aes-ce-glue.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * aes-ce-glue.c - wrapper code for ARMv8 AES
  3. *
  4. * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <asm/hwcap.h>
  11. #include <asm/neon.h>
  12. #include <asm/hwcap.h>
  13. #include <crypto/aes.h>
  14. #include <crypto/internal/simd.h>
  15. #include <crypto/internal/skcipher.h>
  16. #include <linux/module.h>
  17. #include <crypto/xts.h>
  18. MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
  19. MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  20. MODULE_LICENSE("GPL v2");
  21. /* defined in aes-ce-core.S */
  22. asmlinkage u32 ce_aes_sub(u32 input);
  23. asmlinkage void ce_aes_invert(void *dst, void *src);
  24. asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
  25. int rounds, int blocks);
  26. asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
  27. int rounds, int blocks);
  28. asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
  29. int rounds, int blocks, u8 iv[]);
  30. asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
  31. int rounds, int blocks, u8 iv[]);
  32. asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
  33. int rounds, int blocks, u8 ctr[]);
  34. asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
  35. int rounds, int blocks, u8 iv[],
  36. u8 const rk2[], int first);
  37. asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
  38. int rounds, int blocks, u8 iv[],
  39. u8 const rk2[], int first);
  40. struct aes_block {
  41. u8 b[AES_BLOCK_SIZE];
  42. };
  43. static int num_rounds(struct crypto_aes_ctx *ctx)
  44. {
  45. /*
  46. * # of rounds specified by AES:
  47. * 128 bit key 10 rounds
  48. * 192 bit key 12 rounds
  49. * 256 bit key 14 rounds
  50. * => n byte key => 6 + (n/4) rounds
  51. */
  52. return 6 + ctx->key_length / 4;
  53. }
  54. static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
  55. unsigned int key_len)
  56. {
  57. /*
  58. * The AES key schedule round constants
  59. */
  60. static u8 const rcon[] = {
  61. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
  62. };
  63. u32 kwords = key_len / sizeof(u32);
  64. struct aes_block *key_enc, *key_dec;
  65. int i, j;
  66. if (key_len != AES_KEYSIZE_128 &&
  67. key_len != AES_KEYSIZE_192 &&
  68. key_len != AES_KEYSIZE_256)
  69. return -EINVAL;
  70. memcpy(ctx->key_enc, in_key, key_len);
  71. ctx->key_length = key_len;
  72. kernel_neon_begin();
  73. for (i = 0; i < sizeof(rcon); i++) {
  74. u32 *rki = ctx->key_enc + (i * kwords);
  75. u32 *rko = rki + kwords;
  76. #ifndef CONFIG_CPU_BIG_ENDIAN
  77. rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
  78. rko[0] = rko[0] ^ rki[0] ^ rcon[i];
  79. #else
  80. rko[0] = rol32(ce_aes_sub(rki[kwords - 1]), 8);
  81. rko[0] = rko[0] ^ rki[0] ^ (rcon[i] << 24);
  82. #endif
  83. rko[1] = rko[0] ^ rki[1];
  84. rko[2] = rko[1] ^ rki[2];
  85. rko[3] = rko[2] ^ rki[3];
  86. if (key_len == AES_KEYSIZE_192) {
  87. if (i >= 7)
  88. break;
  89. rko[4] = rko[3] ^ rki[4];
  90. rko[5] = rko[4] ^ rki[5];
  91. } else if (key_len == AES_KEYSIZE_256) {
  92. if (i >= 6)
  93. break;
  94. rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
  95. rko[5] = rko[4] ^ rki[5];
  96. rko[6] = rko[5] ^ rki[6];
  97. rko[7] = rko[6] ^ rki[7];
  98. }
  99. }
  100. /*
  101. * Generate the decryption keys for the Equivalent Inverse Cipher.
  102. * This involves reversing the order of the round keys, and applying
  103. * the Inverse Mix Columns transformation on all but the first and
  104. * the last one.
  105. */
  106. key_enc = (struct aes_block *)ctx->key_enc;
  107. key_dec = (struct aes_block *)ctx->key_dec;
  108. j = num_rounds(ctx);
  109. key_dec[0] = key_enc[j];
  110. for (i = 1, j--; j > 0; i++, j--)
  111. ce_aes_invert(key_dec + i, key_enc + j);
  112. key_dec[i] = key_enc[0];
  113. kernel_neon_end();
  114. return 0;
  115. }
  116. static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
  117. unsigned int key_len)
  118. {
  119. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  120. int ret;
  121. ret = ce_aes_expandkey(ctx, in_key, key_len);
  122. if (!ret)
  123. return 0;
  124. crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  125. return -EINVAL;
  126. }
  127. struct crypto_aes_xts_ctx {
  128. struct crypto_aes_ctx key1;
  129. struct crypto_aes_ctx __aligned(8) key2;
  130. };
  131. static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
  132. unsigned int key_len)
  133. {
  134. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  135. int ret;
  136. ret = xts_verify_key(tfm, in_key, key_len);
  137. if (ret)
  138. return ret;
  139. ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
  140. if (!ret)
  141. ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
  142. key_len / 2);
  143. if (!ret)
  144. return 0;
  145. crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  146. return -EINVAL;
  147. }
  148. static int ecb_encrypt(struct skcipher_request *req)
  149. {
  150. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  151. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  152. struct skcipher_walk walk;
  153. unsigned int blocks;
  154. int err;
  155. err = skcipher_walk_virt(&walk, req, true);
  156. kernel_neon_begin();
  157. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  158. ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  159. (u8 *)ctx->key_enc, num_rounds(ctx), blocks);
  160. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  161. }
  162. kernel_neon_end();
  163. return err;
  164. }
  165. static int ecb_decrypt(struct skcipher_request *req)
  166. {
  167. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  168. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  169. struct skcipher_walk walk;
  170. unsigned int blocks;
  171. int err;
  172. err = skcipher_walk_virt(&walk, req, true);
  173. kernel_neon_begin();
  174. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  175. ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  176. (u8 *)ctx->key_dec, num_rounds(ctx), blocks);
  177. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  178. }
  179. kernel_neon_end();
  180. return err;
  181. }
  182. static int cbc_encrypt(struct skcipher_request *req)
  183. {
  184. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  185. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  186. struct skcipher_walk walk;
  187. unsigned int blocks;
  188. int err;
  189. err = skcipher_walk_virt(&walk, req, true);
  190. kernel_neon_begin();
  191. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  192. ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  193. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  194. walk.iv);
  195. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  196. }
  197. kernel_neon_end();
  198. return err;
  199. }
  200. static int cbc_decrypt(struct skcipher_request *req)
  201. {
  202. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  203. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  204. struct skcipher_walk walk;
  205. unsigned int blocks;
  206. int err;
  207. err = skcipher_walk_virt(&walk, req, true);
  208. kernel_neon_begin();
  209. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  210. ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  211. (u8 *)ctx->key_dec, num_rounds(ctx), blocks,
  212. walk.iv);
  213. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  214. }
  215. kernel_neon_end();
  216. return err;
  217. }
  218. static int ctr_encrypt(struct skcipher_request *req)
  219. {
  220. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  221. struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
  222. struct skcipher_walk walk;
  223. int err, blocks;
  224. err = skcipher_walk_virt(&walk, req, true);
  225. kernel_neon_begin();
  226. while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
  227. ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  228. (u8 *)ctx->key_enc, num_rounds(ctx), blocks,
  229. walk.iv);
  230. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  231. }
  232. if (walk.nbytes) {
  233. u8 __aligned(8) tail[AES_BLOCK_SIZE];
  234. unsigned int nbytes = walk.nbytes;
  235. u8 *tdst = walk.dst.virt.addr;
  236. u8 *tsrc = walk.src.virt.addr;
  237. /*
  238. * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need
  239. * to tell aes_ctr_encrypt() to only read half a block.
  240. */
  241. blocks = (nbytes <= 8) ? -1 : 1;
  242. ce_aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc,
  243. num_rounds(ctx), blocks, walk.iv);
  244. memcpy(tdst, tail, nbytes);
  245. err = skcipher_walk_done(&walk, 0);
  246. }
  247. kernel_neon_end();
  248. return err;
  249. }
  250. static int xts_encrypt(struct skcipher_request *req)
  251. {
  252. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  253. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  254. int err, first, rounds = num_rounds(&ctx->key1);
  255. struct skcipher_walk walk;
  256. unsigned int blocks;
  257. err = skcipher_walk_virt(&walk, req, true);
  258. kernel_neon_begin();
  259. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  260. ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
  261. (u8 *)ctx->key1.key_enc, rounds, blocks,
  262. walk.iv, (u8 *)ctx->key2.key_enc, first);
  263. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  264. }
  265. kernel_neon_end();
  266. return err;
  267. }
  268. static int xts_decrypt(struct skcipher_request *req)
  269. {
  270. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  271. struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
  272. int err, first, rounds = num_rounds(&ctx->key1);
  273. struct skcipher_walk walk;
  274. unsigned int blocks;
  275. err = skcipher_walk_virt(&walk, req, true);
  276. kernel_neon_begin();
  277. for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
  278. ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
  279. (u8 *)ctx->key1.key_dec, rounds, blocks,
  280. walk.iv, (u8 *)ctx->key2.key_enc, first);
  281. err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
  282. }
  283. kernel_neon_end();
  284. return err;
  285. }
  286. static struct skcipher_alg aes_algs[] = { {
  287. .base = {
  288. .cra_name = "__ecb(aes)",
  289. .cra_driver_name = "__ecb-aes-ce",
  290. .cra_priority = 300,
  291. .cra_flags = CRYPTO_ALG_INTERNAL,
  292. .cra_blocksize = AES_BLOCK_SIZE,
  293. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  294. .cra_alignmask = 7,
  295. .cra_module = THIS_MODULE,
  296. },
  297. .min_keysize = AES_MIN_KEY_SIZE,
  298. .max_keysize = AES_MAX_KEY_SIZE,
  299. .setkey = ce_aes_setkey,
  300. .encrypt = ecb_encrypt,
  301. .decrypt = ecb_decrypt,
  302. }, {
  303. .base = {
  304. .cra_name = "__cbc(aes)",
  305. .cra_driver_name = "__cbc-aes-ce",
  306. .cra_priority = 300,
  307. .cra_flags = CRYPTO_ALG_INTERNAL,
  308. .cra_blocksize = AES_BLOCK_SIZE,
  309. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  310. .cra_alignmask = 7,
  311. .cra_module = THIS_MODULE,
  312. },
  313. .min_keysize = AES_MIN_KEY_SIZE,
  314. .max_keysize = AES_MAX_KEY_SIZE,
  315. .ivsize = AES_BLOCK_SIZE,
  316. .setkey = ce_aes_setkey,
  317. .encrypt = cbc_encrypt,
  318. .decrypt = cbc_decrypt,
  319. }, {
  320. .base = {
  321. .cra_name = "__ctr(aes)",
  322. .cra_driver_name = "__ctr-aes-ce",
  323. .cra_priority = 300,
  324. .cra_flags = CRYPTO_ALG_INTERNAL,
  325. .cra_blocksize = 1,
  326. .cra_ctxsize = sizeof(struct crypto_aes_ctx),
  327. .cra_alignmask = 7,
  328. .cra_module = THIS_MODULE,
  329. },
  330. .min_keysize = AES_MIN_KEY_SIZE,
  331. .max_keysize = AES_MAX_KEY_SIZE,
  332. .ivsize = AES_BLOCK_SIZE,
  333. .chunksize = AES_BLOCK_SIZE,
  334. .setkey = ce_aes_setkey,
  335. .encrypt = ctr_encrypt,
  336. .decrypt = ctr_encrypt,
  337. }, {
  338. .base = {
  339. .cra_name = "__xts(aes)",
  340. .cra_driver_name = "__xts-aes-ce",
  341. .cra_priority = 300,
  342. .cra_flags = CRYPTO_ALG_INTERNAL,
  343. .cra_blocksize = AES_BLOCK_SIZE,
  344. .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
  345. .cra_alignmask = 7,
  346. .cra_module = THIS_MODULE,
  347. },
  348. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  349. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  350. .ivsize = AES_BLOCK_SIZE,
  351. .setkey = xts_set_key,
  352. .encrypt = xts_encrypt,
  353. .decrypt = xts_decrypt,
  354. } };
  355. static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
  356. static void aes_exit(void)
  357. {
  358. int i;
  359. for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++)
  360. simd_skcipher_free(aes_simd_algs[i]);
  361. crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  362. }
  363. static int __init aes_init(void)
  364. {
  365. struct simd_skcipher_alg *simd;
  366. const char *basename;
  367. const char *algname;
  368. const char *drvname;
  369. int err;
  370. int i;
  371. if (!(elf_hwcap2 & HWCAP2_AES))
  372. return -ENODEV;
  373. err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
  374. if (err)
  375. return err;
  376. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  377. algname = aes_algs[i].base.cra_name + 2;
  378. drvname = aes_algs[i].base.cra_driver_name + 2;
  379. basename = aes_algs[i].base.cra_driver_name;
  380. simd = simd_skcipher_create_compat(algname, drvname, basename);
  381. err = PTR_ERR(simd);
  382. if (IS_ERR(simd))
  383. goto unregister_simds;
  384. aes_simd_algs[i] = simd;
  385. }
  386. return 0;
  387. unregister_simds:
  388. aes_exit();
  389. return err;
  390. }
  391. module_init(aes_init);
  392. module_exit(aes_exit);