ensure r12 holds the entry point
  1372. * address (so that the function can quickly
  1373. * establish addressability).
  1374. */
  1375. regs->gpr[12] = start;
  1376. /* Make sure that's restored on entry to userspace. */
  1377. set_thread_flag(TIF_RESTOREALL);
  1378. } else {
  1379. unsigned long toc;
  1380. /* start is a relocated pointer to the function
  1381. * descriptor for the elf _start routine. The first
  1382. * entry in the function descriptor is the entry
  1383. * address of _start and the second entry is the TOC
  1384. * value we need to use.
  1385. */
  1386. __get_user(entry, (unsigned long __user *)start);
  1387. __get_user(toc, (unsigned long __user *)start+1);
  1388. /* Check whether the e_entry function descriptor entries
  1389. * need to be relocated before we can use them.
  1390. */
  1391. if (load_addr != 0) {
  1392. entry += load_addr;
  1393. toc += load_addr;
  1394. }
  1395. regs->gpr[2] = toc;
  1396. }
  1397. regs->nip = entry;
  1398. regs->msr = MSR_USER64;
  1399. } else {
  1400. regs->nip = start;
  1401. regs->gpr[2] = 0;
  1402. regs->msr = MSR_USER32;
  1403. }
  1404. #endif
  1405. #ifdef CONFIG_VSX
  1406. current->thread.used_vsr = 0;
  1407. #endif
  1408. memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
  1409. current->thread.fp_save_area = NULL;
  1410. #ifdef CONFIG_ALTIVEC
  1411. memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
  1412. current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
  1413. current->thread.vr_save_area = NULL;
  1414. current->thread.vrsave = 0;
  1415. current->thread.used_vr = 0;
  1416. #endif /* CONFIG_ALTIVEC */
  1417. #ifdef CONFIG_SPE
  1418. memset(current->thread.evr, 0, sizeof(current->thread.evr));
  1419. current->thread.acc = 0;
  1420. current->thread.spefscr = 0;
  1421. current->thread.used_spe = 0;
  1422. #endif /* CONFIG_SPE */
  1423. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1424. current->thread.tm_tfhar = 0;
  1425. current->thread.tm_texasr = 0;
  1426. current->thread.tm_tfiar = 0;
  1427. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  1428. }
  1429. EXPORT_SYMBOL(start_thread);
  1430. #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
  1431. | PR_FP_EXC_RES | PR_FP_EXC_INV)
  1432. int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
  1433. {
  1434. struct pt_regs *regs = tsk->thread.regs;
  1435. /* This is a bit hairy. If we are an SPE enabled processor
  1436. * (have embedded fp) we store the IEEE exception enable flags in
  1437. * fpexc_mode. fpexc_mode is also used for setting FP exception
  1438. * mode (asyn, precise, disabled) for 'Classic' FP. */
  1439. if (val & PR_FP_EXC_SW_ENABLE) {
  1440. #ifdef CONFIG_SPE
  1441. if (cpu_has_feature(CPU_FTR_SPE)) {
  1442. /*
  1443. * When the sticky exception bits are set
  1444. * directly by userspace, it must call prctl
  1445. * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
  1446. * in the existing prctl settings) or
  1447. * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
  1448. * the bits being set). <fenv.h> functions
  1449. * saving and restoring the whole
  1450. * floating-point environment need to do so
  1451. * anyway to restore the prctl settings from
  1452. * the saved environment.
  1453. */
  1454. tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
  1455. tsk->thread.fpexc_mode = val &
  1456. (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
  1457. return 0;
  1458. } else {
  1459. return -EINVAL;
  1460. }
  1461. #else
  1462. return -EINVAL;
  1463. #endif
  1464. }
  1465. /* on a CONFIG_SPE this does not hurt us. The bits that
  1466. * __pack_fe01 use do not overlap with bits used for
  1467. * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
  1468. * on CONFIG_SPE implementations are reserved so writing to
  1469. * them does not change anything */
  1470. if (val > PR_FP_EXC_PRECISE)
  1471. return -EINVAL;
  1472. tsk->thread.fpexc_mode = __pack_fe01(val);
  1473. if (regs != NULL && (regs->msr & MSR_FP) != 0)
  1474. regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
  1475. | tsk->thread.fpexc_mode;
  1476. return 0;
  1477. }
  1478. int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
  1479. {
  1480. unsigned int val;
  1481. if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
  1482. #ifdef CONFIG_SPE
  1483. if (cpu_has_feature(CPU_FTR_SPE)) {
  1484. /*
  1485. * When the sticky exception bits are set
  1486. * directly by userspace, it must call prctl
  1487. * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
  1488. * in the existing prctl settings) or
  1489. * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
  1490. * the bits being set). <fenv.h> functions
  1491. * saving and restoring the whole
  1492. * floating-point environment need to do so
  1493. * anyway to restore the prctl settings from
  1494. * the saved environment.
  1495. */
  1496. tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
  1497. val = tsk->thread.fpexc_mode;
  1498. } else
  1499. return -EINVAL;
  1500. #else
  1501. return -EINVAL;
  1502. #endif
  1503. else
  1504. val = __unpack_fe01(tsk->thread.fpexc_mode);
  1505. return put_user(val, (unsigned int __user *) adr);
  1506. }
  1507. int set_endian(struct task_struct *tsk, unsigned int val)
  1508. {
  1509. struct pt_regs *regs = tsk->thread.regs;
  1510. if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
  1511. (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
  1512. return -EINVAL;
  1513. if (regs == NULL)
  1514. return -EINVAL;
  1515. if (val == PR_ENDIAN_BIG)
  1516. regs->msr &= ~MSR_LE;
  1517. else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
  1518. regs->msr |= MSR_LE;
  1519. else
  1520. return -EINVAL;
  1521. return 0;
  1522. }
  1523. int get_endian(struct task_struct *tsk, unsigned long adr)
  1524. {
  1525. struct pt_regs *regs = tsk->thread.regs;
  1526. unsigned int val;
  1527. if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
  1528. !cpu_has_feature(CPU_FTR_REAL_LE))
  1529. return -EINVAL;
  1530. if (regs == NULL)
  1531. return -EINVAL;
  1532. if (regs->msr & MSR_LE) {
  1533. if (cpu_has_feature(CPU_FTR_REAL_LE))
  1534. val = PR_ENDIAN_LITTLE;
  1535. else
  1536. val = PR_ENDIAN_PPC_LITTLE;
  1537. } else
  1538. val = PR_ENDIAN_BIG;
  1539. return put_user(val, (unsigned int __user *)adr);
  1540. }
  1541. int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
  1542. {
  1543. tsk->thread.align_ctl = val;
  1544. return 0;
  1545. }
  1546. int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
  1547. {
  1548. return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
  1549. }
  1550. static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
  1551. unsigned long nbytes)
  1552. {
  1553. unsigned long stack_page;
  1554. unsigned long cpu = task_cpu(p);
  1555. /*
  1556. * Avoid crashing if the stack has overflowed and corrupted
  1557. * task_cpu(p), which is in the thread_info struct.
  1558. */
  1559. if (cpu < NR_CPUS && cpu_possible(cpu)) {
  1560. stack_page = (unsigned long) hardirq_ctx[cpu];
  1561. if (sp >= stack_page + sizeof(struct thread_struct)
  1562. && sp <= stack_page + THREAD_SIZE - nbytes)
  1563. return 1;
  1564. stack_page = (unsigned long) softirq_ctx[cpu];
  1565. if (sp >= stack_page + sizeof(struct thread_struct)
  1566. && sp <= stack_page + THREAD_SIZE - nbytes)
  1567. return 1;
  1568. }
  1569. return 0;
  1570. }
  1571. int validate_sp(unsigned long sp, struct task_struct *p,
  1572. unsigned long nbytes)
  1573. {
  1574. unsigned long stack_page = (unsigned long)task_stack_page(p);
  1575. if (sp >= stack_page + sizeof(struct thread_struct)
  1576. && sp <= stack_page + THREAD_SIZE - nbytes)
  1577. return 1;
  1578. return valid_irq_stack(sp, p, nbytes);
  1579. }
  1580. EXPORT_SYMBOL(validate_sp);
  1581. unsigned long get_wchan(struct task_struct *p)
  1582. {
  1583. unsigned long ip, sp;
  1584. int count = 0;
  1585. if (!p || p == current || p->state == TASK_RUNNING)
  1586. return 0;
  1587. sp = p->thread.ksp;
  1588. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1589. return 0;
  1590. do {
  1591. sp = *(unsigned long *)sp;
  1592. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1593. return 0;
  1594. if (count > 0) {
  1595. ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
  1596. if (!in_sched_functions(ip))
  1597. return ip;
  1598. }
  1599. } while (count++ < 16);
  1600. return 0;
  1601. }
  1602. static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
  1603. void show_stack(struct task_struct *tsk, unsigned long *stack)
  1604. {
  1605. unsigned long sp, ip, lr, newsp;
  1606. int count = 0;
  1607. int firstframe = 1;
  1608. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1609. int curr_frame = current->curr_ret_stack;
  1610. extern void return_to_handler(void);
  1611. unsigned long rth = (unsigned long)return_to_handler;
  1612. #endif
  1613. sp = (unsigned long) stack;
  1614. if (tsk == NULL)
  1615. tsk = current;
  1616. if (sp == 0) {
  1617. if (tsk == current)
  1618. sp = current_stack_pointer();
  1619. else
  1620. sp = tsk->thread.ksp;
  1621. }
  1622. lr = 0;
  1623. printk("Call Trace:\n");
  1624. do {
  1625. if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
  1626. return;
  1627. stack = (unsigned long *) sp;
  1628. newsp = stack[0];
  1629. ip = stack[STACK_FRAME_LR_SAVE];
  1630. if (!firstframe || ip != lr) {
  1631. printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
  1632. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1633. if ((ip == rth) && curr_frame >= 0) {
  1634. pr_cont(" (%pS)",
  1635. (void *)current->ret_stack[curr_frame].ret);
  1636. curr_frame--;
  1637. }
  1638. #endif
  1639. if (firstframe)
  1640. pr_cont(" (unreliable)");
  1641. pr_cont("\n");
  1642. }
  1643. firstframe = 0;
  1644. /*
  1645. * See if this is an exception frame.
  1646. * We look for the "regshere" marker in the current frame.
  1647. */
  1648. if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
  1649. && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  1650. struct pt_regs *regs = (struct pt_regs *)
  1651. (sp + STACK_FRAME_OVERHEAD);
  1652. lr = regs->link;
  1653. printk("--- interrupt: %lx at %pS\n LR = %pS\n",
  1654. regs->trap, (void *)regs->nip, (void *)lr);
  1655. firstframe = 1;
  1656. }
  1657. sp = newsp;
  1658. } while (count++ < kstack_depth_to_print);
  1659. }
  1660. #ifdef CONFIG_PPC64
  1661. /* Called with hard IRQs off */
  1662. void notrace __ppc64_runlatch_on(void)
  1663. {
  1664. struct thread_info *ti = current_thread_info();
  1665. unsigned long ctrl;
  1666. ctrl = mfspr(SPRN_CTRLF);
  1667. ctrl |= CTRL_RUNLATCH;
  1668. mtspr(SPRN_CTRLT, ctrl);
  1669. ti->local_flags |= _TLF_RUNLATCH;
  1670. }
  1671. /* Called with hard IRQs off */
  1672. void notrace __ppc64_runlatch_off(void)
  1673. {
  1674. struct thread_info *ti = current_thread_info();
  1675. unsigned long ctrl;
  1676. ti->local_flags &= ~_TLF_RUNLATCH;
  1677. ctrl = mfspr(SPRN_CTRLF);
  1678. ctrl &= ~CTRL_RUNLATCH;
  1679. mtspr(SPRN_CTRLT, ctrl);
  1680. }
  1681. #endif /* CONFIG_PPC64 */
  1682. unsigned long arch_align_stack(unsigned long sp)
  1683. {
  1684. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  1685. sp -= get_random_int() & ~PAGE_MASK;
  1686. return sp & ~0xf;
  1687. }
  1688. static inline unsigned long brk_rnd(void)
  1689. {
  1690. unsigned long rnd = 0;
  1691. /* 8MB for 32bit, 1GB for 64bit */
  1692. if (is_32bit_task())
  1693. rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
  1694. else
  1695. rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
  1696. return rnd << PAGE_SHIFT;
  1697. }
  1698. unsigned long arch_randomize_brk(struct mm_struct *mm)
  1699. {
  1700. unsigned long base = mm->brk;
  1701. unsigned long ret;
  1702. #ifdef CONFIG_PPC_STD_MMU_64
  1703. /*
  1704. * If we are using 1TB segments and we are allowed to randomise
  1705. * the heap, we can put it above 1TB so it is backed by a 1TB
  1706. * segment. Otherwise the heap will be in the bottom 1TB
  1707. * which always uses 256MB segments and this may result in a
  1708. * performance penalty. We don't need to worry about radix. For
  1709. * radix, mmu_highuser_ssize remains unchanged from 256MB.
  1710. */
  1711. if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
  1712. base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
  1713. #endif
  1714. ret = PAGE_ALIGN(base + brk_rnd());
  1715. if (ret < mm->brk)
  1716. return mm->brk;
  1717. return ret;
  1718. }