test-core.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727
  1. /*
  2. * arch/arm/kernel/kprobes-test.c
  3. *
  4. * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. /*
  11. * This file contains test code for ARM kprobes.
  12. *
  13. * The top level function run_all_tests() executes tests for all of the
  14. * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
  15. * fall into two categories; run_api_tests() checks basic functionality of the
  16. * kprobes API, and run_test_cases() is a comprehensive test for kprobes
  17. * instruction decoding and simulation.
  18. *
  19. * run_test_cases() first checks the kprobes decoding table for self consistency
  20. * (using table_test()) then executes a series of test cases for each of the CPU
  21. * instruction forms. coverage_start() and coverage_end() are used to verify
  22. * that these test cases cover all of the possible combinations of instructions
  23. * described by the kprobes decoding tables.
  24. *
  25. * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
  26. * which use the macros defined in kprobes-test.h. The rest of this
  27. * documentation will describe the operation of the framework used by these
  28. * test cases.
  29. */
  30. /*
  31. * TESTING METHODOLOGY
  32. * -------------------
  33. *
  34. * The methodology used to test an ARM instruction 'test_insn' is to use
  35. * inline assembler like:
  36. *
  37. * test_before: nop
  38. * test_case: test_insn
  39. * test_after: nop
  40. *
  41. * When the test case is run a kprobe is placed of each nop. The
  42. * post-handler of the test_before probe is used to modify the saved CPU
  43. * register context to that which we require for the test case. The
  44. * pre-handler of the of the test_after probe saves a copy of the CPU
  45. * register context. In this way we can execute test_insn with a specific
  46. * register context and see the results afterwards.
  47. *
  48. * To actually test the kprobes instruction emulation we perform the above
  49. * step a second time but with an additional kprobe on the test_case
  50. * instruction itself. If the emulation is accurate then the results seen
  51. * by the test_after probe will be identical to the first run which didn't
  52. * have a probe on test_case.
  53. *
  54. * Each test case is run several times with a variety of variations in the
  55. * flags value of stored in CPSR, and for Thumb code, different ITState.
  56. *
  57. * For instructions which can modify PC, a second test_after probe is used
  58. * like this:
  59. *
  60. * test_before: nop
  61. * test_case: test_insn
  62. * test_after: nop
  63. * b test_done
  64. * test_after2: nop
  65. * test_done:
  66. *
  67. * The test case is constructed such that test_insn branches to
  68. * test_after2, or, if testing a conditional instruction, it may just
  69. * continue to test_after. The probes inserted at both locations let us
  70. * determine which happened. A similar approach is used for testing
  71. * backwards branches...
  72. *
  73. * b test_before
  74. * b test_done @ helps to cope with off by 1 branches
  75. * test_after2: nop
  76. * b test_done
  77. * test_before: nop
  78. * test_case: test_insn
  79. * test_after: nop
  80. * test_done:
  81. *
  82. * The macros used to generate the assembler instructions describe above
  83. * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
  84. * (branch backwards). In these, the local variables numbered 1, 50, 2 and
  85. * 99 represent: test_before, test_case, test_after2 and test_done.
  86. *
  87. * FRAMEWORK
  88. * ---------
  89. *
  90. * Each test case is wrapped between the pair of macros TESTCASE_START and
  91. * TESTCASE_END. As well as performing the inline assembler boilerplate,
  92. * these call out to the kprobes_test_case_start() and
  93. * kprobes_test_case_end() functions which drive the execution of the test
  94. * case. The specific arguments to use for each test case are stored as
  95. * inline data constructed using the various TEST_ARG_* macros. Putting
  96. * this all together, a simple test case may look like:
  97. *
  98. * TESTCASE_START("Testing mov r0, r7")
  99. * TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
  100. * TEST_ARG_END("")
  101. * TEST_INSTRUCTION("mov r0, r7")
  102. * TESTCASE_END
  103. *
  104. * Note, in practice the single convenience macro TEST_R would be used for this
  105. * instead.
  106. *
  107. * The above would expand to assembler looking something like:
  108. *
  109. * @ TESTCASE_START
  110. * bl __kprobes_test_case_start
  111. * .pushsection .rodata
  112. * "10:
  113. * .ascii "mov r0, r7" @ text title for test case
  114. * .byte 0
  115. * .popsection
  116. * @ start of inline data...
  117. * .word 10b @ pointer to title in .rodata section
  118. *
  119. * @ TEST_ARG_REG
  120. * .byte ARG_TYPE_REG
  121. * .byte 7
  122. * .short 0
  123. * .word 0x1234567
  124. *
  125. * @ TEST_ARG_END
  126. * .byte ARG_TYPE_END
  127. * .byte TEST_ISA @ flags, including ISA being tested
  128. * .short 50f-0f @ offset of 'test_before'
  129. * .short 2f-0f @ offset of 'test_after2' (if relevent)
  130. * .short 99f-0f @ offset of 'test_done'
  131. * @ start of test case code...
  132. * 0:
  133. * .code TEST_ISA @ switch to ISA being tested
  134. *
  135. * @ TEST_INSTRUCTION
  136. * 50: nop @ location for 'test_before' probe
  137. * 1: mov r0, r7 @ the test case instruction 'test_insn'
  138. * nop @ location for 'test_after' probe
  139. *
  140. * // TESTCASE_END
  141. * 2:
  142. * 99: bl __kprobes_test_case_end_##TEST_ISA
  143. * .code NONMAL_ISA
  144. *
  145. * When the above is execute the following happens...
  146. *
  147. * __kprobes_test_case_start() is an assembler wrapper which sets up space
  148. * for a stack buffer and calls the C function kprobes_test_case_start().
  149. * This C function will do some initial processing of the inline data and
  150. * setup some global state. It then inserts the test_before and test_after
  151. * kprobes and returns a value which causes the assembler wrapper to jump
  152. * to the start of the test case code, (local label '0').
  153. *
  154. * When the test case code executes, the test_before probe will be hit and
  155. * test_before_post_handler will call setup_test_context(). This fills the
  156. * stack buffer and CPU registers with a test pattern and then processes
  157. * the test case arguments. In our example there is one TEST_ARG_REG which
  158. * indicates that R7 should be loaded with the value 0x12345678.
  159. *
  160. * When the test_before probe ends, the test case continues and executes
  161. * the "mov r0, r7" instruction. It then hits the test_after probe and the
  162. * pre-handler for this (test_after_pre_handler) will save a copy of the
  163. * CPU register context. This should now have R0 holding the same value as
  164. * R7.
  165. *
  166. * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
  167. * an assembler wrapper which switches back to the ISA used by the test
  168. * code and calls the C function kprobes_test_case_end().
  169. *
  170. * For each run through the test case, test_case_run_count is incremented
  171. * by one. For even runs, kprobes_test_case_end() saves a copy of the
  172. * register and stack buffer contents from the test case just run. It then
  173. * inserts a kprobe on the test case instruction 'test_insn' and returns a
  174. * value to cause the test case code to be re-run.
  175. *
  176. * For odd numbered runs, kprobes_test_case_end() compares the register and
  177. * stack buffer contents to those that were saved on the previous even
  178. * numbered run (the one without the kprobe on test_insn). These should be
  179. * the same if the kprobe instruction simulation routine is correct.
  180. *
  181. * The pair of test case runs is repeated with different combinations of
  182. * flag values in CPSR and, for Thumb, different ITState. This is
  183. * controlled by test_context_cpsr().
  184. *
  185. * BUILDING TEST CASES
  186. * -------------------
  187. *
  188. *
  189. * As an aid to building test cases, the stack buffer is initialised with
  190. * some special values:
  191. *
  192. * [SP+13*4] Contains SP+120. This can be used to test instructions
  193. * which load a value into SP.
  194. *
  195. * [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
  196. * this holds the target address of the branch, 'test_after2'.
  197. * This can be used to test instructions which load a PC value
  198. * from memory.
  199. */
  200. #include <linux/kernel.h>
  201. #include <linux/module.h>
  202. #include <linux/slab.h>
  203. #include <linux/kprobes.h>
  204. #include <linux/errno.h>
  205. #include <linux/stddef.h>
  206. #include <linux/bug.h>
  207. #include <asm/opcodes.h>
  208. #include "core.h"
  209. #include "test-core.h"
  210. #include "../decode-arm.h"
  211. #include "../decode-thumb.h"
  212. #define BENCHMARKING 1
  213. /*
  214. * Test basic API
  215. */
  216. static bool test_regs_ok;
  217. static int test_func_instance;
  218. static int pre_handler_called;
  219. static int post_handler_called;
  220. static int jprobe_func_called;
  221. static int kretprobe_handler_called;
  222. static int tests_failed;
  223. #define FUNC_ARG1 0x12345678
  224. #define FUNC_ARG2 0xabcdef
  225. #ifndef CONFIG_THUMB2_KERNEL
  226. #define RET(reg) "mov pc, "#reg
  227. long arm_func(long r0, long r1);
  228. static void __used __naked __arm_kprobes_test_func(void)
  229. {
  230. __asm__ __volatile__ (
  231. ".arm \n\t"
  232. ".type arm_func, %%function \n\t"
  233. "arm_func: \n\t"
  234. "adds r0, r0, r1 \n\t"
  235. "mov pc, lr \n\t"
  236. ".code "NORMAL_ISA /* Back to Thumb if necessary */
  237. : : : "r0", "r1", "cc"
  238. );
  239. }
  240. #else /* CONFIG_THUMB2_KERNEL */
  241. #define RET(reg) "bx "#reg
  242. long thumb16_func(long r0, long r1);
  243. long thumb32even_func(long r0, long r1);
  244. long thumb32odd_func(long r0, long r1);
  245. static void __used __naked __thumb_kprobes_test_funcs(void)
  246. {
  247. __asm__ __volatile__ (
  248. ".type thumb16_func, %%function \n\t"
  249. "thumb16_func: \n\t"
  250. "adds.n r0, r0, r1 \n\t"
  251. "bx lr \n\t"
  252. ".align \n\t"
  253. ".type thumb32even_func, %%function \n\t"
  254. "thumb32even_func: \n\t"
  255. "adds.w r0, r0, r1 \n\t"
  256. "bx lr \n\t"
  257. ".align \n\t"
  258. "nop.n \n\t"
  259. ".type thumb32odd_func, %%function \n\t"
  260. "thumb32odd_func: \n\t"
  261. "adds.w r0, r0, r1 \n\t"
  262. "bx lr \n\t"
  263. : : : "r0", "r1", "cc"
  264. );
  265. }
  266. #endif /* CONFIG_THUMB2_KERNEL */
  267. static int call_test_func(long (*func)(long, long), bool check_test_regs)
  268. {
  269. long ret;
  270. ++test_func_instance;
  271. test_regs_ok = false;
  272. ret = (*func)(FUNC_ARG1, FUNC_ARG2);
  273. if (ret != FUNC_ARG1 + FUNC_ARG2) {
  274. pr_err("FAIL: call_test_func: func returned %lx\n", ret);
  275. return false;
  276. }
  277. if (check_test_regs && !test_regs_ok) {
  278. pr_err("FAIL: test regs not OK\n");
  279. return false;
  280. }
  281. return true;
  282. }
  283. static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
  284. {
  285. pre_handler_called = test_func_instance;
  286. if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
  287. test_regs_ok = true;
  288. return 0;
  289. }
  290. static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
  291. unsigned long flags)
  292. {
  293. post_handler_called = test_func_instance;
  294. if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
  295. test_regs_ok = false;
  296. }
  297. static struct kprobe the_kprobe = {
  298. .addr = 0,
  299. .pre_handler = pre_handler,
  300. .post_handler = post_handler
  301. };
  302. static int test_kprobe(long (*func)(long, long))
  303. {
  304. int ret;
  305. the_kprobe.addr = (kprobe_opcode_t *)func;
  306. ret = register_kprobe(&the_kprobe);
  307. if (ret < 0) {
  308. pr_err("FAIL: register_kprobe failed with %d\n", ret);
  309. return ret;
  310. }
  311. ret = call_test_func(func, true);
  312. unregister_kprobe(&the_kprobe);
  313. the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
  314. if (!ret)
  315. return -EINVAL;
  316. if (pre_handler_called != test_func_instance) {
  317. pr_err("FAIL: kprobe pre_handler not called\n");
  318. return -EINVAL;
  319. }
  320. if (post_handler_called != test_func_instance) {
  321. pr_err("FAIL: kprobe post_handler not called\n");
  322. return -EINVAL;
  323. }
  324. if (!call_test_func(func, false))
  325. return -EINVAL;
  326. if (pre_handler_called == test_func_instance ||
  327. post_handler_called == test_func_instance) {
  328. pr_err("FAIL: probe called after unregistering\n");
  329. return -EINVAL;
  330. }
  331. return 0;
  332. }
  333. static void __kprobes jprobe_func(long r0, long r1)
  334. {
  335. jprobe_func_called = test_func_instance;
  336. if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
  337. test_regs_ok = true;
  338. jprobe_return();
  339. }
  340. static struct jprobe the_jprobe = {
  341. .entry = jprobe_func,
  342. };
  343. static int test_jprobe(long (*func)(long, long))
  344. {
  345. int ret;
  346. the_jprobe.kp.addr = (kprobe_opcode_t *)func;
  347. ret = register_jprobe(&the_jprobe);
  348. if (ret < 0) {
  349. pr_err("FAIL: register_jprobe failed with %d\n", ret);
  350. return ret;
  351. }
  352. ret = call_test_func(func, true);
  353. unregister_jprobe(&the_jprobe);
  354. the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
  355. if (!ret)
  356. return -EINVAL;
  357. if (jprobe_func_called != test_func_instance) {
  358. pr_err("FAIL: jprobe handler function not called\n");
  359. return -EINVAL;
  360. }
  361. if (!call_test_func(func, false))
  362. return -EINVAL;
  363. if (jprobe_func_called == test_func_instance) {
  364. pr_err("FAIL: probe called after unregistering\n");
  365. return -EINVAL;
  366. }
  367. return 0;
  368. }
  369. static int __kprobes
  370. kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
  371. {
  372. kretprobe_handler_called = test_func_instance;
  373. if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
  374. test_regs_ok = true;
  375. return 0;
  376. }
  377. static struct kretprobe the_kretprobe = {
  378. .handler = kretprobe_handler,
  379. };
  380. static int test_kretprobe(long (*func)(long, long))
  381. {
  382. int ret;
  383. the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
  384. ret = register_kretprobe(&the_kretprobe);
  385. if (ret < 0) {
  386. pr_err("FAIL: register_kretprobe failed with %d\n", ret);
  387. return ret;
  388. }
  389. ret = call_test_func(func, true);
  390. unregister_kretprobe(&the_kretprobe);
  391. the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
  392. if (!ret)
  393. return -EINVAL;
  394. if (kretprobe_handler_called != test_func_instance) {
  395. pr_err("FAIL: kretprobe handler not called\n");
  396. return -EINVAL;
  397. }
  398. if (!call_test_func(func, false))
  399. return -EINVAL;
  400. if (jprobe_func_called == test_func_instance) {
  401. pr_err("FAIL: kretprobe called after unregistering\n");
  402. return -EINVAL;
  403. }
  404. return 0;
  405. }
  406. static int run_api_tests(long (*func)(long, long))
  407. {
  408. int ret;
  409. pr_info(" kprobe\n");
  410. ret = test_kprobe(func);
  411. if (ret < 0)
  412. return ret;
  413. pr_info(" jprobe\n");
  414. ret = test_jprobe(func);
  415. #if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE)
  416. if (ret == -EINVAL) {
  417. pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n");
  418. tests_failed = ret;
  419. ret = 0;
  420. }
  421. #endif
  422. if (ret < 0)
  423. return ret;
  424. pr_info(" kretprobe\n");
  425. ret = test_kretprobe(func);
  426. if (ret < 0)
  427. return ret;
  428. return 0;
  429. }
  430. /*
  431. * Benchmarking
  432. */
  433. #if BENCHMARKING
  434. static void __naked benchmark_nop(void)
  435. {
  436. __asm__ __volatile__ (
  437. "nop \n\t"
  438. RET(lr)" \n\t"
  439. );
  440. }
  441. #ifdef CONFIG_THUMB2_KERNEL
  442. #define wide ".w"
  443. #else
  444. #define wide
  445. #endif
  446. static void __naked benchmark_pushpop1(void)
  447. {
  448. __asm__ __volatile__ (
  449. "stmdb"wide" sp!, {r3-r11,lr} \n\t"
  450. "ldmia"wide" sp!, {r3-r11,pc}"
  451. );
  452. }
  453. static void __naked benchmark_pushpop2(void)
  454. {
  455. __asm__ __volatile__ (
  456. "stmdb"wide" sp!, {r0-r8,lr} \n\t"
  457. "ldmia"wide" sp!, {r0-r8,pc}"
  458. );
  459. }
  460. static void __naked benchmark_pushpop3(void)
  461. {
  462. __asm__ __volatile__ (
  463. "stmdb"wide" sp!, {r4,lr} \n\t"
  464. "ldmia"wide" sp!, {r4,pc}"
  465. );
  466. }
  467. static void __naked benchmark_pushpop4(void)
  468. {
  469. __asm__ __volatile__ (
  470. "stmdb"wide" sp!, {r0,lr} \n\t"
  471. "ldmia"wide" sp!, {r0,pc}"
  472. );
  473. }
  474. #ifdef CONFIG_THUMB2_KERNEL
  475. static void __naked benchmark_pushpop_thumb(void)
  476. {
  477. __asm__ __volatile__ (
  478. "push.n {r0-r7,lr} \n\t"
  479. "pop.n {r0-r7,pc}"
  480. );
  481. }
  482. #endif
  483. static int __kprobes
  484. benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
  485. {
  486. return 0;
  487. }
  488. static int benchmark(void(*fn)(void))
  489. {
  490. unsigned n, i, t, t0;
  491. for (n = 1000; ; n *= 2) {
  492. t0 = sched_clock();
  493. for (i = n; i > 0; --i)
  494. fn();
  495. t = sched_clock() - t0;
  496. if (t >= 250000000)
  497. break; /* Stop once we took more than 0.25 seconds */
  498. }
  499. return t / n; /* Time for one iteration in nanoseconds */
  500. };
  501. static int kprobe_benchmark(void(*fn)(void), unsigned offset)
  502. {
  503. struct kprobe k = {
  504. .addr = (kprobe_opcode_t *)((uintptr_t)fn + offset),
  505. .pre_handler = benchmark_pre_handler,
  506. };
  507. int ret = register_kprobe(&k);
  508. if (ret < 0) {
  509. pr_err("FAIL: register_kprobe failed with %d\n", ret);
  510. return ret;
  511. }
  512. ret = benchmark(fn);
  513. unregister_kprobe(&k);
  514. return ret;
  515. };
  516. struct benchmarks {
  517. void (*fn)(void);
  518. unsigned offset;
  519. const char *title;
  520. };
  521. static int run_benchmarks(void)
  522. {
  523. int ret;
  524. struct benchmarks list[] = {
  525. {&benchmark_nop, 0, "nop"},
  526. /*
  527. * benchmark_pushpop{1,3} will have the optimised
  528. * instruction emulation, whilst benchmark_pushpop{2,4} will
  529. * be the equivalent unoptimised instructions.
  530. */
  531. {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
  532. {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
  533. {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
  534. {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
  535. {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
  536. {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
  537. {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
  538. {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
  539. #ifdef CONFIG_THUMB2_KERNEL
  540. {&benchmark_pushpop_thumb, 0, "push.n {r0-r7,lr}"},
  541. {&benchmark_pushpop_thumb, 2, "pop.n {r0-r7,pc}"},
  542. #endif
  543. {0}
  544. };
  545. struct benchmarks *b;
  546. for (b = list; b->fn; ++b) {
  547. ret = kprobe_benchmark(b->fn, b->offset);
  548. if (ret < 0)
  549. return ret;
  550. pr_info(" %dns for kprobe %s\n", ret, b->title);
  551. }
  552. pr_info("\n");
  553. return 0;
  554. }
  555. #endif /* BENCHMARKING */
  556. /*
  557. * Decoding table self-consistency tests
  558. */
  559. static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
  560. [DECODE_TYPE_TABLE] = sizeof(struct decode_table),
  561. [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
  562. [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
  563. [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
  564. [DECODE_TYPE_OR] = sizeof(struct decode_or),
  565. [DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
  566. };
  567. static int table_iter(const union decode_item *table,
  568. int (*fn)(const struct decode_header *, void *),
  569. void *args)
  570. {
  571. const struct decode_header *h = (struct decode_header *)table;
  572. int result;
  573. for (;;) {
  574. enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
  575. if (type == DECODE_TYPE_END)
  576. return 0;
  577. result = fn(h, args);
  578. if (result)
  579. return result;
  580. h = (struct decode_header *)
  581. ((uintptr_t)h + decode_struct_sizes[type]);
  582. }
  583. }
  584. static int table_test_fail(const struct decode_header *h, const char* message)
  585. {
  586. pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
  587. message, h->mask.bits, h->value.bits);
  588. return -EINVAL;
  589. }
  590. struct table_test_args {
  591. const union decode_item *root_table;
  592. u32 parent_mask;
  593. u32 parent_value;
  594. };
  595. static int table_test_fn(const struct decode_header *h, void *args)
  596. {
  597. struct table_test_args *a = (struct table_test_args *)args;
  598. enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
  599. if (h->value.bits & ~h->mask.bits)
  600. return table_test_fail(h, "Match value has bits not in mask");
  601. if ((h->mask.bits & a->parent_mask) != a->parent_mask)
  602. return table_test_fail(h, "Mask has bits not in parent mask");
  603. if ((h->value.bits ^ a->parent_value) & a->parent_mask)
  604. return table_test_fail(h, "Value is inconsistent with parent");
  605. if (type == DECODE_TYPE_TABLE) {
  606. struct decode_table *d = (struct decode_table *)h;
  607. struct table_test_args args2 = *a;
  608. args2.parent_mask = h->mask.bits;
  609. args2.parent_value = h->value.bits;
  610. return table_iter(d->table.table, table_test_fn, &args2);
  611. }
  612. return 0;
  613. }
  614. static int table_test(const union decode_item *table)
  615. {
  616. struct table_test_args args = {
  617. .root_table = table,
  618. .parent_mask = 0,
  619. .parent_value = 0
  620. };
  621. return table_iter(args.root_table, table_test_fn, &args);
  622. }
  623. /*
  624. * Decoding table test coverage analysis
  625. *
  626. * coverage_start() builds a coverage_table which contains a list of
  627. * coverage_entry's to match each entry in the specified kprobes instruction
  628. * decoding table.
  629. *
  630. * When test cases are run, coverage_add() is called to process each case.
  631. * This looks up the corresponding entry in the coverage_table and sets it as
  632. * being matched, as well as clearing the regs flag appropriate for the test.
  633. *
  634. * After all test cases have been run, coverage_end() is called to check that
  635. * all entries in coverage_table have been matched and that all regs flags are
  636. * cleared. I.e. that all possible combinations of instructions described by
  637. * the kprobes decoding tables have had a test case executed for them.
  638. */
  639. bool coverage_fail;
  640. #define MAX_COVERAGE_ENTRIES 256
  641. struct coverage_entry {
  642. const struct decode_header *header;
  643. unsigned regs;
  644. unsigned nesting;
  645. char matched;
  646. };
  647. struct coverage_table {
  648. struct coverage_entry *base;
  649. unsigned num_entries;
  650. unsigned nesting;
  651. };
  652. struct coverage_table coverage;
  653. #define COVERAGE_ANY_REG (1<<0)
  654. #define COVERAGE_SP (1<<1)
  655. #define COVERAGE_PC (1<<2)
  656. #define COVERAGE_PCWB (1<<3)
  657. static const char coverage_register_lookup[16] = {
  658. [REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
  659. [REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG,
  660. [REG_TYPE_SP] = COVERAGE_SP,
  661. [REG_TYPE_PC] = COVERAGE_PC,
  662. [REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP,
  663. [REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
  664. [REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC,
  665. [REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
  666. [REG_TYPE_NOPCX] = COVERAGE_ANY_REG,
  667. [REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP,
  668. };
  669. unsigned coverage_start_registers(const struct decode_header *h)
  670. {
  671. unsigned regs = 0;
  672. int i;
  673. for (i = 0; i < 20; i += 4) {
  674. int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
  675. regs |= coverage_register_lookup[r] << i;
  676. }
  677. return regs;
  678. }
  679. static int coverage_start_fn(const struct decode_header *h, void *args)
  680. {
  681. struct coverage_table *coverage = (struct coverage_table *)args;
  682. enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
  683. struct coverage_entry *entry = coverage->base + coverage->num_entries;
  684. if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
  685. pr_err("FAIL: Out of space for test coverage data");
  686. return -ENOMEM;
  687. }
  688. ++coverage->num_entries;
  689. entry->header = h;
  690. entry->regs = coverage_start_registers(h);
  691. entry->nesting = coverage->nesting;
  692. entry->matched = false;
  693. if (type == DECODE_TYPE_TABLE) {
  694. struct decode_table *d = (struct decode_table *)h;
  695. int ret;
  696. ++coverage->nesting;
  697. ret = table_iter(d->table.table, coverage_start_fn, coverage);
  698. --coverage->nesting;
  699. return ret;
  700. }
  701. return 0;
  702. }
  703. static int coverage_start(const union decode_item *table)
  704. {
  705. coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
  706. sizeof(struct coverage_entry), GFP_KERNEL);
  707. coverage.num_entries = 0;
  708. coverage.nesting = 0;
  709. return table_iter(table, coverage_start_fn, &coverage);
  710. }
  711. static void
  712. coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
  713. {
  714. int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
  715. int i;
  716. for (i = 0; i < 20; i += 4) {
  717. enum decode_reg_type reg_type = (regs >> i) & 0xf;
  718. int reg = (insn >> i) & 0xf;
  719. int flag;
  720. if (!reg_type)
  721. continue;
  722. if (reg == 13)
  723. flag = COVERAGE_SP;
  724. else if (reg == 15)
  725. flag = COVERAGE_PC;
  726. else
  727. flag = COVERAGE_ANY_REG;
  728. entry->regs &= ~(flag << i);
  729. switch (reg_type) {
  730. case REG_TYPE_NONE:
  731. case REG_TYPE_ANY:
  732. case REG_TYPE_SAMEAS16:
  733. break;
  734. case REG_TYPE_SP:
  735. if (reg != 13)
  736. return;
  737. break;
  738. case REG_TYPE_PC:
  739. if (reg != 15)
  740. return;
  741. break;
  742. case REG_TYPE_NOSP:
  743. if (reg == 13)
  744. return;
  745. break;
  746. case REG_TYPE_NOSPPC:
  747. case REG_TYPE_NOSPPCX:
  748. if (reg == 13 || reg == 15)
  749. return;
  750. break;
  751. case REG_TYPE_NOPCWB:
  752. if (!is_writeback(insn))
  753. break;
  754. if (reg == 15) {
  755. entry->regs &= ~(COVERAGE_PCWB << i);
  756. return;
  757. }
  758. break;
  759. case REG_TYPE_NOPC:
  760. case REG_TYPE_NOPCX:
  761. if (reg == 15)
  762. return;
  763. break;
  764. }
  765. }
  766. }
  767. static void coverage_add(kprobe_opcode_t insn)
  768. {
  769. struct coverage_entry *entry = coverage.base;
  770. struct coverage_entry *end = coverage.base + coverage.num_entries;
  771. bool matched = false;
  772. unsigned nesting = 0;
  773. for (; entry < end; ++entry) {
  774. const struct decode_header *h = entry->header;
  775. enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
  776. if (entry->nesting > nesting)
  777. continue; /* Skip sub-table we didn't match */
  778. if (entry->nesting < nesting)
  779. break; /* End of sub-table we were scanning */
  780. if (!matched) {
  781. if ((insn & h->mask.bits) != h->value.bits)
  782. continue;
  783. entry->matched = true;
  784. }
  785. switch (type) {
  786. case DECODE_TYPE_TABLE:
  787. ++nesting;
  788. break;
  789. case DECODE_TYPE_CUSTOM:
  790. case DECODE_TYPE_SIMULATE:
  791. case DECODE_TYPE_EMULATE:
  792. coverage_add_registers(entry, insn);
  793. return;
  794. case DECODE_TYPE_OR:
  795. matched = true;
  796. break;
  797. case DECODE_TYPE_REJECT:
  798. default:
  799. return;
  800. }
  801. }
  802. }
  803. static void coverage_end(void)
  804. {
  805. struct coverage_entry *entry = coverage.base;
  806. struct coverage_entry *end = coverage.base + coverage.num_entries;
  807. for (; entry < end; ++entry) {
  808. u32 mask = entry->header->mask.bits;
  809. u32 value = entry->header->value.bits;
  810. if (entry->regs) {
  811. pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
  812. mask, value, entry->regs);
  813. coverage_fail = true;
  814. }
  815. if (!entry->matched) {
  816. pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
  817. mask, value);
  818. coverage_fail = true;
  819. }
  820. }
  821. kfree(coverage.base);
  822. }
  823. /*
  824. * Framework for instruction set test cases
  825. */
  826. void __naked __kprobes_test_case_start(void)
  827. {
  828. __asm__ __volatile__ (
  829. "stmdb sp!, {r4-r11} \n\t"
  830. "sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
  831. "bic r0, lr, #1 @ r0 = inline data \n\t"
  832. "mov r1, sp \n\t"
  833. "bl kprobes_test_case_start \n\t"
  834. RET(r0)" \n\t"
  835. );
  836. }
  837. #ifndef CONFIG_THUMB2_KERNEL
  838. void __naked __kprobes_test_case_end_32(void)
  839. {
  840. __asm__ __volatile__ (
  841. "mov r4, lr \n\t"
  842. "bl kprobes_test_case_end \n\t"
  843. "cmp r0, #0 \n\t"
  844. "movne pc, r0 \n\t"
  845. "mov r0, r4 \n\t"
  846. "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
  847. "ldmia sp!, {r4-r11} \n\t"
  848. "mov pc, r0 \n\t"
  849. );
  850. }
  851. #else /* CONFIG_THUMB2_KERNEL */
  852. void __naked __kprobes_test_case_end_16(void)
  853. {
  854. __asm__ __volatile__ (
  855. "mov r4, lr \n\t"
  856. "bl kprobes_test_case_end \n\t"
  857. "cmp r0, #0 \n\t"
  858. "bxne r0 \n\t"
  859. "mov r0, r4 \n\t"
  860. "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
  861. "ldmia sp!, {r4-r11} \n\t"
  862. "bx r0 \n\t"
  863. );
  864. }
  865. void __naked __kprobes_test_case_end_32(void)
  866. {
  867. __asm__ __volatile__ (
  868. ".arm \n\t"
  869. "orr lr, lr, #1 @ will return to Thumb code \n\t"
  870. "ldr pc, 1f \n\t"
  871. "1: \n\t"
  872. ".word __kprobes_test_case_end_16 \n\t"
  873. );
  874. }
  875. #endif
  876. int kprobe_test_flags;
  877. int kprobe_test_cc_position;
  878. static int test_try_count;
  879. static int test_pass_count;
  880. static int test_fail_count;
  881. static struct pt_regs initial_regs;
  882. static struct pt_regs expected_regs;
  883. static struct pt_regs result_regs;
  884. static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
  885. static const char *current_title;
  886. static struct test_arg *current_args;
  887. static u32 *current_stack;
  888. static uintptr_t current_branch_target;
  889. static uintptr_t current_code_start;
  890. static kprobe_opcode_t current_instruction;
  891. #define TEST_CASE_PASSED -1
  892. #define TEST_CASE_FAILED -2
  893. static int test_case_run_count;
  894. static bool test_case_is_thumb;
  895. static int test_instance;
  896. static unsigned long test_check_cc(int cc, unsigned long cpsr)
  897. {
  898. int ret = arm_check_condition(cc << 28, cpsr);
  899. return (ret != ARM_OPCODE_CONDTEST_FAIL);
  900. }
  901. static int is_last_scenario;
  902. static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
  903. static int memory_needs_checking;
  904. static unsigned long test_context_cpsr(int scenario)
  905. {
  906. unsigned long cpsr;
  907. probe_should_run = 1;
  908. /* Default case is that we cycle through 16 combinations of flags */
  909. cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */
  910. cpsr |= (scenario & 0xf) << 16; /* GE flags */
  911. cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
  912. if (!test_case_is_thumb) {
  913. /* Testing ARM code */
  914. int cc = current_instruction >> 28;
  915. probe_should_run = test_check_cc(cc, cpsr) != 0;
  916. if (scenario == 15)
  917. is_last_scenario = true;
  918. } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
  919. /* Testing Thumb code without setting ITSTATE */
  920. if (kprobe_test_cc_position) {
  921. int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
  922. probe_should_run = test_check_cc(cc, cpsr) != 0;
  923. }
  924. if (scenario == 15)
  925. is_last_scenario = true;
  926. } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
  927. /* Testing Thumb code with all combinations of ITSTATE */
  928. unsigned x = (scenario >> 4);
  929. unsigned cond_base = x % 7; /* ITSTATE<7:5> */
  930. unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */
  931. if (mask > 0x1f) {
  932. /* Finish by testing state from instruction 'itt al' */
  933. cond_base = 7;
  934. mask = 0x4;
  935. if ((scenario & 0xf) == 0xf)
  936. is_last_scenario = true;
  937. }
  938. cpsr |= cond_base << 13; /* ITSTATE<7:5> */
  939. cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */
  940. cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */
  941. cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */
  942. cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */
  943. cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */
  944. probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
  945. } else {
  946. /* Testing Thumb code with several combinations of ITSTATE */
  947. switch (scenario) {
  948. case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
  949. cpsr = 0x00000800;
  950. probe_should_run = 0;
  951. break;
  952. case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
  953. cpsr = 0xf0007800;
  954. probe_should_run = 0;
  955. break;
  956. case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
  957. cpsr = 0x00009800;
  958. break;
  959. case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
  960. cpsr = 0xf0002800;
  961. is_last_scenario = true;
  962. break;
  963. }
  964. }
  965. return cpsr;
  966. }
  967. static void setup_test_context(struct pt_regs *regs)
  968. {
  969. int scenario = test_case_run_count>>1;
  970. unsigned long val;
  971. struct test_arg *args;
  972. int i;
  973. is_last_scenario = false;
  974. memory_needs_checking = false;
  975. /* Initialise test memory on stack */
  976. val = (scenario & 1) ? VALM : ~VALM;
  977. for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
  978. current_stack[i] = val + (i << 8);
  979. /* Put target of branch on stack for tests which load PC from memory */
  980. if (current_branch_target)
  981. current_stack[15] = current_branch_target;
  982. /* Put a value for SP on stack for tests which load SP from memory */
  983. current_stack[13] = (u32)current_stack + 120;
  984. /* Initialise register values to their default state */
  985. val = (scenario & 2) ? VALR : ~VALR;
  986. for (i = 0; i < 13; ++i)
  987. regs->uregs[i] = val ^ (i << 8);
  988. regs->ARM_lr = val ^ (14 << 8);
  989. regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
  990. regs->ARM_cpsr |= test_context_cpsr(scenario);
  991. /* Perform testcase specific register setup */
  992. args = current_args;
  993. for (; args[0].type != ARG_TYPE_END; ++args)
  994. switch (args[0].type) {
  995. case ARG_TYPE_REG: {
  996. struct test_arg_regptr *arg =
  997. (struct test_arg_regptr *)args;
  998. regs->uregs[arg->reg] = arg->val;
  999. break;
  1000. }
  1001. case ARG_TYPE_PTR: {
  1002. struct test_arg_regptr *arg =
  1003. (struct test_arg_regptr *)args;
  1004. regs->uregs[arg->reg] =
  1005. (unsigned long)current_stack + arg->val;
  1006. memory_needs_checking = true;
  1007. /*
  1008. * Test memory at an address below SP is in danger of
  1009. * being altered by an interrupt occurring and pushing
  1010. * data onto the stack. Disable interrupts to stop this.
  1011. */
  1012. if (arg->reg == 13)
  1013. regs->ARM_cpsr |= PSR_I_BIT;
  1014. break;
  1015. }
  1016. case ARG_TYPE_MEM: {
  1017. struct test_arg_mem *arg = (struct test_arg_mem *)args;
  1018. current_stack[arg->index] = arg->val;
  1019. break;
  1020. }
  1021. default:
  1022. break;
  1023. }
  1024. }
  1025. struct test_probe {
  1026. struct kprobe kprobe;
  1027. bool registered;
  1028. int hit;
  1029. };
  1030. static void unregister_test_probe(struct test_probe *probe)
  1031. {
  1032. if (probe->registered) {
  1033. unregister_kprobe(&probe->kprobe);
  1034. probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
  1035. }
  1036. probe->registered = false;
  1037. }
  1038. static int register_test_probe(struct test_probe *probe)
  1039. {
  1040. int ret;
  1041. if (probe->registered)
  1042. BUG();
  1043. ret = register_kprobe(&probe->kprobe);
  1044. if (ret >= 0) {
  1045. probe->registered = true;
  1046. probe->hit = -1;
  1047. }
  1048. return ret;
  1049. }
  1050. static int __kprobes
  1051. test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
  1052. {
  1053. container_of(p, struct test_probe, kprobe)->hit = test_instance;
  1054. return 0;
  1055. }
  1056. static void __kprobes
  1057. test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
  1058. unsigned long flags)
  1059. {
  1060. setup_test_context(regs);
  1061. initial_regs = *regs;
  1062. initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
  1063. }
  1064. static int __kprobes
  1065. test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
  1066. {
  1067. container_of(p, struct test_probe, kprobe)->hit = test_instance;
  1068. return 0;
  1069. }
  1070. static int __kprobes
  1071. test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
  1072. {
  1073. struct test_arg *args;
  1074. if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
  1075. return 0; /* Already run for this test instance */
  1076. result_regs = *regs;
  1077. /* Mask out results which are indeterminate */
  1078. result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
  1079. for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
  1080. if (args[0].type == ARG_TYPE_REG_MASKED) {
  1081. struct test_arg_regptr *arg =
  1082. (struct test_arg_regptr *)args;
  1083. result_regs.uregs[arg->reg] &= arg->val;
  1084. }
  1085. /* Undo any changes done to SP by the test case */
  1086. regs->ARM_sp = (unsigned long)current_stack;
  1087. /* Enable interrupts in case setup_test_context disabled them */
  1088. regs->ARM_cpsr &= ~PSR_I_BIT;
  1089. container_of(p, struct test_probe, kprobe)->hit = test_instance;
  1090. return 0;
  1091. }
  1092. static struct test_probe test_before_probe = {
  1093. .kprobe.pre_handler = test_before_pre_handler,
  1094. .kprobe.post_handler = test_before_post_handler,
  1095. };
  1096. static struct test_probe test_case_probe = {
  1097. .kprobe.pre_handler = test_case_pre_handler,
  1098. };
  1099. static struct test_probe test_after_probe = {
  1100. .kprobe.pre_handler = test_after_pre_handler,
  1101. };
  1102. static struct test_probe test_after2_probe = {
  1103. .kprobe.pre_handler = test_after_pre_handler,
  1104. };
  1105. static void test_case_cleanup(void)
  1106. {
  1107. unregister_test_probe(&test_before_probe);
  1108. unregister_test_probe(&test_case_probe);
  1109. unregister_test_probe(&test_after_probe);
  1110. unregister_test_probe(&test_after2_probe);
  1111. }
  1112. static void print_registers(struct pt_regs *regs)
  1113. {
  1114. pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n",
  1115. regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
  1116. pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n",
  1117. regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
  1118. pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n",
  1119. regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
  1120. pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n",
  1121. regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
  1122. pr_err("cpsr %08lx\n", regs->ARM_cpsr);
  1123. }
  1124. static void print_memory(u32 *mem, size_t size)
  1125. {
  1126. int i;
  1127. for (i = 0; i < size / sizeof(u32); i += 4)
  1128. pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
  1129. mem[i+2], mem[i+3]);
  1130. }
  1131. static size_t expected_memory_size(u32 *sp)
  1132. {
  1133. size_t size = sizeof(expected_memory);
  1134. int offset = (uintptr_t)sp - (uintptr_t)current_stack;
  1135. if (offset > 0)
  1136. size -= offset;
  1137. return size;
  1138. }
  1139. static void test_case_failed(const char *message)
  1140. {
  1141. test_case_cleanup();
  1142. pr_err("FAIL: %s\n", message);
  1143. pr_err("FAIL: Test %s\n", current_title);
  1144. pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
  1145. }
  1146. static unsigned long next_instruction(unsigned long pc)
  1147. {
  1148. #ifdef CONFIG_THUMB2_KERNEL
  1149. if ((pc & 1) &&
  1150. !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
  1151. return pc + 2;
  1152. else
  1153. #endif
  1154. return pc + 4;
  1155. }
  1156. static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
  1157. {
  1158. struct test_arg *args;
  1159. struct test_arg_end *end_arg;
  1160. unsigned long test_code;
  1161. current_title = *title++;
  1162. args = (struct test_arg *)title;
  1163. current_args = args;
  1164. current_stack = stack;
  1165. ++test_try_count;
  1166. while (args->type != ARG_TYPE_END)
  1167. ++args;
  1168. end_arg = (struct test_arg_end *)args;
  1169. test_code = (unsigned long)(args + 1); /* Code starts after args */
  1170. test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
  1171. if (test_case_is_thumb)
  1172. test_code |= 1;
  1173. current_code_start = test_code;
  1174. current_branch_target = 0;
  1175. if (end_arg->branch_offset != end_arg->end_offset)
  1176. current_branch_target = test_code + end_arg->branch_offset;
  1177. test_code += end_arg->code_offset;
  1178. test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
  1179. test_code = next_instruction(test_code);
  1180. test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
  1181. if (test_case_is_thumb) {
  1182. u16 *p = (u16 *)(test_code & ~1);
  1183. current_instruction = __mem_to_opcode_thumb16(p[0]);
  1184. if (is_wide_instruction(current_instruction)) {
  1185. u16 instr2 = __mem_to_opcode_thumb16(p[1]);
  1186. current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
  1187. }
  1188. } else {
  1189. current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
  1190. }
  1191. if (current_title[0] == '.')
  1192. verbose("%s\n", current_title);
  1193. else
  1194. verbose("%s\t@ %0*x\n", current_title,
  1195. test_case_is_thumb ? 4 : 8,
  1196. current_instruction);
  1197. test_code = next_instruction(test_code);
  1198. test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
  1199. if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
  1200. if (!test_case_is_thumb ||
  1201. is_wide_instruction(current_instruction)) {
  1202. test_case_failed("expected 16-bit instruction");
  1203. goto fail;
  1204. }
  1205. } else {
  1206. if (test_case_is_thumb &&
  1207. !is_wide_instruction(current_instruction)) {
  1208. test_case_failed("expected 32-bit instruction");
  1209. goto fail;
  1210. }
  1211. }
  1212. coverage_add(current_instruction);
  1213. if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
  1214. if (register_test_probe(&test_case_probe) < 0)
  1215. goto pass;
  1216. test_case_failed("registered probe for unsupported instruction");
  1217. goto fail;
  1218. }
  1219. if (end_arg->flags & ARG_FLAG_SUPPORTED) {
  1220. if (register_test_probe(&test_case_probe) >= 0)
  1221. goto pass;
  1222. test_case_failed("couldn't register probe for supported instruction");
  1223. goto fail;
  1224. }
  1225. if (register_test_probe(&test_before_probe) < 0) {
  1226. test_case_failed("register test_before_probe failed");
  1227. goto fail;
  1228. }
  1229. if (register_test_probe(&test_after_probe) < 0) {
  1230. test_case_failed("register test_after_probe failed");
  1231. goto fail;
  1232. }
  1233. if (current_branch_target) {
  1234. test_after2_probe.kprobe.addr =
  1235. (kprobe_opcode_t *)current_branch_target;
  1236. if (register_test_probe(&test_after2_probe) < 0) {
  1237. test_case_failed("register test_after2_probe failed");
  1238. goto fail;
  1239. }
  1240. }
  1241. /* Start first run of test case */
  1242. test_case_run_count = 0;
  1243. ++test_instance;
  1244. return current_code_start;
  1245. pass:
  1246. test_case_run_count = TEST_CASE_PASSED;
  1247. return (uintptr_t)test_after_probe.kprobe.addr;
  1248. fail:
  1249. test_case_run_count = TEST_CASE_FAILED;
  1250. return (uintptr_t)test_after_probe.kprobe.addr;
  1251. }
  1252. static bool check_test_results(void)
  1253. {
  1254. size_t mem_size = 0;
  1255. u32 *mem = 0;
  1256. if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
  1257. test_case_failed("registers differ");
  1258. goto fail;
  1259. }
  1260. if (memory_needs_checking) {
  1261. mem = (u32 *)result_regs.ARM_sp;
  1262. mem_size = expected_memory_size(mem);
  1263. if (memcmp(expected_memory, mem, mem_size)) {
  1264. test_case_failed("test memory differs");
  1265. goto fail;
  1266. }
  1267. }
  1268. return true;
  1269. fail:
  1270. pr_err("initial_regs:\n");
  1271. print_registers(&initial_regs);
  1272. pr_err("expected_regs:\n");
  1273. print_registers(&expected_regs);
  1274. pr_err("result_regs:\n");
  1275. print_registers(&result_regs);
  1276. if (mem) {
  1277. pr_err("current_stack=%p\n", current_stack);
  1278. pr_err("expected_memory:\n");
  1279. print_memory(expected_memory, mem_size);
  1280. pr_err("result_memory:\n");
  1281. print_memory(mem, mem_size);
  1282. }
  1283. return false;
  1284. }
  1285. static uintptr_t __used kprobes_test_case_end(void)
  1286. {
  1287. if (test_case_run_count < 0) {
  1288. if (test_case_run_count == TEST_CASE_PASSED)
  1289. /* kprobes_test_case_start did all the needed testing */
  1290. goto pass;
  1291. else
  1292. /* kprobes_test_case_start failed */
  1293. goto fail;
  1294. }
  1295. if (test_before_probe.hit != test_instance) {
  1296. test_case_failed("test_before_handler not run");
  1297. goto fail;
  1298. }
  1299. if (test_after_probe.hit != test_instance &&
  1300. test_after2_probe.hit != test_instance) {
  1301. test_case_failed("test_after_handler not run");
  1302. goto fail;
  1303. }
  1304. /*
  1305. * Even numbered test runs ran without a probe on the test case so
  1306. * we can gather reference results. The subsequent odd numbered run
  1307. * will have the probe inserted.
  1308. */
  1309. if ((test_case_run_count & 1) == 0) {
  1310. /* Save results from run without probe */
  1311. u32 *mem = (u32 *)result_regs.ARM_sp;
  1312. expected_regs = result_regs;
  1313. memcpy(expected_memory, mem, expected_memory_size(mem));
  1314. /* Insert probe onto test case instruction */
  1315. if (register_test_probe(&test_case_probe) < 0) {
  1316. test_case_failed("register test_case_probe failed");
  1317. goto fail;
  1318. }
  1319. } else {
  1320. /* Check probe ran as expected */
  1321. if (probe_should_run == 1) {
  1322. if (test_case_probe.hit != test_instance) {
  1323. test_case_failed("test_case_handler not run");
  1324. goto fail;
  1325. }
  1326. } else if (probe_should_run == 0) {
  1327. if (test_case_probe.hit == test_instance) {
  1328. test_case_failed("test_case_handler ran");
  1329. goto fail;
  1330. }
  1331. }
  1332. /* Remove probe for any subsequent reference run */
  1333. unregister_test_probe(&test_case_probe);
  1334. if (!check_test_results())
  1335. goto fail;
  1336. if (is_last_scenario)
  1337. goto pass;
  1338. }
  1339. /* Do next test run */
  1340. ++test_case_run_count;
  1341. ++test_instance;
  1342. return current_code_start;
  1343. fail:
  1344. ++test_fail_count;
  1345. goto end;
  1346. pass:
  1347. ++test_pass_count;
  1348. end:
  1349. test_case_cleanup();
  1350. return 0;
  1351. }
  1352. /*
  1353. * Top level test functions
  1354. */
  1355. static int run_test_cases(void (*tests)(void), const union decode_item *table)
  1356. {
  1357. int ret;
  1358. pr_info(" Check decoding tables\n");
  1359. ret = table_test(table);
  1360. if (ret)
  1361. return ret;
  1362. pr_info(" Run test cases\n");
  1363. ret = coverage_start(table);
  1364. if (ret)
  1365. return ret;
  1366. tests();
  1367. coverage_end();
  1368. return 0;
  1369. }
  1370. static int __init run_all_tests(void)
  1371. {
  1372. int ret = 0;
  1373. pr_info("Beginning kprobe tests...\n");
  1374. #ifndef CONFIG_THUMB2_KERNEL
  1375. pr_info("Probe ARM code\n");
  1376. ret = run_api_tests(arm_func);
  1377. if (ret)
  1378. goto out;
  1379. pr_info("ARM instruction simulation\n");
  1380. ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
  1381. if (ret)
  1382. goto out;
  1383. #else /* CONFIG_THUMB2_KERNEL */
  1384. pr_info("Probe 16-bit Thumb code\n");
  1385. ret = run_api_tests(thumb16_func);
  1386. if (ret)
  1387. goto out;
  1388. pr_info("Probe 32-bit Thumb code, even halfword\n");
  1389. ret = run_api_tests(thumb32even_func);
  1390. if (ret)
  1391. goto out;
  1392. pr_info("Probe 32-bit Thumb code, odd halfword\n");
  1393. ret = run_api_tests(thumb32odd_func);
  1394. if (ret)
  1395. goto out;
  1396. pr_info("16-bit Thumb instruction simulation\n");
  1397. ret = run_test_cases(kprobe_thumb16_test_cases,
  1398. probes_decode_thumb16_table);
  1399. if (ret)
  1400. goto out;
  1401. pr_info("32-bit Thumb instruction simulation\n");
  1402. ret = run_test_cases(kprobe_thumb32_test_cases,
  1403. probes_decode_thumb32_table);
  1404. if (ret)
  1405. goto out;
  1406. #endif
  1407. pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
  1408. test_try_count, test_pass_count, test_fail_count);
  1409. if (test_fail_count) {
  1410. ret = -EINVAL;
  1411. goto out;
  1412. }
  1413. #if BENCHMARKING
  1414. pr_info("Benchmarks\n");
  1415. ret = run_benchmarks();
  1416. if (ret)
  1417. goto out;
  1418. #endif
  1419. #if __LINUX_ARM_ARCH__ >= 7
  1420. /* We are able to run all test cases so coverage should be complete */
  1421. if (coverage_fail) {
  1422. pr_err("FAIL: Test coverage checks failed\n");
  1423. ret = -EINVAL;
  1424. goto out;
  1425. }
  1426. #endif
  1427. out:
  1428. if (ret == 0)
  1429. ret = tests_failed;
  1430. if (ret == 0)
  1431. pr_info("Finished kprobe tests OK\n");
  1432. else
  1433. pr_err("kprobe tests failed\n");
  1434. return ret;
  1435. }
  1436. /*
  1437. * Module setup
  1438. */
  1439. #ifdef MODULE
  1440. static void __exit kprobe_test_exit(void)
  1441. {
  1442. }
  1443. module_init(run_all_tests)
  1444. module_exit(kprobe_test_exit)
  1445. MODULE_LICENSE("GPL");
  1446. #else /* !MODULE */
  1447. late_initcall(run_all_tests);
  1448. #endif