sp_maddf.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. /*
  2. * IEEE754 floating point arithmetic
  3. * single precision: MADDF.f (Fused Multiply Add)
  4. * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
  5. *
  6. * MIPS floating point support
  7. * Copyright (C) 2015 Imagination Technologies, Ltd.
  8. * Author: Markos Chandras <markos.chandras@imgtec.com>
  9. *
  10. * This program is free software; you can distribute it and/or modify it
  11. * under the terms of the GNU General Public License as published by the
  12. * Free Software Foundation; version 2 of the License.
  13. */
  14. #include "ieee754sp.h"
  15. enum maddf_flags {
  16. maddf_negate_product = 1 << 0,
  17. };
  18. static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x,
  19. union ieee754sp y, enum maddf_flags flags)
  20. {
  21. int re;
  22. int rs;
  23. unsigned rm;
  24. unsigned short lxm;
  25. unsigned short hxm;
  26. unsigned short lym;
  27. unsigned short hym;
  28. unsigned lrm;
  29. unsigned hrm;
  30. unsigned t;
  31. unsigned at;
  32. int s;
  33. COMPXSP;
  34. COMPYSP;
  35. COMPZSP;
  36. EXPLODEXSP;
  37. EXPLODEYSP;
  38. EXPLODEZSP;
  39. FLUSHXSP;
  40. FLUSHYSP;
  41. FLUSHZSP;
  42. ieee754_clearcx();
  43. switch (zc) {
  44. case IEEE754_CLASS_SNAN:
  45. ieee754_setcx(IEEE754_INVALID_OPERATION);
  46. return ieee754sp_nanxcpt(z);
  47. case IEEE754_CLASS_DNORM:
  48. SPDNORMZ;
  49. /* QNAN is handled separately below */
  50. }
  51. switch (CLPAIR(xc, yc)) {
  52. case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
  53. case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
  54. case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
  55. case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
  56. case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
  57. return ieee754sp_nanxcpt(y);
  58. case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
  59. case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
  60. case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
  61. case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
  62. case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
  63. case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
  64. return ieee754sp_nanxcpt(x);
  65. case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
  66. case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
  67. case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
  68. case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
  69. return y;
  70. case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
  71. case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
  72. case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
  73. case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
  74. case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
  75. return x;
  76. /*
  77. * Infinity handling
  78. */
  79. case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
  80. case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
  81. if (zc == IEEE754_CLASS_QNAN)
  82. return z;
  83. ieee754_setcx(IEEE754_INVALID_OPERATION);
  84. return ieee754sp_indef();
  85. case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
  86. case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
  87. case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
  88. case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
  89. case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
  90. if (zc == IEEE754_CLASS_QNAN)
  91. return z;
  92. return ieee754sp_inf(xs ^ ys);
  93. case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
  94. case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
  95. case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
  96. case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
  97. case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
  98. if (zc == IEEE754_CLASS_INF)
  99. return ieee754sp_inf(zs);
  100. /* Multiplication is 0 so just return z */
  101. return z;
  102. case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
  103. SPDNORMX;
  104. case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
  105. if (zc == IEEE754_CLASS_QNAN)
  106. return z;
  107. else if (zc == IEEE754_CLASS_INF)
  108. return ieee754sp_inf(zs);
  109. SPDNORMY;
  110. break;
  111. case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
  112. if (zc == IEEE754_CLASS_QNAN)
  113. return z;
  114. else if (zc == IEEE754_CLASS_INF)
  115. return ieee754sp_inf(zs);
  116. SPDNORMX;
  117. break;
  118. case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
  119. if (zc == IEEE754_CLASS_QNAN)
  120. return z;
  121. else if (zc == IEEE754_CLASS_INF)
  122. return ieee754sp_inf(zs);
  123. /* fall through to real computations */
  124. }
  125. /* Finally get to do some computation */
  126. /*
  127. * Do the multiplication bit first
  128. *
  129. * rm = xm * ym, re = xe + ye basically
  130. *
  131. * At this point xm and ym should have been normalized.
  132. */
  133. /* rm = xm * ym, re = xe+ye basically */
  134. assert(xm & SP_HIDDEN_BIT);
  135. assert(ym & SP_HIDDEN_BIT);
  136. re = xe + ye;
  137. rs = xs ^ ys;
  138. if (flags & maddf_negate_product)
  139. rs ^= 1;
  140. /* shunt to top of word */
  141. xm <<= 32 - (SP_FBITS + 1);
  142. ym <<= 32 - (SP_FBITS + 1);
  143. /*
  144. * Multiply 32 bits xm, ym to give high 32 bits rm with stickness.
  145. */
  146. lxm = xm & 0xffff;
  147. hxm = xm >> 16;
  148. lym = ym & 0xffff;
  149. hym = ym >> 16;
  150. lrm = lxm * lym; /* 16 * 16 => 32 */
  151. hrm = hxm * hym; /* 16 * 16 => 32 */
  152. t = lxm * hym; /* 16 * 16 => 32 */
  153. at = lrm + (t << 16);
  154. hrm += at < lrm;
  155. lrm = at;
  156. hrm = hrm + (t >> 16);
  157. t = hxm * lym; /* 16 * 16 => 32 */
  158. at = lrm + (t << 16);
  159. hrm += at < lrm;
  160. lrm = at;
  161. hrm = hrm + (t >> 16);
  162. rm = hrm | (lrm != 0);
  163. /*
  164. * Sticky shift down to normal rounding precision.
  165. */
  166. if ((int) rm < 0) {
  167. rm = (rm >> (32 - (SP_FBITS + 1 + 3))) |
  168. ((rm << (SP_FBITS + 1 + 3)) != 0);
  169. re++;
  170. } else {
  171. rm = (rm >> (32 - (SP_FBITS + 1 + 3 + 1))) |
  172. ((rm << (SP_FBITS + 1 + 3 + 1)) != 0);
  173. }
  174. assert(rm & (SP_HIDDEN_BIT << 3));
  175. /* And now the addition */
  176. assert(zm & SP_HIDDEN_BIT);
  177. /*
  178. * Provide guard,round and stick bit space.
  179. */
  180. zm <<= 3;
  181. if (ze > re) {
  182. /*
  183. * Have to shift r fraction right to align.
  184. */
  185. s = ze - re;
  186. rm = XSPSRS(rm, s);
  187. re += s;
  188. } else if (re > ze) {
  189. /*
  190. * Have to shift z fraction right to align.
  191. */
  192. s = re - ze;
  193. zm = XSPSRS(zm, s);
  194. ze += s;
  195. }
  196. assert(ze == re);
  197. assert(ze <= SP_EMAX);
  198. if (zs == rs) {
  199. /*
  200. * Generate 28 bit result of adding two 27 bit numbers
  201. * leaving result in zm, zs and ze.
  202. */
  203. zm = zm + rm;
  204. if (zm >> (SP_FBITS + 1 + 3)) { /* carry out */
  205. zm = XSPSRS1(zm);
  206. ze++;
  207. }
  208. } else {
  209. if (zm >= rm) {
  210. zm = zm - rm;
  211. } else {
  212. zm = rm - zm;
  213. zs = rs;
  214. }
  215. if (zm == 0)
  216. return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
  217. /*
  218. * Normalize in extended single precision
  219. */
  220. while ((zm >> (SP_MBITS + 3)) == 0) {
  221. zm <<= 1;
  222. ze--;
  223. }
  224. }
  225. return ieee754sp_format(zs, ze, zm);
  226. }
  227. union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
  228. union ieee754sp y)
  229. {
  230. return _sp_maddf(z, x, y, 0);
  231. }
  232. union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
  233. union ieee754sp y)
  234. {
  235. return _sp_maddf(z, x, y, maddf_negate_product);
  236. }