coproc.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/bsearch.h>
  20. #include <linux/mm.h>
  21. #include <linux/kvm_host.h>
  22. #include <linux/uaccess.h>
  23. #include <asm/kvm_arm.h>
  24. #include <asm/kvm_host.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <asm/kvm_coproc.h>
  27. #include <asm/kvm_mmu.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/cputype.h>
  30. #include <trace/events/kvm.h>
  31. #include <asm/vfp.h>
  32. #include "../vfp/vfpinstr.h"
  33. #include "trace.h"
  34. #include "coproc.h"
  35. /******************************************************************************
  36. * Co-processor emulation
  37. *****************************************************************************/
  38. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  39. static u32 cache_levels;
  40. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  41. #define CSSELR_MAX 12
  42. /*
  43. * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
  44. * of cp15 registers can be viewed either as couple of two u32 registers
  45. * or one u64 register. Current u64 register encoding is that least
  46. * significant u32 word is followed by most significant u32 word.
  47. */
  48. static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
  49. const struct coproc_reg *r,
  50. u64 val)
  51. {
  52. vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
  53. vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
  54. }
  55. static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
  56. const struct coproc_reg *r)
  57. {
  58. u64 val;
  59. val = vcpu_cp15(vcpu, r->reg + 1);
  60. val = val << 32;
  61. val = val | vcpu_cp15(vcpu, r->reg);
  62. return val;
  63. }
  64. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  65. {
  66. kvm_inject_undefined(vcpu);
  67. return 1;
  68. }
  69. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  70. {
  71. /*
  72. * We can get here, if the host has been built without VFPv3 support,
  73. * but the guest attempted a floating point operation.
  74. */
  75. kvm_inject_undefined(vcpu);
  76. return 1;
  77. }
  78. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  79. {
  80. kvm_inject_undefined(vcpu);
  81. return 1;
  82. }
  83. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  84. {
  85. kvm_inject_undefined(vcpu);
  86. return 1;
  87. }
  88. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  89. {
  90. /*
  91. * Compute guest MPIDR. We build a virtual cluster out of the
  92. * vcpu_id, but we read the 'U' bit from the underlying
  93. * hardware directly.
  94. */
  95. vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  96. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  97. (vcpu->vcpu_id & 3));
  98. }
  99. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  100. static bool access_actlr(struct kvm_vcpu *vcpu,
  101. const struct coproc_params *p,
  102. const struct coproc_reg *r)
  103. {
  104. if (p->is_write)
  105. return ignore_write(vcpu, p);
  106. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
  107. return true;
  108. }
  109. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  110. static bool access_cbar(struct kvm_vcpu *vcpu,
  111. const struct coproc_params *p,
  112. const struct coproc_reg *r)
  113. {
  114. if (p->is_write)
  115. return write_to_read_only(vcpu, p);
  116. return read_zero(vcpu, p);
  117. }
  118. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  119. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  120. const struct coproc_params *p,
  121. const struct coproc_reg *r)
  122. {
  123. if (p->is_write)
  124. return ignore_write(vcpu, p);
  125. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
  126. return true;
  127. }
  128. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  129. {
  130. u32 l2ctlr, ncores;
  131. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  132. l2ctlr &= ~(3 << 24);
  133. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  134. /* How many cores in the current cluster and the next ones */
  135. ncores -= (vcpu->vcpu_id & ~3);
  136. /* Cap it to the maximum number of cores in a single cluster */
  137. ncores = min(ncores, 3U);
  138. l2ctlr |= (ncores & 3) << 24;
  139. vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
  140. }
  141. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  142. {
  143. u32 actlr;
  144. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  145. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  146. /* Make the SMP bit consistent with the guest configuration */
  147. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  148. actlr |= 1U << 6;
  149. else
  150. actlr &= ~(1U << 6);
  151. vcpu_cp15(vcpu, c1_ACTLR) = actlr;
  152. }
  153. /*
  154. * TRM entries: A7:4.3.50, A15:4.3.49
  155. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  156. */
  157. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  158. const struct coproc_params *p,
  159. const struct coproc_reg *r)
  160. {
  161. if (p->is_write)
  162. return ignore_write(vcpu, p);
  163. *vcpu_reg(vcpu, p->Rt1) = 0;
  164. return true;
  165. }
  166. /*
  167. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  168. */
  169. static bool access_dcsw(struct kvm_vcpu *vcpu,
  170. const struct coproc_params *p,
  171. const struct coproc_reg *r)
  172. {
  173. if (!p->is_write)
  174. return read_from_write_only(vcpu, p);
  175. kvm_set_way_flush(vcpu);
  176. return true;
  177. }
  178. /*
  179. * Generic accessor for VM registers. Only called as long as HCR_TVM
  180. * is set. If the guest enables the MMU, we stop trapping the VM
  181. * sys_regs and leave it in complete control of the caches.
  182. *
  183. * Used by the cpu-specific code.
  184. */
  185. bool access_vm_reg(struct kvm_vcpu *vcpu,
  186. const struct coproc_params *p,
  187. const struct coproc_reg *r)
  188. {
  189. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  190. BUG_ON(!p->is_write);
  191. vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
  192. if (p->is_64bit)
  193. vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
  194. kvm_toggle_cache(vcpu, was_enabled);
  195. return true;
  196. }
  197. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  198. const struct coproc_params *p,
  199. const struct coproc_reg *r)
  200. {
  201. u64 reg;
  202. if (!p->is_write)
  203. return read_from_write_only(vcpu, p);
  204. reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
  205. reg |= *vcpu_reg(vcpu, p->Rt1) ;
  206. vgic_v3_dispatch_sgi(vcpu, reg);
  207. return true;
  208. }
  209. static bool access_gic_sre(struct kvm_vcpu *vcpu,
  210. const struct coproc_params *p,
  211. const struct coproc_reg *r)
  212. {
  213. if (p->is_write)
  214. return ignore_write(vcpu, p);
  215. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
  216. return true;
  217. }
  218. /*
  219. * We could trap ID_DFR0 and tell the guest we don't support performance
  220. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  221. * NAKed, so it will read the PMCR anyway.
  222. *
  223. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  224. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  225. * all PM registers, which doesn't crash the guest kernel at least.
  226. */
  227. static bool pm_fake(struct kvm_vcpu *vcpu,
  228. const struct coproc_params *p,
  229. const struct coproc_reg *r)
  230. {
  231. if (p->is_write)
  232. return ignore_write(vcpu, p);
  233. else
  234. return read_zero(vcpu, p);
  235. }
  236. #define access_pmcr pm_fake
  237. #define access_pmcntenset pm_fake
  238. #define access_pmcntenclr pm_fake
  239. #define access_pmovsr pm_fake
  240. #define access_pmselr pm_fake
  241. #define access_pmceid0 pm_fake
  242. #define access_pmceid1 pm_fake
  243. #define access_pmccntr pm_fake
  244. #define access_pmxevtyper pm_fake
  245. #define access_pmxevcntr pm_fake
  246. #define access_pmuserenr pm_fake
  247. #define access_pmintenset pm_fake
  248. #define access_pmintenclr pm_fake
  249. /* Architected CP15 registers.
  250. * CRn denotes the primary register number, but is copied to the CRm in the
  251. * user space API for 64-bit register access in line with the terminology used
  252. * in the ARM ARM.
  253. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  254. * registers preceding 32-bit ones.
  255. */
  256. static const struct coproc_reg cp15_regs[] = {
  257. /* MPIDR: we use VMPIDR for guest access. */
  258. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  259. NULL, reset_mpidr, c0_MPIDR },
  260. /* CSSELR: swapped by interrupt.S. */
  261. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  262. NULL, reset_unknown, c0_CSSELR },
  263. /* ACTLR: trapped by HCR.TAC bit. */
  264. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  265. access_actlr, reset_actlr, c1_ACTLR },
  266. /* CPACR: swapped by interrupt.S. */
  267. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  268. NULL, reset_val, c1_CPACR, 0x00000000 },
  269. /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
  270. { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
  271. { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
  272. access_vm_reg, reset_unknown, c2_TTBR0 },
  273. { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
  274. access_vm_reg, reset_unknown, c2_TTBR1 },
  275. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  276. access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
  277. { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
  278. /* DACR: swapped by interrupt.S. */
  279. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  280. access_vm_reg, reset_unknown, c3_DACR },
  281. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  282. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  283. access_vm_reg, reset_unknown, c5_DFSR },
  284. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  285. access_vm_reg, reset_unknown, c5_IFSR },
  286. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  287. access_vm_reg, reset_unknown, c5_ADFSR },
  288. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  289. access_vm_reg, reset_unknown, c5_AIFSR },
  290. /* DFAR/IFAR: swapped by interrupt.S. */
  291. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  292. access_vm_reg, reset_unknown, c6_DFAR },
  293. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  294. access_vm_reg, reset_unknown, c6_IFAR },
  295. /* PAR swapped by interrupt.S */
  296. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  297. /*
  298. * DC{C,I,CI}SW operations:
  299. */
  300. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  301. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  302. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  303. /*
  304. * L2CTLR access (guest wants to know #CPUs).
  305. */
  306. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  307. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  308. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  309. /*
  310. * Dummy performance monitor implementation.
  311. */
  312. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  313. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  314. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  315. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  316. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  317. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  318. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  319. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  320. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  321. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  322. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  323. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  324. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  325. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  326. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  327. access_vm_reg, reset_unknown, c10_PRRR},
  328. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  329. access_vm_reg, reset_unknown, c10_NMRR},
  330. /* AMAIR0/AMAIR1: swapped by interrupt.S. */
  331. { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
  332. access_vm_reg, reset_unknown, c10_AMAIR0},
  333. { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
  334. access_vm_reg, reset_unknown, c10_AMAIR1},
  335. /* ICC_SGI1R */
  336. { CRm64(12), Op1( 0), is64, access_gic_sgi},
  337. /* VBAR: swapped by interrupt.S. */
  338. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  339. NULL, reset_val, c12_VBAR, 0x00000000 },
  340. /* ICC_SRE */
  341. { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
  342. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  343. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  344. access_vm_reg, reset_val, c13_CID, 0x00000000 },
  345. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  346. NULL, reset_unknown, c13_TID_URW },
  347. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  348. NULL, reset_unknown, c13_TID_URO },
  349. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  350. NULL, reset_unknown, c13_TID_PRIV },
  351. /* CNTKCTL: swapped by interrupt.S. */
  352. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  353. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  354. /* The Configuration Base Address Register. */
  355. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  356. };
  357. static int check_reg_table(const struct coproc_reg *table, unsigned int n)
  358. {
  359. unsigned int i;
  360. for (i = 1; i < n; i++) {
  361. if (cmp_reg(&table[i-1], &table[i]) >= 0) {
  362. kvm_err("reg table %p out of order (%d)\n", table, i - 1);
  363. return 1;
  364. }
  365. }
  366. return 0;
  367. }
  368. /* Target specific emulation tables */
  369. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  370. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  371. {
  372. BUG_ON(check_reg_table(table->table, table->num));
  373. target_tables[table->target] = table;
  374. }
  375. /* Get specific register table for this target. */
  376. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  377. {
  378. struct kvm_coproc_target_table *table;
  379. table = target_tables[target];
  380. *num = table->num;
  381. return table->table;
  382. }
  383. #define reg_to_match_value(x) \
  384. ({ \
  385. unsigned long val; \
  386. val = (x)->CRn << 11; \
  387. val |= (x)->CRm << 7; \
  388. val |= (x)->Op1 << 4; \
  389. val |= (x)->Op2 << 1; \
  390. val |= !(x)->is_64bit; \
  391. val; \
  392. })
  393. static int match_reg(const void *key, const void *elt)
  394. {
  395. const unsigned long pval = (unsigned long)key;
  396. const struct coproc_reg *r = elt;
  397. return pval - reg_to_match_value(r);
  398. }
  399. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  400. const struct coproc_reg table[],
  401. unsigned int num)
  402. {
  403. unsigned long pval = reg_to_match_value(params);
  404. return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
  405. }
  406. static int emulate_cp15(struct kvm_vcpu *vcpu,
  407. const struct coproc_params *params)
  408. {
  409. size_t num;
  410. const struct coproc_reg *table, *r;
  411. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  412. params->CRm, params->Op2, params->is_write);
  413. table = get_target_table(vcpu->arch.target, &num);
  414. /* Search target-specific then generic table. */
  415. r = find_reg(params, table, num);
  416. if (!r)
  417. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  418. if (likely(r)) {
  419. /* If we don't have an accessor, we should never get here! */
  420. BUG_ON(!r->access);
  421. if (likely(r->access(vcpu, params, r))) {
  422. /* Skip instruction, since it was emulated */
  423. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  424. return 1;
  425. }
  426. /* If access function fails, it should complain. */
  427. } else {
  428. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  429. *vcpu_pc(vcpu));
  430. print_cp_instr(params);
  431. }
  432. kvm_inject_undefined(vcpu);
  433. return 1;
  434. }
  435. /**
  436. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  437. * @vcpu: The VCPU pointer
  438. * @run: The kvm_run struct
  439. */
  440. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  441. {
  442. struct coproc_params params;
  443. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  444. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  445. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  446. params.is_64bit = true;
  447. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  448. params.Op2 = 0;
  449. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  450. params.CRm = 0;
  451. return emulate_cp15(vcpu, &params);
  452. }
  453. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  454. const struct coproc_reg *table, size_t num)
  455. {
  456. unsigned long i;
  457. for (i = 0; i < num; i++)
  458. if (table[i].reset)
  459. table[i].reset(vcpu, &table[i]);
  460. }
  461. /**
  462. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  463. * @vcpu: The VCPU pointer
  464. * @run: The kvm_run struct
  465. */
  466. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  467. {
  468. struct coproc_params params;
  469. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  470. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  471. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  472. params.is_64bit = false;
  473. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  474. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  475. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  476. params.Rt2 = 0;
  477. return emulate_cp15(vcpu, &params);
  478. }
  479. /******************************************************************************
  480. * Userspace API
  481. *****************************************************************************/
  482. static bool index_to_params(u64 id, struct coproc_params *params)
  483. {
  484. switch (id & KVM_REG_SIZE_MASK) {
  485. case KVM_REG_SIZE_U32:
  486. /* Any unused index bits means it's not valid. */
  487. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  488. | KVM_REG_ARM_COPROC_MASK
  489. | KVM_REG_ARM_32_CRN_MASK
  490. | KVM_REG_ARM_CRM_MASK
  491. | KVM_REG_ARM_OPC1_MASK
  492. | KVM_REG_ARM_32_OPC2_MASK))
  493. return false;
  494. params->is_64bit = false;
  495. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  496. >> KVM_REG_ARM_32_CRN_SHIFT);
  497. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  498. >> KVM_REG_ARM_CRM_SHIFT);
  499. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  500. >> KVM_REG_ARM_OPC1_SHIFT);
  501. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  502. >> KVM_REG_ARM_32_OPC2_SHIFT);
  503. return true;
  504. case KVM_REG_SIZE_U64:
  505. /* Any unused index bits means it's not valid. */
  506. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  507. | KVM_REG_ARM_COPROC_MASK
  508. | KVM_REG_ARM_CRM_MASK
  509. | KVM_REG_ARM_OPC1_MASK))
  510. return false;
  511. params->is_64bit = true;
  512. /* CRm to CRn: see cp15_to_index for details */
  513. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  514. >> KVM_REG_ARM_CRM_SHIFT);
  515. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  516. >> KVM_REG_ARM_OPC1_SHIFT);
  517. params->Op2 = 0;
  518. params->CRm = 0;
  519. return true;
  520. default:
  521. return false;
  522. }
  523. }
  524. /* Decode an index value, and find the cp15 coproc_reg entry. */
  525. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  526. u64 id)
  527. {
  528. size_t num;
  529. const struct coproc_reg *table, *r;
  530. struct coproc_params params;
  531. /* We only do cp15 for now. */
  532. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  533. return NULL;
  534. if (!index_to_params(id, &params))
  535. return NULL;
  536. table = get_target_table(vcpu->arch.target, &num);
  537. r = find_reg(&params, table, num);
  538. if (!r)
  539. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  540. /* Not saved in the cp15 array? */
  541. if (r && !r->reg)
  542. r = NULL;
  543. return r;
  544. }
  545. /*
  546. * These are the invariant cp15 registers: we let the guest see the host
  547. * versions of these, so they're part of the guest state.
  548. *
  549. * A future CPU may provide a mechanism to present different values to
  550. * the guest, or a future kvm may trap them.
  551. */
  552. /* Unfortunately, there's no register-argument for mrc, so generate. */
  553. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  554. static void get_##name(struct kvm_vcpu *v, \
  555. const struct coproc_reg *r) \
  556. { \
  557. u32 val; \
  558. \
  559. asm volatile("mrc p15, " __stringify(op1) \
  560. ", %0, c" __stringify(crn) \
  561. ", c" __stringify(crm) \
  562. ", " __stringify(op2) "\n" : "=r" (val)); \
  563. ((struct coproc_reg *)r)->val = val; \
  564. }
  565. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  566. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  567. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  568. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  569. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  570. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  571. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  572. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  573. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  574. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  575. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  576. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  577. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  578. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  579. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  580. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  581. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  582. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  583. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  584. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  585. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  586. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  587. static struct coproc_reg invariant_cp15[] = {
  588. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  589. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  590. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  591. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  592. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  593. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  594. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  595. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  596. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  597. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  598. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  599. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  600. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  601. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  602. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  603. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  604. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  605. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  606. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  607. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  608. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  609. };
  610. /*
  611. * Reads a register value from a userspace address to a kernel
  612. * variable. Make sure that register size matches sizeof(*__val).
  613. */
  614. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  615. {
  616. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  617. return -EFAULT;
  618. return 0;
  619. }
  620. /*
  621. * Writes a register value to a userspace address from a kernel variable.
  622. * Make sure that register size matches sizeof(*__val).
  623. */
  624. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  625. {
  626. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  627. return -EFAULT;
  628. return 0;
  629. }
  630. static int get_invariant_cp15(u64 id, void __user *uaddr)
  631. {
  632. struct coproc_params params;
  633. const struct coproc_reg *r;
  634. int ret;
  635. if (!index_to_params(id, &params))
  636. return -ENOENT;
  637. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  638. if (!r)
  639. return -ENOENT;
  640. ret = -ENOENT;
  641. if (KVM_REG_SIZE(id) == 4) {
  642. u32 val = r->val;
  643. ret = reg_to_user(uaddr, &val, id);
  644. } else if (KVM_REG_SIZE(id) == 8) {
  645. ret = reg_to_user(uaddr, &r->val, id);
  646. }
  647. return ret;
  648. }
  649. static int set_invariant_cp15(u64 id, void __user *uaddr)
  650. {
  651. struct coproc_params params;
  652. const struct coproc_reg *r;
  653. int err;
  654. u64 val;
  655. if (!index_to_params(id, &params))
  656. return -ENOENT;
  657. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  658. if (!r)
  659. return -ENOENT;
  660. err = -ENOENT;
  661. if (KVM_REG_SIZE(id) == 4) {
  662. u32 val32;
  663. err = reg_from_user(&val32, uaddr, id);
  664. if (!err)
  665. val = val32;
  666. } else if (KVM_REG_SIZE(id) == 8) {
  667. err = reg_from_user(&val, uaddr, id);
  668. }
  669. if (err)
  670. return err;
  671. /* This is what we mean by invariant: you can't change it. */
  672. if (r->val != val)
  673. return -EINVAL;
  674. return 0;
  675. }
  676. static bool is_valid_cache(u32 val)
  677. {
  678. u32 level, ctype;
  679. if (val >= CSSELR_MAX)
  680. return false;
  681. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  682. level = (val >> 1);
  683. ctype = (cache_levels >> (level * 3)) & 7;
  684. switch (ctype) {
  685. case 0: /* No cache */
  686. return false;
  687. case 1: /* Instruction cache only */
  688. return (val & 1);
  689. case 2: /* Data cache only */
  690. case 4: /* Unified cache */
  691. return !(val & 1);
  692. case 3: /* Separate instruction and data caches */
  693. return true;
  694. default: /* Reserved: we can't know instruction or data. */
  695. return false;
  696. }
  697. }
  698. /* Which cache CCSIDR represents depends on CSSELR value. */
  699. static u32 get_ccsidr(u32 csselr)
  700. {
  701. u32 ccsidr;
  702. /* Make sure noone else changes CSSELR during this! */
  703. local_irq_disable();
  704. /* Put value into CSSELR */
  705. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  706. isb();
  707. /* Read result out of CCSIDR */
  708. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  709. local_irq_enable();
  710. return ccsidr;
  711. }
  712. static int demux_c15_get(u64 id, void __user *uaddr)
  713. {
  714. u32 val;
  715. u32 __user *uval = uaddr;
  716. /* Fail if we have unknown bits set. */
  717. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  718. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  719. return -ENOENT;
  720. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  721. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  722. if (KVM_REG_SIZE(id) != 4)
  723. return -ENOENT;
  724. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  725. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  726. if (!is_valid_cache(val))
  727. return -ENOENT;
  728. return put_user(get_ccsidr(val), uval);
  729. default:
  730. return -ENOENT;
  731. }
  732. }
  733. static int demux_c15_set(u64 id, void __user *uaddr)
  734. {
  735. u32 val, newval;
  736. u32 __user *uval = uaddr;
  737. /* Fail if we have unknown bits set. */
  738. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  739. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  740. return -ENOENT;
  741. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  742. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  743. if (KVM_REG_SIZE(id) != 4)
  744. return -ENOENT;
  745. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  746. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  747. if (!is_valid_cache(val))
  748. return -ENOENT;
  749. if (get_user(newval, uval))
  750. return -EFAULT;
  751. /* This is also invariant: you can't change it. */
  752. if (newval != get_ccsidr(val))
  753. return -EINVAL;
  754. return 0;
  755. default:
  756. return -ENOENT;
  757. }
  758. }
  759. #ifdef CONFIG_VFPv3
  760. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  761. KVM_REG_ARM_VFP_FPSCR,
  762. KVM_REG_ARM_VFP_FPINST,
  763. KVM_REG_ARM_VFP_FPINST2,
  764. KVM_REG_ARM_VFP_MVFR0,
  765. KVM_REG_ARM_VFP_MVFR1,
  766. KVM_REG_ARM_VFP_FPSID };
  767. static unsigned int num_fp_regs(void)
  768. {
  769. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  770. return 32;
  771. else
  772. return 16;
  773. }
  774. static unsigned int num_vfp_regs(void)
  775. {
  776. /* Normal FP regs + control regs. */
  777. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  778. }
  779. static int copy_vfp_regids(u64 __user *uindices)
  780. {
  781. unsigned int i;
  782. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  783. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  784. for (i = 0; i < num_fp_regs(); i++) {
  785. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  786. uindices))
  787. return -EFAULT;
  788. uindices++;
  789. }
  790. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  791. if (put_user(u32reg | vfp_sysregs[i], uindices))
  792. return -EFAULT;
  793. uindices++;
  794. }
  795. return num_vfp_regs();
  796. }
  797. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  798. {
  799. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  800. u32 val;
  801. /* Fail if we have unknown bits set. */
  802. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  803. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  804. return -ENOENT;
  805. if (vfpid < num_fp_regs()) {
  806. if (KVM_REG_SIZE(id) != 8)
  807. return -ENOENT;
  808. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
  809. id);
  810. }
  811. /* FP control registers are all 32 bit. */
  812. if (KVM_REG_SIZE(id) != 4)
  813. return -ENOENT;
  814. switch (vfpid) {
  815. case KVM_REG_ARM_VFP_FPEXC:
  816. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
  817. case KVM_REG_ARM_VFP_FPSCR:
  818. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
  819. case KVM_REG_ARM_VFP_FPINST:
  820. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
  821. case KVM_REG_ARM_VFP_FPINST2:
  822. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
  823. case KVM_REG_ARM_VFP_MVFR0:
  824. val = fmrx(MVFR0);
  825. return reg_to_user(uaddr, &val, id);
  826. case KVM_REG_ARM_VFP_MVFR1:
  827. val = fmrx(MVFR1);
  828. return reg_to_user(uaddr, &val, id);
  829. case KVM_REG_ARM_VFP_FPSID:
  830. val = fmrx(FPSID);
  831. return reg_to_user(uaddr, &val, id);
  832. default:
  833. return -ENOENT;
  834. }
  835. }
  836. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  837. {
  838. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  839. u32 val;
  840. /* Fail if we have unknown bits set. */
  841. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  842. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  843. return -ENOENT;
  844. if (vfpid < num_fp_regs()) {
  845. if (KVM_REG_SIZE(id) != 8)
  846. return -ENOENT;
  847. return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
  848. uaddr, id);
  849. }
  850. /* FP control registers are all 32 bit. */
  851. if (KVM_REG_SIZE(id) != 4)
  852. return -ENOENT;
  853. switch (vfpid) {
  854. case KVM_REG_ARM_VFP_FPEXC:
  855. return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
  856. case KVM_REG_ARM_VFP_FPSCR:
  857. return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
  858. case KVM_REG_ARM_VFP_FPINST:
  859. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
  860. case KVM_REG_ARM_VFP_FPINST2:
  861. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
  862. /* These are invariant. */
  863. case KVM_REG_ARM_VFP_MVFR0:
  864. if (reg_from_user(&val, uaddr, id))
  865. return -EFAULT;
  866. if (val != fmrx(MVFR0))
  867. return -EINVAL;
  868. return 0;
  869. case KVM_REG_ARM_VFP_MVFR1:
  870. if (reg_from_user(&val, uaddr, id))
  871. return -EFAULT;
  872. if (val != fmrx(MVFR1))
  873. return -EINVAL;
  874. return 0;
  875. case KVM_REG_ARM_VFP_FPSID:
  876. if (reg_from_user(&val, uaddr, id))
  877. return -EFAULT;
  878. if (val != fmrx(FPSID))
  879. return -EINVAL;
  880. return 0;
  881. default:
  882. return -ENOENT;
  883. }
  884. }
  885. #else /* !CONFIG_VFPv3 */
  886. static unsigned int num_vfp_regs(void)
  887. {
  888. return 0;
  889. }
  890. static int copy_vfp_regids(u64 __user *uindices)
  891. {
  892. return 0;
  893. }
  894. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  895. {
  896. return -ENOENT;
  897. }
  898. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  899. {
  900. return -ENOENT;
  901. }
  902. #endif /* !CONFIG_VFPv3 */
  903. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  904. {
  905. const struct coproc_reg *r;
  906. void __user *uaddr = (void __user *)(long)reg->addr;
  907. int ret;
  908. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  909. return demux_c15_get(reg->id, uaddr);
  910. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  911. return vfp_get_reg(vcpu, reg->id, uaddr);
  912. r = index_to_coproc_reg(vcpu, reg->id);
  913. if (!r)
  914. return get_invariant_cp15(reg->id, uaddr);
  915. ret = -ENOENT;
  916. if (KVM_REG_SIZE(reg->id) == 8) {
  917. u64 val;
  918. val = vcpu_cp15_reg64_get(vcpu, r);
  919. ret = reg_to_user(uaddr, &val, reg->id);
  920. } else if (KVM_REG_SIZE(reg->id) == 4) {
  921. ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
  922. }
  923. return ret;
  924. }
  925. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  926. {
  927. const struct coproc_reg *r;
  928. void __user *uaddr = (void __user *)(long)reg->addr;
  929. int ret;
  930. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  931. return demux_c15_set(reg->id, uaddr);
  932. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  933. return vfp_set_reg(vcpu, reg->id, uaddr);
  934. r = index_to_coproc_reg(vcpu, reg->id);
  935. if (!r)
  936. return set_invariant_cp15(reg->id, uaddr);
  937. ret = -ENOENT;
  938. if (KVM_REG_SIZE(reg->id) == 8) {
  939. u64 val;
  940. ret = reg_from_user(&val, uaddr, reg->id);
  941. if (!ret)
  942. vcpu_cp15_reg64_set(vcpu, r, val);
  943. } else if (KVM_REG_SIZE(reg->id) == 4) {
  944. ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
  945. }
  946. return ret;
  947. }
  948. static unsigned int num_demux_regs(void)
  949. {
  950. unsigned int i, count = 0;
  951. for (i = 0; i < CSSELR_MAX; i++)
  952. if (is_valid_cache(i))
  953. count++;
  954. return count;
  955. }
  956. static int write_demux_regids(u64 __user *uindices)
  957. {
  958. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  959. unsigned int i;
  960. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  961. for (i = 0; i < CSSELR_MAX; i++) {
  962. if (!is_valid_cache(i))
  963. continue;
  964. if (put_user(val | i, uindices))
  965. return -EFAULT;
  966. uindices++;
  967. }
  968. return 0;
  969. }
  970. static u64 cp15_to_index(const struct coproc_reg *reg)
  971. {
  972. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  973. if (reg->is_64bit) {
  974. val |= KVM_REG_SIZE_U64;
  975. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  976. /*
  977. * CRn always denotes the primary coproc. reg. nr. for the
  978. * in-kernel representation, but the user space API uses the
  979. * CRm for the encoding, because it is modelled after the
  980. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  981. * B3-1445
  982. */
  983. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  984. } else {
  985. val |= KVM_REG_SIZE_U32;
  986. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  987. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  988. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  989. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  990. }
  991. return val;
  992. }
  993. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  994. {
  995. if (!*uind)
  996. return true;
  997. if (put_user(cp15_to_index(reg), *uind))
  998. return false;
  999. (*uind)++;
  1000. return true;
  1001. }
  1002. /* Assumed ordered tables, see kvm_coproc_table_init. */
  1003. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  1004. {
  1005. const struct coproc_reg *i1, *i2, *end1, *end2;
  1006. unsigned int total = 0;
  1007. size_t num;
  1008. /* We check for duplicates here, to allow arch-specific overrides. */
  1009. i1 = get_target_table(vcpu->arch.target, &num);
  1010. end1 = i1 + num;
  1011. i2 = cp15_regs;
  1012. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  1013. BUG_ON(i1 == end1 || i2 == end2);
  1014. /* Walk carefully, as both tables may refer to the same register. */
  1015. while (i1 || i2) {
  1016. int cmp = cmp_reg(i1, i2);
  1017. /* target-specific overrides generic entry. */
  1018. if (cmp <= 0) {
  1019. /* Ignore registers we trap but don't save. */
  1020. if (i1->reg) {
  1021. if (!copy_reg_to_user(i1, &uind))
  1022. return -EFAULT;
  1023. total++;
  1024. }
  1025. } else {
  1026. /* Ignore registers we trap but don't save. */
  1027. if (i2->reg) {
  1028. if (!copy_reg_to_user(i2, &uind))
  1029. return -EFAULT;
  1030. total++;
  1031. }
  1032. }
  1033. if (cmp <= 0 && ++i1 == end1)
  1034. i1 = NULL;
  1035. if (cmp >= 0 && ++i2 == end2)
  1036. i2 = NULL;
  1037. }
  1038. return total;
  1039. }
  1040. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  1041. {
  1042. return ARRAY_SIZE(invariant_cp15)
  1043. + num_demux_regs()
  1044. + num_vfp_regs()
  1045. + walk_cp15(vcpu, (u64 __user *)NULL);
  1046. }
  1047. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1048. {
  1049. unsigned int i;
  1050. int err;
  1051. /* Then give them all the invariant registers' indices. */
  1052. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  1053. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  1054. return -EFAULT;
  1055. uindices++;
  1056. }
  1057. err = walk_cp15(vcpu, uindices);
  1058. if (err < 0)
  1059. return err;
  1060. uindices += err;
  1061. err = copy_vfp_regids(uindices);
  1062. if (err < 0)
  1063. return err;
  1064. uindices += err;
  1065. return write_demux_regids(uindices);
  1066. }
  1067. void kvm_coproc_table_init(void)
  1068. {
  1069. unsigned int i;
  1070. /* Make sure tables are unique and in order. */
  1071. BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
  1072. BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
  1073. /* We abuse the reset function to overwrite the table itself. */
  1074. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  1075. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  1076. /*
  1077. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1078. *
  1079. * If software reads the Cache Type fields from Ctype1
  1080. * upwards, once it has seen a value of 0b000, no caches
  1081. * exist at further-out levels of the hierarchy. So, for
  1082. * example, if Ctype3 is the first Cache Type field with a
  1083. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1084. * ignored.
  1085. */
  1086. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  1087. for (i = 0; i < 7; i++)
  1088. if (((cache_levels >> (i*3)) & 7) == 0)
  1089. break;
  1090. /* Clear all higher bits. */
  1091. cache_levels &= (1 << (i*3))-1;
  1092. }
  1093. /**
  1094. * kvm_reset_coprocs - sets cp15 registers to reset value
  1095. * @vcpu: The VCPU pointer
  1096. *
  1097. * This function finds the right table above and sets the registers on the
  1098. * virtual CPU struct to their architecturally defined reset values.
  1099. */
  1100. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  1101. {
  1102. size_t num;
  1103. const struct coproc_reg *table;
  1104. /* Catch someone adding a register without putting in reset entry. */
  1105. memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
  1106. /* Generic chip reset first (so target could override). */
  1107. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1108. table = get_target_table(vcpu->arch.target, &num);
  1109. reset_coproc_regs(vcpu, table, num);
  1110. for (num = 1; num < NR_CP15_REGS; num++)
  1111. if (vcpu_cp15(vcpu, num) == 0x42424242)
  1112. panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
  1113. }