ring_buffer.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/trace_events.h>
  7. #include <linux/ring_buffer.h>
  8. #include <linux/trace_clock.h>
  9. #include <linux/sched/clock.h>
  10. #include <linux/trace_seq.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/irq_work.h>
  13. #include <linux/uaccess.h>
  14. #include <linux/hardirq.h>
  15. #include <linux/kthread.h> /* for self test */
  16. #include <linux/module.h>
  17. #include <linux/percpu.h>
  18. #include <linux/mutex.h>
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/hash.h>
  23. #include <linux/list.h>
  24. #include <linux/cpu.h>
  25. #include <asm/local.h>
  26. static void update_pages_handler(struct work_struct *work);
  27. /*
  28. * The ring buffer header is special. We must manually up keep it.
  29. */
  30. int ring_buffer_print_entry_header(struct trace_seq *s)
  31. {
  32. trace_seq_puts(s, "# compressed entry header\n");
  33. trace_seq_puts(s, "\ttype_len : 5 bits\n");
  34. trace_seq_puts(s, "\ttime_delta : 27 bits\n");
  35. trace_seq_puts(s, "\tarray : 32 bits\n");
  36. trace_seq_putc(s, '\n');
  37. trace_seq_printf(s, "\tpadding : type == %d\n",
  38. RINGBUF_TYPE_PADDING);
  39. trace_seq_printf(s, "\ttime_extend : type == %d\n",
  40. RINGBUF_TYPE_TIME_EXTEND);
  41. trace_seq_printf(s, "\tdata max type_len == %d\n",
  42. RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  43. return !trace_seq_has_overflowed(s);
  44. }
  45. /*
  46. * The ring buffer is made up of a list of pages. A separate list of pages is
  47. * allocated for each CPU. A writer may only write to a buffer that is
  48. * associated with the CPU it is currently executing on. A reader may read
  49. * from any per cpu buffer.
  50. *
  51. * The reader is special. For each per cpu buffer, the reader has its own
  52. * reader page. When a reader has read the entire reader page, this reader
  53. * page is swapped with another page in the ring buffer.
  54. *
  55. * Now, as long as the writer is off the reader page, the reader can do what
  56. * ever it wants with that page. The writer will never write to that page
  57. * again (as long as it is out of the ring buffer).
  58. *
  59. * Here's some silly ASCII art.
  60. *
  61. * +------+
  62. * |reader| RING BUFFER
  63. * |page |
  64. * +------+ +---+ +---+ +---+
  65. * | |-->| |-->| |
  66. * +---+ +---+ +---+
  67. * ^ |
  68. * | |
  69. * +---------------+
  70. *
  71. *
  72. * +------+
  73. * |reader| RING BUFFER
  74. * |page |------------------v
  75. * +------+ +---+ +---+ +---+
  76. * | |-->| |-->| |
  77. * +---+ +---+ +---+
  78. * ^ |
  79. * | |
  80. * +---------------+
  81. *
  82. *
  83. * +------+
  84. * |reader| RING BUFFER
  85. * |page |------------------v
  86. * +------+ +---+ +---+ +---+
  87. * ^ | |-->| |-->| |
  88. * | +---+ +---+ +---+
  89. * | |
  90. * | |
  91. * +------------------------------+
  92. *
  93. *
  94. * +------+
  95. * |buffer| RING BUFFER
  96. * |page |------------------v
  97. * +------+ +---+ +---+ +---+
  98. * ^ | | | |-->| |
  99. * | New +---+ +---+ +---+
  100. * | Reader------^ |
  101. * | page |
  102. * +------------------------------+
  103. *
  104. *
  105. * After we make this swap, the reader can hand this page off to the splice
  106. * code and be done with it. It can even allocate a new page if it needs to
  107. * and swap that into the ring buffer.
  108. *
  109. * We will be using cmpxchg soon to make all this lockless.
  110. *
  111. */
  112. /* Used for individual buffers (after the counter) */
  113. #define RB_BUFFER_OFF (1 << 20)
  114. #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
  115. #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
  116. #define RB_ALIGNMENT 4U
  117. #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  118. #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
  119. #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
  120. # define RB_FORCE_8BYTE_ALIGNMENT 0
  121. # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
  122. #else
  123. # define RB_FORCE_8BYTE_ALIGNMENT 1
  124. # define RB_ARCH_ALIGNMENT 8U
  125. #endif
  126. #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
  127. /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
  128. #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
  129. enum {
  130. RB_LEN_TIME_EXTEND = 8,
  131. RB_LEN_TIME_STAMP = 16,
  132. };
  133. #define skip_time_extend(event) \
  134. ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
  135. static inline int rb_null_event(struct ring_buffer_event *event)
  136. {
  137. return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
  138. }
  139. static void rb_event_set_padding(struct ring_buffer_event *event)
  140. {
  141. /* padding has a NULL time_delta */
  142. event->type_len = RINGBUF_TYPE_PADDING;
  143. event->time_delta = 0;
  144. }
  145. static unsigned
  146. rb_event_data_length(struct ring_buffer_event *event)
  147. {
  148. unsigned length;
  149. if (event->type_len)
  150. length = event->type_len * RB_ALIGNMENT;
  151. else
  152. length = event->array[0];
  153. return length + RB_EVNT_HDR_SIZE;
  154. }
  155. /*
  156. * Return the length of the given event. Will return
  157. * the length of the time extend if the event is a
  158. * time extend.
  159. */
  160. static inline unsigned
  161. rb_event_length(struct ring_buffer_event *event)
  162. {
  163. switch (event->type_len) {
  164. case RINGBUF_TYPE_PADDING:
  165. if (rb_null_event(event))
  166. /* undefined */
  167. return -1;
  168. return event->array[0] + RB_EVNT_HDR_SIZE;
  169. case RINGBUF_TYPE_TIME_EXTEND:
  170. return RB_LEN_TIME_EXTEND;
  171. case RINGBUF_TYPE_TIME_STAMP:
  172. return RB_LEN_TIME_STAMP;
  173. case RINGBUF_TYPE_DATA:
  174. return rb_event_data_length(event);
  175. default:
  176. BUG();
  177. }
  178. /* not hit */
  179. return 0;
  180. }
  181. /*
  182. * Return total length of time extend and data,
  183. * or just the event length for all other events.
  184. */
  185. static inline unsigned
  186. rb_event_ts_length(struct ring_buffer_event *event)
  187. {
  188. unsigned len = 0;
  189. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  190. /* time extends include the data event after it */
  191. len = RB_LEN_TIME_EXTEND;
  192. event = skip_time_extend(event);
  193. }
  194. return len + rb_event_length(event);
  195. }
  196. /**
  197. * ring_buffer_event_length - return the length of the event
  198. * @event: the event to get the length of
  199. *
  200. * Returns the size of the data load of a data event.
  201. * If the event is something other than a data event, it
  202. * returns the size of the event itself. With the exception
  203. * of a TIME EXTEND, where it still returns the size of the
  204. * data load of the data event after it.
  205. */
  206. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  207. {
  208. unsigned length;
  209. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  210. event = skip_time_extend(event);
  211. length = rb_event_length(event);
  212. if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  213. return length;
  214. length -= RB_EVNT_HDR_SIZE;
  215. if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
  216. length -= sizeof(event->array[0]);
  217. return length;
  218. }
  219. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  220. /* inline for ring buffer fast paths */
  221. static __always_inline void *
  222. rb_event_data(struct ring_buffer_event *event)
  223. {
  224. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  225. event = skip_time_extend(event);
  226. BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  227. /* If length is in len field, then array[0] has the data */
  228. if (event->type_len)
  229. return (void *)&event->array[0];
  230. /* Otherwise length is in array[0] and array[1] has the data */
  231. return (void *)&event->array[1];
  232. }
  233. /**
  234. * ring_buffer_event_data - return the data of the event
  235. * @event: the event to get the data from
  236. */
  237. void *ring_buffer_event_data(struct ring_buffer_event *event)
  238. {
  239. return rb_event_data(event);
  240. }
  241. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  242. #define for_each_buffer_cpu(buffer, cpu) \
  243. for_each_cpu(cpu, buffer->cpumask)
  244. #define TS_SHIFT 27
  245. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  246. #define TS_DELTA_TEST (~TS_MASK)
  247. /* Flag when events were overwritten */
  248. #define RB_MISSED_EVENTS (1 << 31)
  249. /* Missed count stored at end */
  250. #define RB_MISSED_STORED (1 << 30)
  251. #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
  252. struct buffer_data_page {
  253. u64 time_stamp; /* page time stamp */
  254. local_t commit; /* write committed index */
  255. unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
  256. };
  257. /*
  258. * Note, the buffer_page list must be first. The buffer pages
  259. * are allocated in cache lines, which means that each buffer
  260. * page will be at the beginning of a cache line, and thus
  261. * the least significant bits will be zero. We use this to
  262. * add flags in the list struct pointers, to make the ring buffer
  263. * lockless.
  264. */
  265. struct buffer_page {
  266. struct list_head list; /* list of buffer pages */
  267. local_t write; /* index for next write */
  268. unsigned read; /* index for next read */
  269. local_t entries; /* entries on this page */
  270. unsigned long real_end; /* real end of data */
  271. struct buffer_data_page *page; /* Actual data page */
  272. };
  273. /*
  274. * The buffer page counters, write and entries, must be reset
  275. * atomically when crossing page boundaries. To synchronize this
  276. * update, two counters are inserted into the number. One is
  277. * the actual counter for the write position or count on the page.
  278. *
  279. * The other is a counter of updaters. Before an update happens
  280. * the update partition of the counter is incremented. This will
  281. * allow the updater to update the counter atomically.
  282. *
  283. * The counter is 20 bits, and the state data is 12.
  284. */
  285. #define RB_WRITE_MASK 0xfffff
  286. #define RB_WRITE_INTCNT (1 << 20)
  287. static void rb_init_page(struct buffer_data_page *bpage)
  288. {
  289. local_set(&bpage->commit, 0);
  290. }
  291. /**
  292. * ring_buffer_page_len - the size of data on the page.
  293. * @page: The page to read
  294. *
  295. * Returns the amount of data on the page, including buffer page header.
  296. */
  297. size_t ring_buffer_page_len(void *page)
  298. {
  299. struct buffer_data_page *bpage = page;
  300. return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
  301. + BUF_PAGE_HDR_SIZE;
  302. }
  303. /*
  304. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  305. * this issue out.
  306. */
  307. static void free_buffer_page(struct buffer_page *bpage)
  308. {
  309. free_page((unsigned long)bpage->page);
  310. kfree(bpage);
  311. }
  312. /*
  313. * We need to fit the time_stamp delta into 27 bits.
  314. */
  315. static inline int test_time_stamp(u64 delta)
  316. {
  317. if (delta & TS_DELTA_TEST)
  318. return 1;
  319. return 0;
  320. }
  321. #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
  322. /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
  323. #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
  324. int ring_buffer_print_page_header(struct trace_seq *s)
  325. {
  326. struct buffer_data_page field;
  327. trace_seq_printf(s, "\tfield: u64 timestamp;\t"
  328. "offset:0;\tsize:%u;\tsigned:%u;\n",
  329. (unsigned int)sizeof(field.time_stamp),
  330. (unsigned int)is_signed_type(u64));
  331. trace_seq_printf(s, "\tfield: local_t commit;\t"
  332. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  333. (unsigned int)offsetof(typeof(field), commit),
  334. (unsigned int)sizeof(field.commit),
  335. (unsigned int)is_signed_type(long));
  336. trace_seq_printf(s, "\tfield: int overwrite;\t"
  337. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  338. (unsigned int)offsetof(typeof(field), commit),
  339. 1,
  340. (unsigned int)is_signed_type(long));
  341. trace_seq_printf(s, "\tfield: char data;\t"
  342. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  343. (unsigned int)offsetof(typeof(field), data),
  344. (unsigned int)BUF_PAGE_SIZE,
  345. (unsigned int)is_signed_type(char));
  346. return !trace_seq_has_overflowed(s);
  347. }
  348. struct rb_irq_work {
  349. struct irq_work work;
  350. wait_queue_head_t waiters;
  351. wait_queue_head_t full_waiters;
  352. bool waiters_pending;
  353. bool full_waiters_pending;
  354. bool wakeup_full;
  355. };
  356. /*
  357. * Structure to hold event state and handle nested events.
  358. */
  359. struct rb_event_info {
  360. u64 ts;
  361. u64 delta;
  362. unsigned long length;
  363. struct buffer_page *tail_page;
  364. int add_timestamp;
  365. };
  366. /*
  367. * Used for which event context the event is in.
  368. * NMI = 0
  369. * IRQ = 1
  370. * SOFTIRQ = 2
  371. * NORMAL = 3
  372. *
  373. * See trace_recursive_lock() comment below for more details.
  374. */
  375. enum {
  376. RB_CTX_NMI,
  377. RB_CTX_IRQ,
  378. RB_CTX_SOFTIRQ,
  379. RB_CTX_NORMAL,
  380. RB_CTX_MAX
  381. };
  382. /*
  383. * head_page == tail_page && head == tail then buffer is empty.
  384. */
  385. struct ring_buffer_per_cpu {
  386. int cpu;
  387. atomic_t record_disabled;
  388. struct ring_buffer *buffer;
  389. raw_spinlock_t reader_lock; /* serialize readers */
  390. arch_spinlock_t lock;
  391. struct lock_class_key lock_key;
  392. struct buffer_data_page *free_page;
  393. unsigned long nr_pages;
  394. unsigned int current_context;
  395. struct list_head *pages;
  396. struct buffer_page *head_page; /* read from head */
  397. struct buffer_page *tail_page; /* write to tail */
  398. struct buffer_page *commit_page; /* committed pages */
  399. struct buffer_page *reader_page;
  400. unsigned long lost_events;
  401. unsigned long last_overrun;
  402. local_t entries_bytes;
  403. local_t entries;
  404. local_t overrun;
  405. local_t commit_overrun;
  406. local_t dropped_events;
  407. local_t committing;
  408. local_t commits;
  409. unsigned long read;
  410. unsigned long read_bytes;
  411. u64 write_stamp;
  412. u64 read_stamp;
  413. /* ring buffer pages to update, > 0 to add, < 0 to remove */
  414. long nr_pages_to_update;
  415. struct list_head new_pages; /* new pages to add */
  416. struct work_struct update_pages_work;
  417. struct completion update_done;
  418. struct rb_irq_work irq_work;
  419. };
  420. struct ring_buffer {
  421. unsigned flags;
  422. int cpus;
  423. atomic_t record_disabled;
  424. atomic_t resize_disabled;
  425. cpumask_var_t cpumask;
  426. struct lock_class_key *reader_lock_key;
  427. struct mutex mutex;
  428. struct ring_buffer_per_cpu **buffers;
  429. struct hlist_node node;
  430. u64 (*clock)(void);
  431. struct rb_irq_work irq_work;
  432. };
  433. struct ring_buffer_iter {
  434. struct ring_buffer_per_cpu *cpu_buffer;
  435. unsigned long head;
  436. struct buffer_page *head_page;
  437. struct buffer_page *cache_reader_page;
  438. unsigned long cache_read;
  439. u64 read_stamp;
  440. };
  441. /*
  442. * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
  443. *
  444. * Schedules a delayed work to wake up any task that is blocked on the
  445. * ring buffer waiters queue.
  446. */
  447. static void rb_wake_up_waiters(struct irq_work *work)
  448. {
  449. struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
  450. wake_up_all(&rbwork->waiters);
  451. if (rbwork->wakeup_full) {
  452. rbwork->wakeup_full = false;
  453. wake_up_all(&rbwork->full_waiters);
  454. }
  455. }
  456. /**
  457. * ring_buffer_wait - wait for input to the ring buffer
  458. * @buffer: buffer to wait on
  459. * @cpu: the cpu buffer to wait on
  460. * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
  461. *
  462. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  463. * as data is added to any of the @buffer's cpu buffers. Otherwise
  464. * it will wait for data to be added to a specific cpu buffer.
  465. */
  466. int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
  467. {
  468. struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
  469. DEFINE_WAIT(wait);
  470. struct rb_irq_work *work;
  471. int ret = 0;
  472. /*
  473. * Depending on what the caller is waiting for, either any
  474. * data in any cpu buffer, or a specific buffer, put the
  475. * caller on the appropriate wait queue.
  476. */
  477. if (cpu == RING_BUFFER_ALL_CPUS) {
  478. work = &buffer->irq_work;
  479. /* Full only makes sense on per cpu reads */
  480. full = false;
  481. } else {
  482. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  483. return -ENODEV;
  484. cpu_buffer = buffer->buffers[cpu];
  485. work = &cpu_buffer->irq_work;
  486. }
  487. while (true) {
  488. if (full)
  489. prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
  490. else
  491. prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
  492. /*
  493. * The events can happen in critical sections where
  494. * checking a work queue can cause deadlocks.
  495. * After adding a task to the queue, this flag is set
  496. * only to notify events to try to wake up the queue
  497. * using irq_work.
  498. *
  499. * We don't clear it even if the buffer is no longer
  500. * empty. The flag only causes the next event to run
  501. * irq_work to do the work queue wake up. The worse
  502. * that can happen if we race with !trace_empty() is that
  503. * an event will cause an irq_work to try to wake up
  504. * an empty queue.
  505. *
  506. * There's no reason to protect this flag either, as
  507. * the work queue and irq_work logic will do the necessary
  508. * synchronization for the wake ups. The only thing
  509. * that is necessary is that the wake up happens after
  510. * a task has been queued. It's OK for spurious wake ups.
  511. */
  512. if (full)
  513. work->full_waiters_pending = true;
  514. else
  515. work->waiters_pending = true;
  516. if (signal_pending(current)) {
  517. ret = -EINTR;
  518. break;
  519. }
  520. if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
  521. break;
  522. if (cpu != RING_BUFFER_ALL_CPUS &&
  523. !ring_buffer_empty_cpu(buffer, cpu)) {
  524. unsigned long flags;
  525. bool pagebusy;
  526. if (!full)
  527. break;
  528. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  529. pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
  530. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  531. if (!pagebusy)
  532. break;
  533. }
  534. schedule();
  535. }
  536. if (full)
  537. finish_wait(&work->full_waiters, &wait);
  538. else
  539. finish_wait(&work->waiters, &wait);
  540. return ret;
  541. }
  542. /**
  543. * ring_buffer_poll_wait - poll on buffer input
  544. * @buffer: buffer to wait on
  545. * @cpu: the cpu buffer to wait on
  546. * @filp: the file descriptor
  547. * @poll_table: The poll descriptor
  548. *
  549. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  550. * as data is added to any of the @buffer's cpu buffers. Otherwise
  551. * it will wait for data to be added to a specific cpu buffer.
  552. *
  553. * Returns POLLIN | POLLRDNORM if data exists in the buffers,
  554. * zero otherwise.
  555. */
  556. int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
  557. struct file *filp, poll_table *poll_table)
  558. {
  559. struct ring_buffer_per_cpu *cpu_buffer;
  560. struct rb_irq_work *work;
  561. if (cpu == RING_BUFFER_ALL_CPUS)
  562. work = &buffer->irq_work;
  563. else {
  564. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  565. return -EINVAL;
  566. cpu_buffer = buffer->buffers[cpu];
  567. work = &cpu_buffer->irq_work;
  568. }
  569. poll_wait(filp, &work->waiters, poll_table);
  570. work->waiters_pending = true;
  571. /*
  572. * There's a tight race between setting the waiters_pending and
  573. * checking if the ring buffer is empty. Once the waiters_pending bit
  574. * is set, the next event will wake the task up, but we can get stuck
  575. * if there's only a single event in.
  576. *
  577. * FIXME: Ideally, we need a memory barrier on the writer side as well,
  578. * but adding a memory barrier to all events will cause too much of a
  579. * performance hit in the fast path. We only need a memory barrier when
  580. * the buffer goes from empty to having content. But as this race is
  581. * extremely small, and it's not a problem if another event comes in, we
  582. * will fix it later.
  583. */
  584. smp_mb();
  585. if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
  586. (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
  587. return POLLIN | POLLRDNORM;
  588. return 0;
  589. }
  590. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  591. #define RB_WARN_ON(b, cond) \
  592. ({ \
  593. int _____ret = unlikely(cond); \
  594. if (_____ret) { \
  595. if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
  596. struct ring_buffer_per_cpu *__b = \
  597. (void *)b; \
  598. atomic_inc(&__b->buffer->record_disabled); \
  599. } else \
  600. atomic_inc(&b->record_disabled); \
  601. WARN_ON(1); \
  602. } \
  603. _____ret; \
  604. })
  605. /* Up this if you want to test the TIME_EXTENTS and normalization */
  606. #define DEBUG_SHIFT 0
  607. static inline u64 rb_time_stamp(struct ring_buffer *buffer)
  608. {
  609. /* shift to debug/test normalization and TIME_EXTENTS */
  610. return buffer->clock() << DEBUG_SHIFT;
  611. }
  612. u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
  613. {
  614. u64 time;
  615. preempt_disable_notrace();
  616. time = rb_time_stamp(buffer);
  617. preempt_enable_no_resched_notrace();
  618. return time;
  619. }
  620. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  621. void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
  622. int cpu, u64 *ts)
  623. {
  624. /* Just stupid testing the normalize function and deltas */
  625. *ts >>= DEBUG_SHIFT;
  626. }
  627. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  628. /*
  629. * Making the ring buffer lockless makes things tricky.
  630. * Although writes only happen on the CPU that they are on,
  631. * and they only need to worry about interrupts. Reads can
  632. * happen on any CPU.
  633. *
  634. * The reader page is always off the ring buffer, but when the
  635. * reader finishes with a page, it needs to swap its page with
  636. * a new one from the buffer. The reader needs to take from
  637. * the head (writes go to the tail). But if a writer is in overwrite
  638. * mode and wraps, it must push the head page forward.
  639. *
  640. * Here lies the problem.
  641. *
  642. * The reader must be careful to replace only the head page, and
  643. * not another one. As described at the top of the file in the
  644. * ASCII art, the reader sets its old page to point to the next
  645. * page after head. It then sets the page after head to point to
  646. * the old reader page. But if the writer moves the head page
  647. * during this operation, the reader could end up with the tail.
  648. *
  649. * We use cmpxchg to help prevent this race. We also do something
  650. * special with the page before head. We set the LSB to 1.
  651. *
  652. * When the writer must push the page forward, it will clear the
  653. * bit that points to the head page, move the head, and then set
  654. * the bit that points to the new head page.
  655. *
  656. * We also don't want an interrupt coming in and moving the head
  657. * page on another writer. Thus we use the second LSB to catch
  658. * that too. Thus:
  659. *
  660. * head->list->prev->next bit 1 bit 0
  661. * ------- -------
  662. * Normal page 0 0
  663. * Points to head page 0 1
  664. * New head page 1 0
  665. *
  666. * Note we can not trust the prev pointer of the head page, because:
  667. *
  668. * +----+ +-----+ +-----+
  669. * | |------>| T |---X--->| N |
  670. * | |<------| | | |
  671. * +----+ +-----+ +-----+
  672. * ^ ^ |
  673. * | +-----+ | |
  674. * +----------| R |----------+ |
  675. * | |<-----------+
  676. * +-----+
  677. *
  678. * Key: ---X--> HEAD flag set in pointer
  679. * T Tail page
  680. * R Reader page
  681. * N Next page
  682. *
  683. * (see __rb_reserve_next() to see where this happens)
  684. *
  685. * What the above shows is that the reader just swapped out
  686. * the reader page with a page in the buffer, but before it
  687. * could make the new header point back to the new page added
  688. * it was preempted by a writer. The writer moved forward onto
  689. * the new page added by the reader and is about to move forward
  690. * again.
  691. *
  692. * You can see, it is legitimate for the previous pointer of
  693. * the head (or any page) not to point back to itself. But only
  694. * temporarially.
  695. */
  696. #define RB_PAGE_NORMAL 0UL
  697. #define RB_PAGE_HEAD 1UL
  698. #define RB_PAGE_UPDATE 2UL
  699. #define RB_FLAG_MASK 3UL
  700. /* PAGE_MOVED is not part of the mask */
  701. #define RB_PAGE_MOVED 4UL
  702. /*
  703. * rb_list_head - remove any bit
  704. */
  705. static struct list_head *rb_list_head(struct list_head *list)
  706. {
  707. unsigned long val = (unsigned long)list;
  708. return (struct list_head *)(val & ~RB_FLAG_MASK);
  709. }
  710. /*
  711. * rb_is_head_page - test if the given page is the head page
  712. *
  713. * Because the reader may move the head_page pointer, we can
  714. * not trust what the head page is (it may be pointing to
  715. * the reader page). But if the next page is a header page,
  716. * its flags will be non zero.
  717. */
  718. static inline int
  719. rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  720. struct buffer_page *page, struct list_head *list)
  721. {
  722. unsigned long val;
  723. val = (unsigned long)list->next;
  724. if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
  725. return RB_PAGE_MOVED;
  726. return val & RB_FLAG_MASK;
  727. }
  728. /*
  729. * rb_is_reader_page
  730. *
  731. * The unique thing about the reader page, is that, if the
  732. * writer is ever on it, the previous pointer never points
  733. * back to the reader page.
  734. */
  735. static bool rb_is_reader_page(struct buffer_page *page)
  736. {
  737. struct list_head *list = page->list.prev;
  738. return rb_list_head(list->next) != &page->list;
  739. }
  740. /*
  741. * rb_set_list_to_head - set a list_head to be pointing to head.
  742. */
  743. static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
  744. struct list_head *list)
  745. {
  746. unsigned long *ptr;
  747. ptr = (unsigned long *)&list->next;
  748. *ptr |= RB_PAGE_HEAD;
  749. *ptr &= ~RB_PAGE_UPDATE;
  750. }
  751. /*
  752. * rb_head_page_activate - sets up head page
  753. */
  754. static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
  755. {
  756. struct buffer_page *head;
  757. head = cpu_buffer->head_page;
  758. if (!head)
  759. return;
  760. /*
  761. * Set the previous list pointer to have the HEAD flag.
  762. */
  763. rb_set_list_to_head(cpu_buffer, head->list.prev);
  764. }
  765. static void rb_list_head_clear(struct list_head *list)
  766. {
  767. unsigned long *ptr = (unsigned long *)&list->next;
  768. *ptr &= ~RB_FLAG_MASK;
  769. }
  770. /*
  771. * rb_head_page_dactivate - clears head page ptr (for free list)
  772. */
  773. static void
  774. rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
  775. {
  776. struct list_head *hd;
  777. /* Go through the whole list and clear any pointers found. */
  778. rb_list_head_clear(cpu_buffer->pages);
  779. list_for_each(hd, cpu_buffer->pages)
  780. rb_list_head_clear(hd);
  781. }
  782. static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
  783. struct buffer_page *head,
  784. struct buffer_page *prev,
  785. int old_flag, int new_flag)
  786. {
  787. struct list_head *list;
  788. unsigned long val = (unsigned long)&head->list;
  789. unsigned long ret;
  790. list = &prev->list;
  791. val &= ~RB_FLAG_MASK;
  792. ret = cmpxchg((unsigned long *)&list->next,
  793. val | old_flag, val | new_flag);
  794. /* check if the reader took the page */
  795. if ((ret & ~RB_FLAG_MASK) != val)
  796. return RB_PAGE_MOVED;
  797. return ret & RB_FLAG_MASK;
  798. }
  799. static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
  800. struct buffer_page *head,
  801. struct buffer_page *prev,
  802. int old_flag)
  803. {
  804. return rb_head_page_set(cpu_buffer, head, prev,
  805. old_flag, RB_PAGE_UPDATE);
  806. }
  807. static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
  808. struct buffer_page *head,
  809. struct buffer_page *prev,
  810. int old_flag)
  811. {
  812. return rb_head_page_set(cpu_buffer, head, prev,
  813. old_flag, RB_PAGE_HEAD);
  814. }
  815. static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
  816. struct buffer_page *head,
  817. struct buffer_page *prev,
  818. int old_flag)
  819. {
  820. return rb_head_page_set(cpu_buffer, head, prev,
  821. old_flag, RB_PAGE_NORMAL);
  822. }
  823. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  824. struct buffer_page **bpage)
  825. {
  826. struct list_head *p = rb_list_head((*bpage)->list.next);
  827. *bpage = list_entry(p, struct buffer_page, list);
  828. }
  829. static struct buffer_page *
  830. rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
  831. {
  832. struct buffer_page *head;
  833. struct buffer_page *page;
  834. struct list_head *list;
  835. int i;
  836. if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
  837. return NULL;
  838. /* sanity check */
  839. list = cpu_buffer->pages;
  840. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
  841. return NULL;
  842. page = head = cpu_buffer->head_page;
  843. /*
  844. * It is possible that the writer moves the header behind
  845. * where we started, and we miss in one loop.
  846. * A second loop should grab the header, but we'll do
  847. * three loops just because I'm paranoid.
  848. */
  849. for (i = 0; i < 3; i++) {
  850. do {
  851. if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
  852. cpu_buffer->head_page = page;
  853. return page;
  854. }
  855. rb_inc_page(cpu_buffer, &page);
  856. } while (page != head);
  857. }
  858. RB_WARN_ON(cpu_buffer, 1);
  859. return NULL;
  860. }
  861. static int rb_head_page_replace(struct buffer_page *old,
  862. struct buffer_page *new)
  863. {
  864. unsigned long *ptr = (unsigned long *)&old->list.prev->next;
  865. unsigned long val;
  866. unsigned long ret;
  867. val = *ptr & ~RB_FLAG_MASK;
  868. val |= RB_PAGE_HEAD;
  869. ret = cmpxchg(ptr, val, (unsigned long)&new->list);
  870. return ret == val;
  871. }
  872. /*
  873. * rb_tail_page_update - move the tail page forward
  874. */
  875. static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
  876. struct buffer_page *tail_page,
  877. struct buffer_page *next_page)
  878. {
  879. unsigned long old_entries;
  880. unsigned long old_write;
  881. /*
  882. * The tail page now needs to be moved forward.
  883. *
  884. * We need to reset the tail page, but without messing
  885. * with possible erasing of data brought in by interrupts
  886. * that have moved the tail page and are currently on it.
  887. *
  888. * We add a counter to the write field to denote this.
  889. */
  890. old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
  891. old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
  892. /*
  893. * Just make sure we have seen our old_write and synchronize
  894. * with any interrupts that come in.
  895. */
  896. barrier();
  897. /*
  898. * If the tail page is still the same as what we think
  899. * it is, then it is up to us to update the tail
  900. * pointer.
  901. */
  902. if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
  903. /* Zero the write counter */
  904. unsigned long val = old_write & ~RB_WRITE_MASK;
  905. unsigned long eval = old_entries & ~RB_WRITE_MASK;
  906. /*
  907. * This will only succeed if an interrupt did
  908. * not come in and change it. In which case, we
  909. * do not want to modify it.
  910. *
  911. * We add (void) to let the compiler know that we do not care
  912. * about the return value of these functions. We use the
  913. * cmpxchg to only update if an interrupt did not already
  914. * do it for us. If the cmpxchg fails, we don't care.
  915. */
  916. (void)local_cmpxchg(&next_page->write, old_write, val);
  917. (void)local_cmpxchg(&next_page->entries, old_entries, eval);
  918. /*
  919. * No need to worry about races with clearing out the commit.
  920. * it only can increment when a commit takes place. But that
  921. * only happens in the outer most nested commit.
  922. */
  923. local_set(&next_page->page->commit, 0);
  924. /* Again, either we update tail_page or an interrupt does */
  925. (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
  926. }
  927. }
  928. static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
  929. struct buffer_page *bpage)
  930. {
  931. unsigned long val = (unsigned long)bpage;
  932. if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
  933. return 1;
  934. return 0;
  935. }
  936. /**
  937. * rb_check_list - make sure a pointer to a list has the last bits zero
  938. */
  939. static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
  940. struct list_head *list)
  941. {
  942. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
  943. return 1;
  944. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
  945. return 1;
  946. return 0;
  947. }
  948. /**
  949. * rb_check_pages - integrity check of buffer pages
  950. * @cpu_buffer: CPU buffer with pages to test
  951. *
  952. * As a safety measure we check to make sure the data pages have not
  953. * been corrupted.
  954. */
  955. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  956. {
  957. struct list_head *head = cpu_buffer->pages;
  958. struct buffer_page *bpage, *tmp;
  959. /* Reset the head page if it exists */
  960. if (cpu_buffer->head_page)
  961. rb_set_head_page(cpu_buffer);
  962. rb_head_page_deactivate(cpu_buffer);
  963. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  964. return -1;
  965. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  966. return -1;
  967. if (rb_check_list(cpu_buffer, head))
  968. return -1;
  969. list_for_each_entry_safe(bpage, tmp, head, list) {
  970. if (RB_WARN_ON(cpu_buffer,
  971. bpage->list.next->prev != &bpage->list))
  972. return -1;
  973. if (RB_WARN_ON(cpu_buffer,
  974. bpage->list.prev->next != &bpage->list))
  975. return -1;
  976. if (rb_check_list(cpu_buffer, &bpage->list))
  977. return -1;
  978. }
  979. rb_head_page_activate(cpu_buffer);
  980. return 0;
  981. }
  982. static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
  983. {
  984. struct buffer_page *bpage, *tmp;
  985. long i;
  986. for (i = 0; i < nr_pages; i++) {
  987. struct page *page;
  988. /*
  989. * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
  990. * gracefully without invoking oom-killer and the system is not
  991. * destabilized.
  992. */
  993. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  994. GFP_KERNEL | __GFP_RETRY_MAYFAIL,
  995. cpu_to_node(cpu));
  996. if (!bpage)
  997. goto free_pages;
  998. list_add(&bpage->list, pages);
  999. page = alloc_pages_node(cpu_to_node(cpu),
  1000. GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
  1001. if (!page)
  1002. goto free_pages;
  1003. bpage->page = page_address(page);
  1004. rb_init_page(bpage->page);
  1005. }
  1006. return 0;
  1007. free_pages:
  1008. list_for_each_entry_safe(bpage, tmp, pages, list) {
  1009. list_del_init(&bpage->list);
  1010. free_buffer_page(bpage);
  1011. }
  1012. return -ENOMEM;
  1013. }
  1014. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  1015. unsigned long nr_pages)
  1016. {
  1017. LIST_HEAD(pages);
  1018. WARN_ON(!nr_pages);
  1019. if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
  1020. return -ENOMEM;
  1021. /*
  1022. * The ring buffer page list is a circular list that does not
  1023. * start and end with a list head. All page list items point to
  1024. * other pages.
  1025. */
  1026. cpu_buffer->pages = pages.next;
  1027. list_del(&pages);
  1028. cpu_buffer->nr_pages = nr_pages;
  1029. rb_check_pages(cpu_buffer);
  1030. return 0;
  1031. }
  1032. static struct ring_buffer_per_cpu *
  1033. rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
  1034. {
  1035. struct ring_buffer_per_cpu *cpu_buffer;
  1036. struct buffer_page *bpage;
  1037. struct page *page;
  1038. int ret;
  1039. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  1040. GFP_KERNEL, cpu_to_node(cpu));
  1041. if (!cpu_buffer)
  1042. return NULL;
  1043. cpu_buffer->cpu = cpu;
  1044. cpu_buffer->buffer = buffer;
  1045. raw_spin_lock_init(&cpu_buffer->reader_lock);
  1046. lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
  1047. cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
  1048. INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
  1049. init_completion(&cpu_buffer->update_done);
  1050. init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
  1051. init_waitqueue_head(&cpu_buffer->irq_work.waiters);
  1052. init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
  1053. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  1054. GFP_KERNEL, cpu_to_node(cpu));
  1055. if (!bpage)
  1056. goto fail_free_buffer;
  1057. rb_check_bpage(cpu_buffer, bpage);
  1058. cpu_buffer->reader_page = bpage;
  1059. page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
  1060. if (!page)
  1061. goto fail_free_reader;
  1062. bpage->page = page_address(page);
  1063. rb_init_page(bpage->page);
  1064. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1065. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1066. ret = rb_allocate_pages(cpu_buffer, nr_pages);
  1067. if (ret < 0)
  1068. goto fail_free_reader;
  1069. cpu_buffer->head_page
  1070. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  1071. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  1072. rb_head_page_activate(cpu_buffer);
  1073. return cpu_buffer;
  1074. fail_free_reader:
  1075. free_buffer_page(cpu_buffer->reader_page);
  1076. fail_free_buffer:
  1077. kfree(cpu_buffer);
  1078. return NULL;
  1079. }
  1080. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  1081. {
  1082. struct list_head *head = cpu_buffer->pages;
  1083. struct buffer_page *bpage, *tmp;
  1084. free_buffer_page(cpu_buffer->reader_page);
  1085. rb_head_page_deactivate(cpu_buffer);
  1086. if (head) {
  1087. list_for_each_entry_safe(bpage, tmp, head, list) {
  1088. list_del_init(&bpage->list);
  1089. free_buffer_page(bpage);
  1090. }
  1091. bpage = list_entry(head, struct buffer_page, list);
  1092. free_buffer_page(bpage);
  1093. }
  1094. kfree(cpu_buffer);
  1095. }
  1096. /**
  1097. * __ring_buffer_alloc - allocate a new ring_buffer
  1098. * @size: the size in bytes per cpu that is needed.
  1099. * @flags: attributes to set for the ring buffer.
  1100. *
  1101. * Currently the only flag that is available is the RB_FL_OVERWRITE
  1102. * flag. This flag means that the buffer will overwrite old data
  1103. * when the buffer wraps. If this flag is not set, the buffer will
  1104. * drop data when the tail hits the head.
  1105. */
  1106. struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
  1107. struct lock_class_key *key)
  1108. {
  1109. struct ring_buffer *buffer;
  1110. long nr_pages;
  1111. int bsize;
  1112. int cpu;
  1113. int ret;
  1114. /* keep it in its own cache line */
  1115. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  1116. GFP_KERNEL);
  1117. if (!buffer)
  1118. return NULL;
  1119. if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  1120. goto fail_free_buffer;
  1121. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1122. buffer->flags = flags;
  1123. buffer->clock = trace_clock_local;
  1124. buffer->reader_lock_key = key;
  1125. init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
  1126. init_waitqueue_head(&buffer->irq_work.waiters);
  1127. /* need at least two pages */
  1128. if (nr_pages < 2)
  1129. nr_pages = 2;
  1130. buffer->cpus = nr_cpu_ids;
  1131. bsize = sizeof(void *) * nr_cpu_ids;
  1132. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  1133. GFP_KERNEL);
  1134. if (!buffer->buffers)
  1135. goto fail_free_cpumask;
  1136. cpu = raw_smp_processor_id();
  1137. cpumask_set_cpu(cpu, buffer->cpumask);
  1138. buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  1139. if (!buffer->buffers[cpu])
  1140. goto fail_free_buffers;
  1141. ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
  1142. if (ret < 0)
  1143. goto fail_free_buffers;
  1144. mutex_init(&buffer->mutex);
  1145. return buffer;
  1146. fail_free_buffers:
  1147. for_each_buffer_cpu(buffer, cpu) {
  1148. if (buffer->buffers[cpu])
  1149. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1150. }
  1151. kfree(buffer->buffers);
  1152. fail_free_cpumask:
  1153. free_cpumask_var(buffer->cpumask);
  1154. fail_free_buffer:
  1155. kfree(buffer);
  1156. return NULL;
  1157. }
  1158. EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
  1159. /**
  1160. * ring_buffer_free - free a ring buffer.
  1161. * @buffer: the buffer to free.
  1162. */
  1163. void
  1164. ring_buffer_free(struct ring_buffer *buffer)
  1165. {
  1166. int cpu;
  1167. cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
  1168. for_each_buffer_cpu(buffer, cpu)
  1169. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1170. kfree(buffer->buffers);
  1171. free_cpumask_var(buffer->cpumask);
  1172. kfree(buffer);
  1173. }
  1174. EXPORT_SYMBOL_GPL(ring_buffer_free);
  1175. void ring_buffer_set_clock(struct ring_buffer *buffer,
  1176. u64 (*clock)(void))
  1177. {
  1178. buffer->clock = clock;
  1179. }
  1180. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  1181. static inline unsigned long rb_page_entries(struct buffer_page *bpage)
  1182. {
  1183. return local_read(&bpage->entries) & RB_WRITE_MASK;
  1184. }
  1185. static inline unsigned long rb_page_write(struct buffer_page *bpage)
  1186. {
  1187. return local_read(&bpage->write) & RB_WRITE_MASK;
  1188. }
  1189. static int
  1190. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
  1191. {
  1192. struct list_head *tail_page, *to_remove, *next_page;
  1193. struct buffer_page *to_remove_page, *tmp_iter_page;
  1194. struct buffer_page *last_page, *first_page;
  1195. unsigned long nr_removed;
  1196. unsigned long head_bit;
  1197. int page_entries;
  1198. head_bit = 0;
  1199. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1200. atomic_inc(&cpu_buffer->record_disabled);
  1201. /*
  1202. * We don't race with the readers since we have acquired the reader
  1203. * lock. We also don't race with writers after disabling recording.
  1204. * This makes it easy to figure out the first and the last page to be
  1205. * removed from the list. We unlink all the pages in between including
  1206. * the first and last pages. This is done in a busy loop so that we
  1207. * lose the least number of traces.
  1208. * The pages are freed after we restart recording and unlock readers.
  1209. */
  1210. tail_page = &cpu_buffer->tail_page->list;
  1211. /*
  1212. * tail page might be on reader page, we remove the next page
  1213. * from the ring buffer
  1214. */
  1215. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  1216. tail_page = rb_list_head(tail_page->next);
  1217. to_remove = tail_page;
  1218. /* start of pages to remove */
  1219. first_page = list_entry(rb_list_head(to_remove->next),
  1220. struct buffer_page, list);
  1221. for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
  1222. to_remove = rb_list_head(to_remove)->next;
  1223. head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
  1224. }
  1225. next_page = rb_list_head(to_remove)->next;
  1226. /*
  1227. * Now we remove all pages between tail_page and next_page.
  1228. * Make sure that we have head_bit value preserved for the
  1229. * next page
  1230. */
  1231. tail_page->next = (struct list_head *)((unsigned long)next_page |
  1232. head_bit);
  1233. next_page = rb_list_head(next_page);
  1234. next_page->prev = tail_page;
  1235. /* make sure pages points to a valid page in the ring buffer */
  1236. cpu_buffer->pages = next_page;
  1237. /* update head page */
  1238. if (head_bit)
  1239. cpu_buffer->head_page = list_entry(next_page,
  1240. struct buffer_page, list);
  1241. /*
  1242. * change read pointer to make sure any read iterators reset
  1243. * themselves
  1244. */
  1245. cpu_buffer->read = 0;
  1246. /* pages are removed, resume tracing and then free the pages */
  1247. atomic_dec(&cpu_buffer->record_disabled);
  1248. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1249. RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
  1250. /* last buffer page to remove */
  1251. last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
  1252. list);
  1253. tmp_iter_page = first_page;
  1254. do {
  1255. to_remove_page = tmp_iter_page;
  1256. rb_inc_page(cpu_buffer, &tmp_iter_page);
  1257. /* update the counters */
  1258. page_entries = rb_page_entries(to_remove_page);
  1259. if (page_entries) {
  1260. /*
  1261. * If something was added to this page, it was full
  1262. * since it is not the tail page. So we deduct the
  1263. * bytes consumed in ring buffer from here.
  1264. * Increment overrun to account for the lost events.
  1265. */
  1266. local_add(page_entries, &cpu_buffer->overrun);
  1267. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1268. }
  1269. /*
  1270. * We have already removed references to this list item, just
  1271. * free up the buffer_page and its page
  1272. */
  1273. free_buffer_page(to_remove_page);
  1274. nr_removed--;
  1275. } while (to_remove_page != last_page);
  1276. RB_WARN_ON(cpu_buffer, nr_removed);
  1277. return nr_removed == 0;
  1278. }
  1279. static int
  1280. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1281. {
  1282. struct list_head *pages = &cpu_buffer->new_pages;
  1283. int retries, success;
  1284. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1285. /*
  1286. * We are holding the reader lock, so the reader page won't be swapped
  1287. * in the ring buffer. Now we are racing with the writer trying to
  1288. * move head page and the tail page.
  1289. * We are going to adapt the reader page update process where:
  1290. * 1. We first splice the start and end of list of new pages between
  1291. * the head page and its previous page.
  1292. * 2. We cmpxchg the prev_page->next to point from head page to the
  1293. * start of new pages list.
  1294. * 3. Finally, we update the head->prev to the end of new list.
  1295. *
  1296. * We will try this process 10 times, to make sure that we don't keep
  1297. * spinning.
  1298. */
  1299. retries = 10;
  1300. success = 0;
  1301. while (retries--) {
  1302. struct list_head *head_page, *prev_page, *r;
  1303. struct list_head *last_page, *first_page;
  1304. struct list_head *head_page_with_bit;
  1305. head_page = &rb_set_head_page(cpu_buffer)->list;
  1306. if (!head_page)
  1307. break;
  1308. prev_page = head_page->prev;
  1309. first_page = pages->next;
  1310. last_page = pages->prev;
  1311. head_page_with_bit = (struct list_head *)
  1312. ((unsigned long)head_page | RB_PAGE_HEAD);
  1313. last_page->next = head_page_with_bit;
  1314. first_page->prev = prev_page;
  1315. r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
  1316. if (r == head_page_with_bit) {
  1317. /*
  1318. * yay, we replaced the page pointer to our new list,
  1319. * now, we just have to update to head page's prev
  1320. * pointer to point to end of list
  1321. */
  1322. head_page->prev = last_page;
  1323. success = 1;
  1324. break;
  1325. }
  1326. }
  1327. if (success)
  1328. INIT_LIST_HEAD(pages);
  1329. /*
  1330. * If we weren't successful in adding in new pages, warn and stop
  1331. * tracing
  1332. */
  1333. RB_WARN_ON(cpu_buffer, !success);
  1334. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1335. /* free pages if they weren't inserted */
  1336. if (!success) {
  1337. struct buffer_page *bpage, *tmp;
  1338. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1339. list) {
  1340. list_del_init(&bpage->list);
  1341. free_buffer_page(bpage);
  1342. }
  1343. }
  1344. return success;
  1345. }
  1346. static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1347. {
  1348. int success;
  1349. if (cpu_buffer->nr_pages_to_update > 0)
  1350. success = rb_insert_pages(cpu_buffer);
  1351. else
  1352. success = rb_remove_pages(cpu_buffer,
  1353. -cpu_buffer->nr_pages_to_update);
  1354. if (success)
  1355. cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
  1356. }
  1357. static void update_pages_handler(struct work_struct *work)
  1358. {
  1359. struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
  1360. struct ring_buffer_per_cpu, update_pages_work);
  1361. rb_update_pages(cpu_buffer);
  1362. complete(&cpu_buffer->update_done);
  1363. }
  1364. /**
  1365. * ring_buffer_resize - resize the ring buffer
  1366. * @buffer: the buffer to resize.
  1367. * @size: the new size.
  1368. * @cpu_id: the cpu buffer to resize
  1369. *
  1370. * Minimum size is 2 * BUF_PAGE_SIZE.
  1371. *
  1372. * Returns 0 on success and < 0 on failure.
  1373. */
  1374. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
  1375. int cpu_id)
  1376. {
  1377. struct ring_buffer_per_cpu *cpu_buffer;
  1378. unsigned long nr_pages;
  1379. int cpu, err = 0;
  1380. /*
  1381. * Always succeed at resizing a non-existent buffer:
  1382. */
  1383. if (!buffer)
  1384. return size;
  1385. /* Make sure the requested buffer exists */
  1386. if (cpu_id != RING_BUFFER_ALL_CPUS &&
  1387. !cpumask_test_cpu(cpu_id, buffer->cpumask))
  1388. return size;
  1389. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1390. /* we need a minimum of two pages */
  1391. if (nr_pages < 2)
  1392. nr_pages = 2;
  1393. size = nr_pages * BUF_PAGE_SIZE;
  1394. /*
  1395. * Don't succeed if resizing is disabled, as a reader might be
  1396. * manipulating the ring buffer and is expecting a sane state while
  1397. * this is true.
  1398. */
  1399. if (atomic_read(&buffer->resize_disabled))
  1400. return -EBUSY;
  1401. /* prevent another thread from changing buffer sizes */
  1402. mutex_lock(&buffer->mutex);
  1403. if (cpu_id == RING_BUFFER_ALL_CPUS) {
  1404. /* calculate the pages to update */
  1405. for_each_buffer_cpu(buffer, cpu) {
  1406. cpu_buffer = buffer->buffers[cpu];
  1407. cpu_buffer->nr_pages_to_update = nr_pages -
  1408. cpu_buffer->nr_pages;
  1409. /*
  1410. * nothing more to do for removing pages or no update
  1411. */
  1412. if (cpu_buffer->nr_pages_to_update <= 0)
  1413. continue;
  1414. /*
  1415. * to add pages, make sure all new pages can be
  1416. * allocated without receiving ENOMEM
  1417. */
  1418. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1419. if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1420. &cpu_buffer->new_pages, cpu)) {
  1421. /* not enough memory for new pages */
  1422. err = -ENOMEM;
  1423. goto out_err;
  1424. }
  1425. }
  1426. get_online_cpus();
  1427. /*
  1428. * Fire off all the required work handlers
  1429. * We can't schedule on offline CPUs, but it's not necessary
  1430. * since we can change their buffer sizes without any race.
  1431. */
  1432. for_each_buffer_cpu(buffer, cpu) {
  1433. cpu_buffer = buffer->buffers[cpu];
  1434. if (!cpu_buffer->nr_pages_to_update)
  1435. continue;
  1436. /* Can't run something on an offline CPU. */
  1437. if (!cpu_online(cpu)) {
  1438. rb_update_pages(cpu_buffer);
  1439. cpu_buffer->nr_pages_to_update = 0;
  1440. } else {
  1441. schedule_work_on(cpu,
  1442. &cpu_buffer->update_pages_work);
  1443. }
  1444. }
  1445. /* wait for all the updates to complete */
  1446. for_each_buffer_cpu(buffer, cpu) {
  1447. cpu_buffer = buffer->buffers[cpu];
  1448. if (!cpu_buffer->nr_pages_to_update)
  1449. continue;
  1450. if (cpu_online(cpu))
  1451. wait_for_completion(&cpu_buffer->update_done);
  1452. cpu_buffer->nr_pages_to_update = 0;
  1453. }
  1454. put_online_cpus();
  1455. } else {
  1456. /* Make sure this CPU has been intitialized */
  1457. if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
  1458. goto out;
  1459. cpu_buffer = buffer->buffers[cpu_id];
  1460. if (nr_pages == cpu_buffer->nr_pages)
  1461. goto out;
  1462. cpu_buffer->nr_pages_to_update = nr_pages -
  1463. cpu_buffer->nr_pages;
  1464. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1465. if (cpu_buffer->nr_pages_to_update > 0 &&
  1466. __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1467. &cpu_buffer->new_pages, cpu_id)) {
  1468. err = -ENOMEM;
  1469. goto out_err;
  1470. }
  1471. get_online_cpus();
  1472. /* Can't run something on an offline CPU. */
  1473. if (!cpu_online(cpu_id))
  1474. rb_update_pages(cpu_buffer);
  1475. else {
  1476. schedule_work_on(cpu_id,
  1477. &cpu_buffer->update_pages_work);
  1478. wait_for_completion(&cpu_buffer->update_done);
  1479. }
  1480. cpu_buffer->nr_pages_to_update = 0;
  1481. put_online_cpus();
  1482. }
  1483. out:
  1484. /*
  1485. * The ring buffer resize can happen with the ring buffer
  1486. * enabled, so that the update disturbs the tracing as little
  1487. * as possible. But if the buffer is disabled, we do not need
  1488. * to worry about that, and we can take the time to verify
  1489. * that the buffer is not corrupt.
  1490. */
  1491. if (atomic_read(&buffer->record_disabled)) {
  1492. atomic_inc(&buffer->record_disabled);
  1493. /*
  1494. * Even though the buffer was disabled, we must make sure
  1495. * that it is truly disabled before calling rb_check_pages.
  1496. * There could have been a race between checking
  1497. * record_disable and incrementing it.
  1498. */
  1499. synchronize_sched();
  1500. for_each_buffer_cpu(buffer, cpu) {
  1501. cpu_buffer = buffer->buffers[cpu];
  1502. rb_check_pages(cpu_buffer);
  1503. }
  1504. atomic_dec(&buffer->record_disabled);
  1505. }
  1506. mutex_unlock(&buffer->mutex);
  1507. return size;
  1508. out_err:
  1509. for_each_buffer_cpu(buffer, cpu) {
  1510. struct buffer_page *bpage, *tmp;
  1511. cpu_buffer = buffer->buffers[cpu];
  1512. cpu_buffer->nr_pages_to_update = 0;
  1513. if (list_empty(&cpu_buffer->new_pages))
  1514. continue;
  1515. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1516. list) {
  1517. list_del_init(&bpage->list);
  1518. free_buffer_page(bpage);
  1519. }
  1520. }
  1521. mutex_unlock(&buffer->mutex);
  1522. return err;
  1523. }
  1524. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  1525. void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
  1526. {
  1527. mutex_lock(&buffer->mutex);
  1528. if (val)
  1529. buffer->flags |= RB_FL_OVERWRITE;
  1530. else
  1531. buffer->flags &= ~RB_FL_OVERWRITE;
  1532. mutex_unlock(&buffer->mutex);
  1533. }
  1534. EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
  1535. static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  1536. {
  1537. return bpage->page->data + index;
  1538. }
  1539. static __always_inline struct ring_buffer_event *
  1540. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  1541. {
  1542. return __rb_page_index(cpu_buffer->reader_page,
  1543. cpu_buffer->reader_page->read);
  1544. }
  1545. static __always_inline struct ring_buffer_event *
  1546. rb_iter_head_event(struct ring_buffer_iter *iter)
  1547. {
  1548. return __rb_page_index(iter->head_page, iter->head);
  1549. }
  1550. static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
  1551. {
  1552. return local_read(&bpage->page->commit);
  1553. }
  1554. /* Size is determined by what has been committed */
  1555. static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
  1556. {
  1557. return rb_page_commit(bpage);
  1558. }
  1559. static __always_inline unsigned
  1560. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  1561. {
  1562. return rb_page_commit(cpu_buffer->commit_page);
  1563. }
  1564. static __always_inline unsigned
  1565. rb_event_index(struct ring_buffer_event *event)
  1566. {
  1567. unsigned long addr = (unsigned long)event;
  1568. return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
  1569. }
  1570. static void rb_inc_iter(struct ring_buffer_iter *iter)
  1571. {
  1572. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1573. /*
  1574. * The iterator could be on the reader page (it starts there).
  1575. * But the head could have moved, since the reader was
  1576. * found. Check for this case and assign the iterator
  1577. * to the head page instead of next.
  1578. */
  1579. if (iter->head_page == cpu_buffer->reader_page)
  1580. iter->head_page = rb_set_head_page(cpu_buffer);
  1581. else
  1582. rb_inc_page(cpu_buffer, &iter->head_page);
  1583. iter->read_stamp = iter->head_page->page->time_stamp;
  1584. iter->head = 0;
  1585. }
  1586. /*
  1587. * rb_handle_head_page - writer hit the head page
  1588. *
  1589. * Returns: +1 to retry page
  1590. * 0 to continue
  1591. * -1 on error
  1592. */
  1593. static int
  1594. rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  1595. struct buffer_page *tail_page,
  1596. struct buffer_page *next_page)
  1597. {
  1598. struct buffer_page *new_head;
  1599. int entries;
  1600. int type;
  1601. int ret;
  1602. entries = rb_page_entries(next_page);
  1603. /*
  1604. * The hard part is here. We need to move the head
  1605. * forward, and protect against both readers on
  1606. * other CPUs and writers coming in via interrupts.
  1607. */
  1608. type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
  1609. RB_PAGE_HEAD);
  1610. /*
  1611. * type can be one of four:
  1612. * NORMAL - an interrupt already moved it for us
  1613. * HEAD - we are the first to get here.
  1614. * UPDATE - we are the interrupt interrupting
  1615. * a current move.
  1616. * MOVED - a reader on another CPU moved the next
  1617. * pointer to its reader page. Give up
  1618. * and try again.
  1619. */
  1620. switch (type) {
  1621. case RB_PAGE_HEAD:
  1622. /*
  1623. * We changed the head to UPDATE, thus
  1624. * it is our responsibility to update
  1625. * the counters.
  1626. */
  1627. local_add(entries, &cpu_buffer->overrun);
  1628. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1629. /*
  1630. * The entries will be zeroed out when we move the
  1631. * tail page.
  1632. */
  1633. /* still more to do */
  1634. break;
  1635. case RB_PAGE_UPDATE:
  1636. /*
  1637. * This is an interrupt that interrupt the
  1638. * previous update. Still more to do.
  1639. */
  1640. break;
  1641. case RB_PAGE_NORMAL:
  1642. /*
  1643. * An interrupt came in before the update
  1644. * and processed this for us.
  1645. * Nothing left to do.
  1646. */
  1647. return 1;
  1648. case RB_PAGE_MOVED:
  1649. /*
  1650. * The reader is on another CPU and just did
  1651. * a swap with our next_page.
  1652. * Try again.
  1653. */
  1654. return 1;
  1655. default:
  1656. RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
  1657. return -1;
  1658. }
  1659. /*
  1660. * Now that we are here, the old head pointer is
  1661. * set to UPDATE. This will keep the reader from
  1662. * swapping the head page with the reader page.
  1663. * The reader (on another CPU) will spin till
  1664. * we are finished.
  1665. *
  1666. * We just need to protect against interrupts
  1667. * doing the job. We will set the next pointer
  1668. * to HEAD. After that, we set the old pointer
  1669. * to NORMAL, but only if it was HEAD before.
  1670. * otherwise we are an interrupt, and only
  1671. * want the outer most commit to reset it.
  1672. */
  1673. new_head = next_page;
  1674. rb_inc_page(cpu_buffer, &new_head);
  1675. ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
  1676. RB_PAGE_NORMAL);
  1677. /*
  1678. * Valid returns are:
  1679. * HEAD - an interrupt came in and already set it.
  1680. * NORMAL - One of two things:
  1681. * 1) We really set it.
  1682. * 2) A bunch of interrupts came in and moved
  1683. * the page forward again.
  1684. */
  1685. switch (ret) {
  1686. case RB_PAGE_HEAD:
  1687. case RB_PAGE_NORMAL:
  1688. /* OK */
  1689. break;
  1690. default:
  1691. RB_WARN_ON(cpu_buffer, 1);
  1692. return -1;
  1693. }
  1694. /*
  1695. * It is possible that an interrupt came in,
  1696. * set the head up, then more interrupts came in
  1697. * and moved it again. When we get back here,
  1698. * the page would have been set to NORMAL but we
  1699. * just set it back to HEAD.
  1700. *
  1701. * How do you detect this? Well, if that happened
  1702. * the tail page would have moved.
  1703. */
  1704. if (ret == RB_PAGE_NORMAL) {
  1705. struct buffer_page *buffer_tail_page;
  1706. buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
  1707. /*
  1708. * If the tail had moved passed next, then we need
  1709. * to reset the pointer.
  1710. */
  1711. if (buffer_tail_page != tail_page &&
  1712. buffer_tail_page != next_page)
  1713. rb_head_page_set_normal(cpu_buffer, new_head,
  1714. next_page,
  1715. RB_PAGE_HEAD);
  1716. }
  1717. /*
  1718. * If this was the outer most commit (the one that
  1719. * changed the original pointer from HEAD to UPDATE),
  1720. * then it is up to us to reset it to NORMAL.
  1721. */
  1722. if (type == RB_PAGE_HEAD) {
  1723. ret = rb_head_page_set_normal(cpu_buffer, next_page,
  1724. tail_page,
  1725. RB_PAGE_UPDATE);
  1726. if (RB_WARN_ON(cpu_buffer,
  1727. ret != RB_PAGE_UPDATE))
  1728. return -1;
  1729. }
  1730. return 0;
  1731. }
  1732. static inline void
  1733. rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1734. unsigned long tail, struct rb_event_info *info)
  1735. {
  1736. struct buffer_page *tail_page = info->tail_page;
  1737. struct ring_buffer_event *event;
  1738. unsigned long length = info->length;
  1739. /*
  1740. * Only the event that crossed the page boundary
  1741. * must fill the old tail_page with padding.
  1742. */
  1743. if (tail >= BUF_PAGE_SIZE) {
  1744. /*
  1745. * If the page was filled, then we still need
  1746. * to update the real_end. Reset it to zero
  1747. * and the reader will ignore it.
  1748. */
  1749. if (tail == BUF_PAGE_SIZE)
  1750. tail_page->real_end = 0;
  1751. local_sub(length, &tail_page->write);
  1752. return;
  1753. }
  1754. event = __rb_page_index(tail_page, tail);
  1755. /* account for padding bytes */
  1756. local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
  1757. /*
  1758. * Save the original length to the meta data.
  1759. * This will be used by the reader to add lost event
  1760. * counter.
  1761. */
  1762. tail_page->real_end = tail;
  1763. /*
  1764. * If this event is bigger than the minimum size, then
  1765. * we need to be careful that we don't subtract the
  1766. * write counter enough to allow another writer to slip
  1767. * in on this page.
  1768. * We put in a discarded commit instead, to make sure
  1769. * that this space is not used again.
  1770. *
  1771. * If we are less than the minimum size, we don't need to
  1772. * worry about it.
  1773. */
  1774. if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
  1775. /* No room for any events */
  1776. /* Mark the rest of the page with padding */
  1777. rb_event_set_padding(event);
  1778. /* Set the write back to the previous setting */
  1779. local_sub(length, &tail_page->write);
  1780. return;
  1781. }
  1782. /* Put in a discarded event */
  1783. event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
  1784. event->type_len = RINGBUF_TYPE_PADDING;
  1785. /* time delta must be non zero */
  1786. event->time_delta = 1;
  1787. /* Set write to end of buffer */
  1788. length = (tail + length) - BUF_PAGE_SIZE;
  1789. local_sub(length, &tail_page->write);
  1790. }
  1791. static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
  1792. /*
  1793. * This is the slow path, force gcc not to inline it.
  1794. */
  1795. static noinline struct ring_buffer_event *
  1796. rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1797. unsigned long tail, struct rb_event_info *info)
  1798. {
  1799. struct buffer_page *tail_page = info->tail_page;
  1800. struct buffer_page *commit_page = cpu_buffer->commit_page;
  1801. struct ring_buffer *buffer = cpu_buffer->buffer;
  1802. struct buffer_page *next_page;
  1803. int ret;
  1804. next_page = tail_page;
  1805. rb_inc_page(cpu_buffer, &next_page);
  1806. /*
  1807. * If for some reason, we had an interrupt storm that made
  1808. * it all the way around the buffer, bail, and warn
  1809. * about it.
  1810. */
  1811. if (unlikely(next_page == commit_page)) {
  1812. local_inc(&cpu_buffer->commit_overrun);
  1813. goto out_reset;
  1814. }
  1815. /*
  1816. * This is where the fun begins!
  1817. *
  1818. * We are fighting against races between a reader that
  1819. * could be on another CPU trying to swap its reader
  1820. * page with the buffer head.
  1821. *
  1822. * We are also fighting against interrupts coming in and
  1823. * moving the head or tail on us as well.
  1824. *
  1825. * If the next page is the head page then we have filled
  1826. * the buffer, unless the commit page is still on the
  1827. * reader page.
  1828. */
  1829. if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
  1830. /*
  1831. * If the commit is not on the reader page, then
  1832. * move the header page.
  1833. */
  1834. if (!rb_is_reader_page(cpu_buffer->commit_page)) {
  1835. /*
  1836. * If we are not in overwrite mode,
  1837. * this is easy, just stop here.
  1838. */
  1839. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  1840. local_inc(&cpu_buffer->dropped_events);
  1841. goto out_reset;
  1842. }
  1843. ret = rb_handle_head_page(cpu_buffer,
  1844. tail_page,
  1845. next_page);
  1846. if (ret < 0)
  1847. goto out_reset;
  1848. if (ret)
  1849. goto out_again;
  1850. } else {
  1851. /*
  1852. * We need to be careful here too. The
  1853. * commit page could still be on the reader
  1854. * page. We could have a small buffer, and
  1855. * have filled up the buffer with events
  1856. * from interrupts and such, and wrapped.
  1857. *
  1858. * Note, if the tail page is also the on the
  1859. * reader_page, we let it move out.
  1860. */
  1861. if (unlikely((cpu_buffer->commit_page !=
  1862. cpu_buffer->tail_page) &&
  1863. (cpu_buffer->commit_page ==
  1864. cpu_buffer->reader_page))) {
  1865. local_inc(&cpu_buffer->commit_overrun);
  1866. goto out_reset;
  1867. }
  1868. }
  1869. }
  1870. rb_tail_page_update(cpu_buffer, tail_page, next_page);
  1871. out_again:
  1872. rb_reset_tail(cpu_buffer, tail, info);
  1873. /* Commit what we have for now. */
  1874. rb_end_commit(cpu_buffer);
  1875. /* rb_end_commit() decs committing */
  1876. local_inc(&cpu_buffer->committing);
  1877. /* fail and let the caller try again */
  1878. return ERR_PTR(-EAGAIN);
  1879. out_reset:
  1880. /* reset write */
  1881. rb_reset_tail(cpu_buffer, tail, info);
  1882. return NULL;
  1883. }
  1884. /* Slow path, do not inline */
  1885. static noinline struct ring_buffer_event *
  1886. rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
  1887. {
  1888. event->type_len = RINGBUF_TYPE_TIME_EXTEND;
  1889. /* Not the first event on the page? */
  1890. if (rb_event_index(event)) {
  1891. event->time_delta = delta & TS_MASK;
  1892. event->array[0] = delta >> TS_SHIFT;
  1893. } else {
  1894. /* nope, just zero it */
  1895. event->time_delta = 0;
  1896. event->array[0] = 0;
  1897. }
  1898. return skip_time_extend(event);
  1899. }
  1900. static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1901. struct ring_buffer_event *event);
  1902. /**
  1903. * rb_update_event - update event type and data
  1904. * @event: the event to update
  1905. * @type: the type of event
  1906. * @length: the size of the event field in the ring buffer
  1907. *
  1908. * Update the type and data fields of the event. The length
  1909. * is the actual size that is written to the ring buffer,
  1910. * and with this, we can determine what to place into the
  1911. * data field.
  1912. */
  1913. static void
  1914. rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
  1915. struct ring_buffer_event *event,
  1916. struct rb_event_info *info)
  1917. {
  1918. unsigned length = info->length;
  1919. u64 delta = info->delta;
  1920. /* Only a commit updates the timestamp */
  1921. if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
  1922. delta = 0;
  1923. /*
  1924. * If we need to add a timestamp, then we
  1925. * add it to the start of the resevered space.
  1926. */
  1927. if (unlikely(info->add_timestamp)) {
  1928. event = rb_add_time_stamp(event, delta);
  1929. length -= RB_LEN_TIME_EXTEND;
  1930. delta = 0;
  1931. }
  1932. event->time_delta = delta;
  1933. length -= RB_EVNT_HDR_SIZE;
  1934. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
  1935. event->type_len = 0;
  1936. event->array[0] = length;
  1937. } else
  1938. event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
  1939. }
  1940. static unsigned rb_calculate_event_length(unsigned length)
  1941. {
  1942. struct ring_buffer_event event; /* Used only for sizeof array */
  1943. /* zero length can cause confusions */
  1944. if (!length)
  1945. length++;
  1946. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
  1947. length += sizeof(event.array[0]);
  1948. length += RB_EVNT_HDR_SIZE;
  1949. length = ALIGN(length, RB_ARCH_ALIGNMENT);
  1950. /*
  1951. * In case the time delta is larger than the 27 bits for it
  1952. * in the header, we need to add a timestamp. If another
  1953. * event comes in when trying to discard this one to increase
  1954. * the length, then the timestamp will be added in the allocated
  1955. * space of this event. If length is bigger than the size needed
  1956. * for the TIME_EXTEND, then padding has to be used. The events
  1957. * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
  1958. * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
  1959. * As length is a multiple of 4, we only need to worry if it
  1960. * is 12 (RB_LEN_TIME_EXTEND + 4).
  1961. */
  1962. if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
  1963. length += RB_ALIGNMENT;
  1964. return length;
  1965. }
  1966. #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  1967. static inline bool sched_clock_stable(void)
  1968. {
  1969. return true;
  1970. }
  1971. #endif
  1972. static inline int
  1973. rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
  1974. struct ring_buffer_event *event)
  1975. {
  1976. unsigned long new_index, old_index;
  1977. struct buffer_page *bpage;
  1978. unsigned long index;
  1979. unsigned long addr;
  1980. new_index = rb_event_index(event);
  1981. old_index = new_index + rb_event_ts_length(event);
  1982. addr = (unsigned long)event;
  1983. addr &= PAGE_MASK;
  1984. bpage = READ_ONCE(cpu_buffer->tail_page);
  1985. if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
  1986. unsigned long write_mask =
  1987. local_read(&bpage->write) & ~RB_WRITE_MASK;
  1988. unsigned long event_length = rb_event_length(event);
  1989. /*
  1990. * This is on the tail page. It is possible that
  1991. * a write could come in and move the tail page
  1992. * and write to the next page. That is fine
  1993. * because we just shorten what is on this page.
  1994. */
  1995. old_index += write_mask;
  1996. new_index += write_mask;
  1997. index = local_cmpxchg(&bpage->write, old_index, new_index);
  1998. if (index == old_index) {
  1999. /* update counters */
  2000. local_sub(event_length, &cpu_buffer->entries_bytes);
  2001. return 1;
  2002. }
  2003. }
  2004. /* could not discard */
  2005. return 0;
  2006. }
  2007. static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2008. {
  2009. local_inc(&cpu_buffer->committing);
  2010. local_inc(&cpu_buffer->commits);
  2011. }
  2012. static __always_inline void
  2013. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  2014. {
  2015. unsigned long max_count;
  2016. /*
  2017. * We only race with interrupts and NMIs on this CPU.
  2018. * If we own the commit event, then we can commit
  2019. * all others that interrupted us, since the interruptions
  2020. * are in stack format (they finish before they come
  2021. * back to us). This allows us to do a simple loop to
  2022. * assign the commit to the tail.
  2023. */
  2024. again:
  2025. max_count = cpu_buffer->nr_pages * 100;
  2026. while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
  2027. if (RB_WARN_ON(cpu_buffer, !(--max_count)))
  2028. return;
  2029. if (RB_WARN_ON(cpu_buffer,
  2030. rb_is_reader_page(cpu_buffer->tail_page)))
  2031. return;
  2032. local_set(&cpu_buffer->commit_page->page->commit,
  2033. rb_page_write(cpu_buffer->commit_page));
  2034. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  2035. /* Only update the write stamp if the page has an event */
  2036. if (rb_page_write(cpu_buffer->commit_page))
  2037. cpu_buffer->write_stamp =
  2038. cpu_buffer->commit_page->page->time_stamp;
  2039. /* add barrier to keep gcc from optimizing too much */
  2040. barrier();
  2041. }
  2042. while (rb_commit_index(cpu_buffer) !=
  2043. rb_page_write(cpu_buffer->commit_page)) {
  2044. local_set(&cpu_buffer->commit_page->page->commit,
  2045. rb_page_write(cpu_buffer->commit_page));
  2046. RB_WARN_ON(cpu_buffer,
  2047. local_read(&cpu_buffer->commit_page->page->commit) &
  2048. ~RB_WRITE_MASK);
  2049. barrier();
  2050. }
  2051. /* again, keep gcc from optimizing */
  2052. barrier();
  2053. /*
  2054. * If an interrupt came in just after the first while loop
  2055. * and pushed the tail page forward, we will be left with
  2056. * a dangling commit that will never go forward.
  2057. */
  2058. if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
  2059. goto again;
  2060. }
  2061. static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2062. {
  2063. unsigned long commits;
  2064. if (RB_WARN_ON(cpu_buffer,
  2065. !local_read(&cpu_buffer->committing)))
  2066. return;
  2067. again:
  2068. commits = local_read(&cpu_buffer->commits);
  2069. /* synchronize with interrupts */
  2070. barrier();
  2071. if (local_read(&cpu_buffer->committing) == 1)
  2072. rb_set_commit_to_write(cpu_buffer);
  2073. local_dec(&cpu_buffer->committing);
  2074. /* synchronize with interrupts */
  2075. barrier();
  2076. /*
  2077. * Need to account for interrupts coming in between the
  2078. * updating of the commit page and the clearing of the
  2079. * committing counter.
  2080. */
  2081. if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
  2082. !local_read(&cpu_buffer->committing)) {
  2083. local_inc(&cpu_buffer->committing);
  2084. goto again;
  2085. }
  2086. }
  2087. static inline void rb_event_discard(struct ring_buffer_event *event)
  2088. {
  2089. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  2090. event = skip_time_extend(event);
  2091. /* array[0] holds the actual length for the discarded event */
  2092. event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
  2093. event->type_len = RINGBUF_TYPE_PADDING;
  2094. /* time delta must be non zero */
  2095. if (!event->time_delta)
  2096. event->time_delta = 1;
  2097. }
  2098. static __always_inline bool
  2099. rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  2100. struct ring_buffer_event *event)
  2101. {
  2102. unsigned long addr = (unsigned long)event;
  2103. unsigned long index;
  2104. index = rb_event_index(event);
  2105. addr &= PAGE_MASK;
  2106. return cpu_buffer->commit_page->page == (void *)addr &&
  2107. rb_commit_index(cpu_buffer) == index;
  2108. }
  2109. static __always_inline void
  2110. rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2111. struct ring_buffer_event *event)
  2112. {
  2113. u64 delta;
  2114. /*
  2115. * The event first in the commit queue updates the
  2116. * time stamp.
  2117. */
  2118. if (rb_event_is_commit(cpu_buffer, event)) {
  2119. /*
  2120. * A commit event that is first on a page
  2121. * updates the write timestamp with the page stamp
  2122. */
  2123. if (!rb_event_index(event))
  2124. cpu_buffer->write_stamp =
  2125. cpu_buffer->commit_page->page->time_stamp;
  2126. else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  2127. delta = event->array[0];
  2128. delta <<= TS_SHIFT;
  2129. delta += event->time_delta;
  2130. cpu_buffer->write_stamp += delta;
  2131. } else
  2132. cpu_buffer->write_stamp += event->time_delta;
  2133. }
  2134. }
  2135. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  2136. struct ring_buffer_event *event)
  2137. {
  2138. local_inc(&cpu_buffer->entries);
  2139. rb_update_write_stamp(cpu_buffer, event);
  2140. rb_end_commit(cpu_buffer);
  2141. }
  2142. static __always_inline void
  2143. rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
  2144. {
  2145. bool pagebusy;
  2146. if (buffer->irq_work.waiters_pending) {
  2147. buffer->irq_work.waiters_pending = false;
  2148. /* irq_work_queue() supplies it's own memory barriers */
  2149. irq_work_queue(&buffer->irq_work.work);
  2150. }
  2151. if (cpu_buffer->irq_work.waiters_pending) {
  2152. cpu_buffer->irq_work.waiters_pending = false;
  2153. /* irq_work_queue() supplies it's own memory barriers */
  2154. irq_work_queue(&cpu_buffer->irq_work.work);
  2155. }
  2156. pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
  2157. if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
  2158. cpu_buffer->irq_work.wakeup_full = true;
  2159. cpu_buffer->irq_work.full_waiters_pending = false;
  2160. /* irq_work_queue() supplies it's own memory barriers */
  2161. irq_work_queue(&cpu_buffer->irq_work.work);
  2162. }
  2163. }
  2164. /*
  2165. * The lock and unlock are done within a preempt disable section.
  2166. * The current_context per_cpu variable can only be modified
  2167. * by the current task between lock and unlock. But it can
  2168. * be modified more than once via an interrupt. There are four
  2169. * different contexts that we need to consider.
  2170. *
  2171. * Normal context.
  2172. * SoftIRQ context
  2173. * IRQ context
  2174. * NMI context
  2175. *
  2176. * If for some reason the ring buffer starts to recurse, we
  2177. * only allow that to happen at most 4 times (one for each
  2178. * context). If it happens 5 times, then we consider this a
  2179. * recusive loop and do not let it go further.
  2180. */
  2181. static __always_inline int
  2182. trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
  2183. {
  2184. if (cpu_buffer->current_context >= 4)
  2185. return 1;
  2186. cpu_buffer->current_context++;
  2187. /* Interrupts must see this update */
  2188. barrier();
  2189. return 0;
  2190. }
  2191. static __always_inline void
  2192. trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
  2193. {
  2194. /* Don't let the dec leak out */
  2195. barrier();
  2196. cpu_buffer->current_context--;
  2197. }
  2198. /**
  2199. * ring_buffer_unlock_commit - commit a reserved
  2200. * @buffer: The buffer to commit to
  2201. * @event: The event pointer to commit.
  2202. *
  2203. * This commits the data to the ring buffer, and releases any locks held.
  2204. *
  2205. * Must be paired with ring_buffer_lock_reserve.
  2206. */
  2207. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  2208. struct ring_buffer_event *event)
  2209. {
  2210. struct ring_buffer_per_cpu *cpu_buffer;
  2211. int cpu = raw_smp_processor_id();
  2212. cpu_buffer = buffer->buffers[cpu];
  2213. rb_commit(cpu_buffer, event);
  2214. rb_wakeups(buffer, cpu_buffer);
  2215. trace_recursive_unlock(cpu_buffer);
  2216. preempt_enable_notrace();
  2217. return 0;
  2218. }
  2219. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  2220. static noinline void
  2221. rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
  2222. struct rb_event_info *info)
  2223. {
  2224. WARN_ONCE(info->delta > (1ULL << 59),
  2225. KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
  2226. (unsigned long long)info->delta,
  2227. (unsigned long long)info->ts,
  2228. (unsigned long long)cpu_buffer->write_stamp,
  2229. sched_clock_stable() ? "" :
  2230. "If you just came from a suspend/resume,\n"
  2231. "please switch to the trace global clock:\n"
  2232. " echo global > /sys/kernel/debug/tracing/trace_clock\n");
  2233. info->add_timestamp = 1;
  2234. }
  2235. static struct ring_buffer_event *
  2236. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  2237. struct rb_event_info *info)
  2238. {
  2239. struct ring_buffer_event *event;
  2240. struct buffer_page *tail_page;
  2241. unsigned long tail, write;
  2242. /*
  2243. * If the time delta since the last event is too big to
  2244. * hold in the time field of the event, then we append a
  2245. * TIME EXTEND event ahead of the data event.
  2246. */
  2247. if (unlikely(info->add_timestamp))
  2248. info->length += RB_LEN_TIME_EXTEND;
  2249. /* Don't let the compiler play games with cpu_buffer->tail_page */
  2250. tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
  2251. write = local_add_return(info->length, &tail_page->write);
  2252. /* set write to only the index of the write */
  2253. write &= RB_WRITE_MASK;
  2254. tail = write - info->length;
  2255. /*
  2256. * If this is the first commit on the page, then it has the same
  2257. * timestamp as the page itself.
  2258. */
  2259. if (!tail)
  2260. info->delta = 0;
  2261. /* See if we shot pass the end of this buffer page */
  2262. if (unlikely(write > BUF_PAGE_SIZE))
  2263. return rb_move_tail(cpu_buffer, tail, info);
  2264. /* We reserved something on the buffer */
  2265. event = __rb_page_index(tail_page, tail);
  2266. rb_update_event(cpu_buffer, event, info);
  2267. local_inc(&tail_page->entries);
  2268. /*
  2269. * If this is the first commit on the page, then update
  2270. * its timestamp.
  2271. */
  2272. if (!tail)
  2273. tail_page->page->time_stamp = info->ts;
  2274. /* account for these added bytes */
  2275. local_add(info->length, &cpu_buffer->entries_bytes);
  2276. return event;
  2277. }
  2278. static __always_inline struct ring_buffer_event *
  2279. rb_reserve_next_event(struct ring_buffer *buffer,
  2280. struct ring_buffer_per_cpu *cpu_buffer,
  2281. unsigned long length)
  2282. {
  2283. struct ring_buffer_event *event;
  2284. struct rb_event_info info;
  2285. int nr_loops = 0;
  2286. u64 diff;
  2287. rb_start_commit(cpu_buffer);
  2288. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  2289. /*
  2290. * Due to the ability to swap a cpu buffer from a buffer
  2291. * it is possible it was swapped before we committed.
  2292. * (committing stops a swap). We check for it here and
  2293. * if it happened, we have to fail the write.
  2294. */
  2295. barrier();
  2296. if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
  2297. local_dec(&cpu_buffer->committing);
  2298. local_dec(&cpu_buffer->commits);
  2299. return NULL;
  2300. }
  2301. #endif
  2302. info.length = rb_calculate_event_length(length);
  2303. again:
  2304. info.add_timestamp = 0;
  2305. info.delta = 0;
  2306. /*
  2307. * We allow for interrupts to reenter here and do a trace.
  2308. * If one does, it will cause this original code to loop
  2309. * back here. Even with heavy interrupts happening, this
  2310. * should only happen a few times in a row. If this happens
  2311. * 1000 times in a row, there must be either an interrupt
  2312. * storm or we have something buggy.
  2313. * Bail!
  2314. */
  2315. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  2316. goto out_fail;
  2317. info.ts = rb_time_stamp(cpu_buffer->buffer);
  2318. diff = info.ts - cpu_buffer->write_stamp;
  2319. /* make sure this diff is calculated here */
  2320. barrier();
  2321. /* Did the write stamp get updated already? */
  2322. if (likely(info.ts >= cpu_buffer->write_stamp)) {
  2323. info.delta = diff;
  2324. if (unlikely(test_time_stamp(info.delta)))
  2325. rb_handle_timestamp(cpu_buffer, &info);
  2326. }
  2327. event = __rb_reserve_next(cpu_buffer, &info);
  2328. if (unlikely(PTR_ERR(event) == -EAGAIN)) {
  2329. if (info.add_timestamp)
  2330. info.length -= RB_LEN_TIME_EXTEND;
  2331. goto again;
  2332. }
  2333. if (!event)
  2334. goto out_fail;
  2335. return event;
  2336. out_fail:
  2337. rb_end_commit(cpu_buffer);
  2338. return NULL;
  2339. }
  2340. /**
  2341. * ring_buffer_lock_reserve - reserve a part of the buffer
  2342. * @buffer: the ring buffer to reserve from
  2343. * @length: the length of the data to reserve (excluding event header)
  2344. *
  2345. * Returns a reseverd event on the ring buffer to copy directly to.
  2346. * The user of this interface will need to get the body to write into
  2347. * and can use the ring_buffer_event_data() interface.
  2348. *
  2349. * The length is the length of the data needed, not the event length
  2350. * which also includes the event header.
  2351. *
  2352. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  2353. * If NULL is returned, then nothing has been allocated or locked.
  2354. */
  2355. struct ring_buffer_event *
  2356. ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
  2357. {
  2358. struct ring_buffer_per_cpu *cpu_buffer;
  2359. struct ring_buffer_event *event;
  2360. int cpu;
  2361. /* If we are tracing schedule, we don't want to recurse */
  2362. preempt_disable_notrace();
  2363. if (unlikely(atomic_read(&buffer->record_disabled)))
  2364. goto out;
  2365. cpu = raw_smp_processor_id();
  2366. if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
  2367. goto out;
  2368. cpu_buffer = buffer->buffers[cpu];
  2369. if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
  2370. goto out;
  2371. if (unlikely(length > BUF_MAX_DATA_SIZE))
  2372. goto out;
  2373. if (unlikely(trace_recursive_lock(cpu_buffer)))
  2374. goto out;
  2375. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2376. if (!event)
  2377. goto out_unlock;
  2378. return event;
  2379. out_unlock:
  2380. trace_recursive_unlock(cpu_buffer);
  2381. out:
  2382. preempt_enable_notrace();
  2383. return NULL;
  2384. }
  2385. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  2386. /*
  2387. * Decrement the entries to the page that an event is on.
  2388. * The event does not even need to exist, only the pointer
  2389. * to the page it is on. This may only be called before the commit
  2390. * takes place.
  2391. */
  2392. static inline void
  2393. rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
  2394. struct ring_buffer_event *event)
  2395. {
  2396. unsigned long addr = (unsigned long)event;
  2397. struct buffer_page *bpage = cpu_buffer->commit_page;
  2398. struct buffer_page *start;
  2399. addr &= PAGE_MASK;
  2400. /* Do the likely case first */
  2401. if (likely(bpage->page == (void *)addr)) {
  2402. local_dec(&bpage->entries);
  2403. return;
  2404. }
  2405. /*
  2406. * Because the commit page may be on the reader page we
  2407. * start with the next page and check the end loop there.
  2408. */
  2409. rb_inc_page(cpu_buffer, &bpage);
  2410. start = bpage;
  2411. do {
  2412. if (bpage->page == (void *)addr) {
  2413. local_dec(&bpage->entries);
  2414. return;
  2415. }
  2416. rb_inc_page(cpu_buffer, &bpage);
  2417. } while (bpage != start);
  2418. /* commit not part of this buffer?? */
  2419. RB_WARN_ON(cpu_buffer, 1);
  2420. }
  2421. /**
  2422. * ring_buffer_commit_discard - discard an event that has not been committed
  2423. * @buffer: the ring buffer
  2424. * @event: non committed event to discard
  2425. *
  2426. * Sometimes an event that is in the ring buffer needs to be ignored.
  2427. * This function lets the user discard an event in the ring buffer
  2428. * and then that event will not be read later.
  2429. *
  2430. * This function only works if it is called before the the item has been
  2431. * committed. It will try to free the event from the ring buffer
  2432. * if another event has not been added behind it.
  2433. *
  2434. * If another event has been added behind it, it will set the event
  2435. * up as discarded, and perform the commit.
  2436. *
  2437. * If this function is called, do not call ring_buffer_unlock_commit on
  2438. * the event.
  2439. */
  2440. void ring_buffer_discard_commit(struct ring_buffer *buffer,
  2441. struct ring_buffer_event *event)
  2442. {
  2443. struct ring_buffer_per_cpu *cpu_buffer;
  2444. int cpu;
  2445. /* The event is discarded regardless */
  2446. rb_event_discard(event);
  2447. cpu = smp_processor_id();
  2448. cpu_buffer = buffer->buffers[cpu];
  2449. /*
  2450. * This must only be called if the event has not been
  2451. * committed yet. Thus we can assume that preemption
  2452. * is still disabled.
  2453. */
  2454. RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
  2455. rb_decrement_entry(cpu_buffer, event);
  2456. if (rb_try_to_discard(cpu_buffer, event))
  2457. goto out;
  2458. /*
  2459. * The commit is still visible by the reader, so we
  2460. * must still update the timestamp.
  2461. */
  2462. rb_update_write_stamp(cpu_buffer, event);
  2463. out:
  2464. rb_end_commit(cpu_buffer);
  2465. trace_recursive_unlock(cpu_buffer);
  2466. preempt_enable_notrace();
  2467. }
  2468. EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
  2469. /**
  2470. * ring_buffer_write - write data to the buffer without reserving
  2471. * @buffer: The ring buffer to write to.
  2472. * @length: The length of the data being written (excluding the event header)
  2473. * @data: The data to write to the buffer.
  2474. *
  2475. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  2476. * one function. If you already have the data to write to the buffer, it
  2477. * may be easier to simply call this function.
  2478. *
  2479. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  2480. * and not the length of the event which would hold the header.
  2481. */
  2482. int ring_buffer_write(struct ring_buffer *buffer,
  2483. unsigned long length,
  2484. void *data)
  2485. {
  2486. struct ring_buffer_per_cpu *cpu_buffer;
  2487. struct ring_buffer_event *event;
  2488. void *body;
  2489. int ret = -EBUSY;
  2490. int cpu;
  2491. preempt_disable_notrace();
  2492. if (atomic_read(&buffer->record_disabled))
  2493. goto out;
  2494. cpu = raw_smp_processor_id();
  2495. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2496. goto out;
  2497. cpu_buffer = buffer->buffers[cpu];
  2498. if (atomic_read(&cpu_buffer->record_disabled))
  2499. goto out;
  2500. if (length > BUF_MAX_DATA_SIZE)
  2501. goto out;
  2502. if (unlikely(trace_recursive_lock(cpu_buffer)))
  2503. goto out;
  2504. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2505. if (!event)
  2506. goto out_unlock;
  2507. body = rb_event_data(event);
  2508. memcpy(body, data, length);
  2509. rb_commit(cpu_buffer, event);
  2510. rb_wakeups(buffer, cpu_buffer);
  2511. ret = 0;
  2512. out_unlock:
  2513. trace_recursive_unlock(cpu_buffer);
  2514. out:
  2515. preempt_enable_notrace();
  2516. return ret;
  2517. }
  2518. EXPORT_SYMBOL_GPL(ring_buffer_write);
  2519. static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  2520. {
  2521. struct buffer_page *reader = cpu_buffer->reader_page;
  2522. struct buffer_page *head = rb_set_head_page(cpu_buffer);
  2523. struct buffer_page *commit = cpu_buffer->commit_page;
  2524. /* In case of error, head will be NULL */
  2525. if (unlikely(!head))
  2526. return true;
  2527. return reader->read == rb_page_commit(reader) &&
  2528. (commit == reader ||
  2529. (commit == head &&
  2530. head->read == rb_page_commit(commit)));
  2531. }
  2532. /**
  2533. * ring_buffer_record_disable - stop all writes into the buffer
  2534. * @buffer: The ring buffer to stop writes to.
  2535. *
  2536. * This prevents all writes to the buffer. Any attempt to write
  2537. * to the buffer after this will fail and return NULL.
  2538. *
  2539. * The caller should call synchronize_sched() after this.
  2540. */
  2541. void ring_buffer_record_disable(struct ring_buffer *buffer)
  2542. {
  2543. atomic_inc(&buffer->record_disabled);
  2544. }
  2545. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  2546. /**
  2547. * ring_buffer_record_enable - enable writes to the buffer
  2548. * @buffer: The ring buffer to enable writes
  2549. *
  2550. * Note, multiple disables will need the same number of enables
  2551. * to truly enable the writing (much like preempt_disable).
  2552. */
  2553. void ring_buffer_record_enable(struct ring_buffer *buffer)
  2554. {
  2555. atomic_dec(&buffer->record_disabled);
  2556. }
  2557. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  2558. /**
  2559. * ring_buffer_record_off - stop all writes into the buffer
  2560. * @buffer: The ring buffer to stop writes to.
  2561. *
  2562. * This prevents all writes to the buffer. Any attempt to write
  2563. * to the buffer after this will fail and return NULL.
  2564. *
  2565. * This is different than ring_buffer_record_disable() as
  2566. * it works like an on/off switch, where as the disable() version
  2567. * must be paired with a enable().
  2568. */
  2569. void ring_buffer_record_off(struct ring_buffer *buffer)
  2570. {
  2571. unsigned int rd;
  2572. unsigned int new_rd;
  2573. do {
  2574. rd = atomic_read(&buffer->record_disabled);
  2575. new_rd = rd | RB_BUFFER_OFF;
  2576. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2577. }
  2578. EXPORT_SYMBOL_GPL(ring_buffer_record_off);
  2579. /**
  2580. * ring_buffer_record_on - restart writes into the buffer
  2581. * @buffer: The ring buffer to start writes to.
  2582. *
  2583. * This enables all writes to the buffer that was disabled by
  2584. * ring_buffer_record_off().
  2585. *
  2586. * This is different than ring_buffer_record_enable() as
  2587. * it works like an on/off switch, where as the enable() version
  2588. * must be paired with a disable().
  2589. */
  2590. void ring_buffer_record_on(struct ring_buffer *buffer)
  2591. {
  2592. unsigned int rd;
  2593. unsigned int new_rd;
  2594. do {
  2595. rd = atomic_read(&buffer->record_disabled);
  2596. new_rd = rd & ~RB_BUFFER_OFF;
  2597. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2598. }
  2599. EXPORT_SYMBOL_GPL(ring_buffer_record_on);
  2600. /**
  2601. * ring_buffer_record_is_on - return true if the ring buffer can write
  2602. * @buffer: The ring buffer to see if write is enabled
  2603. *
  2604. * Returns true if the ring buffer is in a state that it accepts writes.
  2605. */
  2606. int ring_buffer_record_is_on(struct ring_buffer *buffer)
  2607. {
  2608. return !atomic_read(&buffer->record_disabled);
  2609. }
  2610. /**
  2611. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  2612. * @buffer: The ring buffer to stop writes to.
  2613. * @cpu: The CPU buffer to stop
  2614. *
  2615. * This prevents all writes to the buffer. Any attempt to write
  2616. * to the buffer after this will fail and return NULL.
  2617. *
  2618. * The caller should call synchronize_sched() after this.
  2619. */
  2620. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  2621. {
  2622. struct ring_buffer_per_cpu *cpu_buffer;
  2623. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2624. return;
  2625. cpu_buffer = buffer->buffers[cpu];
  2626. atomic_inc(&cpu_buffer->record_disabled);
  2627. }
  2628. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  2629. /**
  2630. * ring_buffer_record_enable_cpu - enable writes to the buffer
  2631. * @buffer: The ring buffer to enable writes
  2632. * @cpu: The CPU to enable.
  2633. *
  2634. * Note, multiple disables will need the same number of enables
  2635. * to truly enable the writing (much like preempt_disable).
  2636. */
  2637. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  2638. {
  2639. struct ring_buffer_per_cpu *cpu_buffer;
  2640. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2641. return;
  2642. cpu_buffer = buffer->buffers[cpu];
  2643. atomic_dec(&cpu_buffer->record_disabled);
  2644. }
  2645. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  2646. /*
  2647. * The total entries in the ring buffer is the running counter
  2648. * of entries entered into the ring buffer, minus the sum of
  2649. * the entries read from the ring buffer and the number of
  2650. * entries that were overwritten.
  2651. */
  2652. static inline unsigned long
  2653. rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
  2654. {
  2655. return local_read(&cpu_buffer->entries) -
  2656. (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
  2657. }
  2658. /**
  2659. * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
  2660. * @buffer: The ring buffer
  2661. * @cpu: The per CPU buffer to read from.
  2662. */
  2663. u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
  2664. {
  2665. unsigned long flags;
  2666. struct ring_buffer_per_cpu *cpu_buffer;
  2667. struct buffer_page *bpage;
  2668. u64 ret = 0;
  2669. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2670. return 0;
  2671. cpu_buffer = buffer->buffers[cpu];
  2672. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2673. /*
  2674. * if the tail is on reader_page, oldest time stamp is on the reader
  2675. * page
  2676. */
  2677. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  2678. bpage = cpu_buffer->reader_page;
  2679. else
  2680. bpage = rb_set_head_page(cpu_buffer);
  2681. if (bpage)
  2682. ret = bpage->page->time_stamp;
  2683. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2684. return ret;
  2685. }
  2686. EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
  2687. /**
  2688. * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
  2689. * @buffer: The ring buffer
  2690. * @cpu: The per CPU buffer to read from.
  2691. */
  2692. unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
  2693. {
  2694. struct ring_buffer_per_cpu *cpu_buffer;
  2695. unsigned long ret;
  2696. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2697. return 0;
  2698. cpu_buffer = buffer->buffers[cpu];
  2699. ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
  2700. return ret;
  2701. }
  2702. EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
  2703. /**
  2704. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  2705. * @buffer: The ring buffer
  2706. * @cpu: The per CPU buffer to get the entries from.
  2707. */
  2708. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  2709. {
  2710. struct ring_buffer_per_cpu *cpu_buffer;
  2711. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2712. return 0;
  2713. cpu_buffer = buffer->buffers[cpu];
  2714. return rb_num_of_entries(cpu_buffer);
  2715. }
  2716. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  2717. /**
  2718. * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
  2719. * buffer wrapping around (only if RB_FL_OVERWRITE is on).
  2720. * @buffer: The ring buffer
  2721. * @cpu: The per CPU buffer to get the number of overruns from
  2722. */
  2723. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2724. {
  2725. struct ring_buffer_per_cpu *cpu_buffer;
  2726. unsigned long ret;
  2727. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2728. return 0;
  2729. cpu_buffer = buffer->buffers[cpu];
  2730. ret = local_read(&cpu_buffer->overrun);
  2731. return ret;
  2732. }
  2733. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  2734. /**
  2735. * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
  2736. * commits failing due to the buffer wrapping around while there are uncommitted
  2737. * events, such as during an interrupt storm.
  2738. * @buffer: The ring buffer
  2739. * @cpu: The per CPU buffer to get the number of overruns from
  2740. */
  2741. unsigned long
  2742. ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2743. {
  2744. struct ring_buffer_per_cpu *cpu_buffer;
  2745. unsigned long ret;
  2746. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2747. return 0;
  2748. cpu_buffer = buffer->buffers[cpu];
  2749. ret = local_read(&cpu_buffer->commit_overrun);
  2750. return ret;
  2751. }
  2752. EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
  2753. /**
  2754. * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
  2755. * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
  2756. * @buffer: The ring buffer
  2757. * @cpu: The per CPU buffer to get the number of overruns from
  2758. */
  2759. unsigned long
  2760. ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
  2761. {
  2762. struct ring_buffer_per_cpu *cpu_buffer;
  2763. unsigned long ret;
  2764. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2765. return 0;
  2766. cpu_buffer = buffer->buffers[cpu];
  2767. ret = local_read(&cpu_buffer->dropped_events);
  2768. return ret;
  2769. }
  2770. EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
  2771. /**
  2772. * ring_buffer_read_events_cpu - get the number of events successfully read
  2773. * @buffer: The ring buffer
  2774. * @cpu: The per CPU buffer to get the number of events read
  2775. */
  2776. unsigned long
  2777. ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
  2778. {
  2779. struct ring_buffer_per_cpu *cpu_buffer;
  2780. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2781. return 0;
  2782. cpu_buffer = buffer->buffers[cpu];
  2783. return cpu_buffer->read;
  2784. }
  2785. EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
  2786. /**
  2787. * ring_buffer_entries - get the number of entries in a buffer
  2788. * @buffer: The ring buffer
  2789. *
  2790. * Returns the total number of entries in the ring buffer
  2791. * (all CPU entries)
  2792. */
  2793. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  2794. {
  2795. struct ring_buffer_per_cpu *cpu_buffer;
  2796. unsigned long entries = 0;
  2797. int cpu;
  2798. /* if you care about this being correct, lock the buffer */
  2799. for_each_buffer_cpu(buffer, cpu) {
  2800. cpu_buffer = buffer->buffers[cpu];
  2801. entries += rb_num_of_entries(cpu_buffer);
  2802. }
  2803. return entries;
  2804. }
  2805. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  2806. /**
  2807. * ring_buffer_overruns - get the number of overruns in buffer
  2808. * @buffer: The ring buffer
  2809. *
  2810. * Returns the total number of overruns in the ring buffer
  2811. * (all CPU entries)
  2812. */
  2813. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  2814. {
  2815. struct ring_buffer_per_cpu *cpu_buffer;
  2816. unsigned long overruns = 0;
  2817. int cpu;
  2818. /* if you care about this being correct, lock the buffer */
  2819. for_each_buffer_cpu(buffer, cpu) {
  2820. cpu_buffer = buffer->buffers[cpu];
  2821. overruns += local_read(&cpu_buffer->overrun);
  2822. }
  2823. return overruns;
  2824. }
  2825. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  2826. static void rb_iter_reset(struct ring_buffer_iter *iter)
  2827. {
  2828. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  2829. /* Iterator usage is expected to have record disabled */
  2830. iter->head_page = cpu_buffer->reader_page;
  2831. iter->head = cpu_buffer->reader_page->read;
  2832. iter->cache_reader_page = iter->head_page;
  2833. iter->cache_read = cpu_buffer->read;
  2834. if (iter->head)
  2835. iter->read_stamp = cpu_buffer->read_stamp;
  2836. else
  2837. iter->read_stamp = iter->head_page->page->time_stamp;
  2838. }
  2839. /**
  2840. * ring_buffer_iter_reset - reset an iterator
  2841. * @iter: The iterator to reset
  2842. *
  2843. * Resets the iterator, so that it will start from the beginning
  2844. * again.
  2845. */
  2846. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  2847. {
  2848. struct ring_buffer_per_cpu *cpu_buffer;
  2849. unsigned long flags;
  2850. if (!iter)
  2851. return;
  2852. cpu_buffer = iter->cpu_buffer;
  2853. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2854. rb_iter_reset(iter);
  2855. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2856. }
  2857. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  2858. /**
  2859. * ring_buffer_iter_empty - check if an iterator has no more to read
  2860. * @iter: The iterator to check
  2861. */
  2862. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  2863. {
  2864. struct ring_buffer_per_cpu *cpu_buffer;
  2865. struct buffer_page *reader;
  2866. struct buffer_page *head_page;
  2867. struct buffer_page *commit_page;
  2868. unsigned commit;
  2869. cpu_buffer = iter->cpu_buffer;
  2870. /* Remember, trace recording is off when iterator is in use */
  2871. reader = cpu_buffer->reader_page;
  2872. head_page = cpu_buffer->head_page;
  2873. commit_page = cpu_buffer->commit_page;
  2874. commit = rb_page_commit(commit_page);
  2875. return ((iter->head_page == commit_page && iter->head == commit) ||
  2876. (iter->head_page == reader && commit_page == head_page &&
  2877. head_page->read == commit &&
  2878. iter->head == rb_page_commit(cpu_buffer->reader_page)));
  2879. }
  2880. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  2881. static void
  2882. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2883. struct ring_buffer_event *event)
  2884. {
  2885. u64 delta;
  2886. switch (event->type_len) {
  2887. case RINGBUF_TYPE_PADDING:
  2888. return;
  2889. case RINGBUF_TYPE_TIME_EXTEND:
  2890. delta = event->array[0];
  2891. delta <<= TS_SHIFT;
  2892. delta += event->time_delta;
  2893. cpu_buffer->read_stamp += delta;
  2894. return;
  2895. case RINGBUF_TYPE_TIME_STAMP:
  2896. /* FIXME: not implemented */
  2897. return;
  2898. case RINGBUF_TYPE_DATA:
  2899. cpu_buffer->read_stamp += event->time_delta;
  2900. return;
  2901. default:
  2902. BUG();
  2903. }
  2904. return;
  2905. }
  2906. static void
  2907. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  2908. struct ring_buffer_event *event)
  2909. {
  2910. u64 delta;
  2911. switch (event->type_len) {
  2912. case RINGBUF_TYPE_PADDING:
  2913. return;
  2914. case RINGBUF_TYPE_TIME_EXTEND:
  2915. delta = event->array[0];
  2916. delta <<= TS_SHIFT;
  2917. delta += event->time_delta;
  2918. iter->read_stamp += delta;
  2919. return;
  2920. case RINGBUF_TYPE_TIME_STAMP:
  2921. /* FIXME: not implemented */
  2922. return;
  2923. case RINGBUF_TYPE_DATA:
  2924. iter->read_stamp += event->time_delta;
  2925. return;
  2926. default:
  2927. BUG();
  2928. }
  2929. return;
  2930. }
  2931. static struct buffer_page *
  2932. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  2933. {
  2934. struct buffer_page *reader = NULL;
  2935. unsigned long overwrite;
  2936. unsigned long flags;
  2937. int nr_loops = 0;
  2938. int ret;
  2939. local_irq_save(flags);
  2940. arch_spin_lock(&cpu_buffer->lock);
  2941. again:
  2942. /*
  2943. * This should normally only loop twice. But because the
  2944. * start of the reader inserts an empty page, it causes
  2945. * a case where we will loop three times. There should be no
  2946. * reason to loop four times (that I know of).
  2947. */
  2948. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  2949. reader = NULL;
  2950. goto out;
  2951. }
  2952. reader = cpu_buffer->reader_page;
  2953. /* If there's more to read, return this page */
  2954. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  2955. goto out;
  2956. /* Never should we have an index greater than the size */
  2957. if (RB_WARN_ON(cpu_buffer,
  2958. cpu_buffer->reader_page->read > rb_page_size(reader)))
  2959. goto out;
  2960. /* check if we caught up to the tail */
  2961. reader = NULL;
  2962. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  2963. goto out;
  2964. /* Don't bother swapping if the ring buffer is empty */
  2965. if (rb_num_of_entries(cpu_buffer) == 0)
  2966. goto out;
  2967. /*
  2968. * Reset the reader page to size zero.
  2969. */
  2970. local_set(&cpu_buffer->reader_page->write, 0);
  2971. local_set(&cpu_buffer->reader_page->entries, 0);
  2972. local_set(&cpu_buffer->reader_page->page->commit, 0);
  2973. cpu_buffer->reader_page->real_end = 0;
  2974. spin:
  2975. /*
  2976. * Splice the empty reader page into the list around the head.
  2977. */
  2978. reader = rb_set_head_page(cpu_buffer);
  2979. if (!reader)
  2980. goto out;
  2981. cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
  2982. cpu_buffer->reader_page->list.prev = reader->list.prev;
  2983. /*
  2984. * cpu_buffer->pages just needs to point to the buffer, it
  2985. * has no specific buffer page to point to. Lets move it out
  2986. * of our way so we don't accidentally swap it.
  2987. */
  2988. cpu_buffer->pages = reader->list.prev;
  2989. /* The reader page will be pointing to the new head */
  2990. rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
  2991. /*
  2992. * We want to make sure we read the overruns after we set up our
  2993. * pointers to the next object. The writer side does a
  2994. * cmpxchg to cross pages which acts as the mb on the writer
  2995. * side. Note, the reader will constantly fail the swap
  2996. * while the writer is updating the pointers, so this
  2997. * guarantees that the overwrite recorded here is the one we
  2998. * want to compare with the last_overrun.
  2999. */
  3000. smp_mb();
  3001. overwrite = local_read(&(cpu_buffer->overrun));
  3002. /*
  3003. * Here's the tricky part.
  3004. *
  3005. * We need to move the pointer past the header page.
  3006. * But we can only do that if a writer is not currently
  3007. * moving it. The page before the header page has the
  3008. * flag bit '1' set if it is pointing to the page we want.
  3009. * but if the writer is in the process of moving it
  3010. * than it will be '2' or already moved '0'.
  3011. */
  3012. ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
  3013. /*
  3014. * If we did not convert it, then we must try again.
  3015. */
  3016. if (!ret)
  3017. goto spin;
  3018. /*
  3019. * Yeah! We succeeded in replacing the page.
  3020. *
  3021. * Now make the new head point back to the reader page.
  3022. */
  3023. rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
  3024. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  3025. /* Finally update the reader page to the new head */
  3026. cpu_buffer->reader_page = reader;
  3027. cpu_buffer->reader_page->read = 0;
  3028. if (overwrite != cpu_buffer->last_overrun) {
  3029. cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
  3030. cpu_buffer->last_overrun = overwrite;
  3031. }
  3032. goto again;
  3033. out:
  3034. /* Update the read_stamp on the first event */
  3035. if (reader && reader->read == 0)
  3036. cpu_buffer->read_stamp = reader->page->time_stamp;
  3037. arch_spin_unlock(&cpu_buffer->lock);
  3038. local_irq_restore(flags);
  3039. return reader;
  3040. }
  3041. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  3042. {
  3043. struct ring_buffer_event *event;
  3044. struct buffer_page *reader;
  3045. unsigned length;
  3046. reader = rb_get_reader_page(cpu_buffer);
  3047. /* This function should not be called when buffer is empty */
  3048. if (RB_WARN_ON(cpu_buffer, !reader))
  3049. return;
  3050. event = rb_reader_event(cpu_buffer);
  3051. if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  3052. cpu_buffer->read++;
  3053. rb_update_read_stamp(cpu_buffer, event);
  3054. length = rb_event_length(event);
  3055. cpu_buffer->reader_page->read += length;
  3056. }
  3057. static void rb_advance_iter(struct ring_buffer_iter *iter)
  3058. {
  3059. struct ring_buffer_per_cpu *cpu_buffer;
  3060. struct ring_buffer_event *event;
  3061. unsigned length;
  3062. cpu_buffer = iter->cpu_buffer;
  3063. /*
  3064. * Check if we are at the end of the buffer.
  3065. */
  3066. if (iter->head >= rb_page_size(iter->head_page)) {
  3067. /* discarded commits can make the page empty */
  3068. if (iter->head_page == cpu_buffer->commit_page)
  3069. return;
  3070. rb_inc_iter(iter);
  3071. return;
  3072. }
  3073. event = rb_iter_head_event(iter);
  3074. length = rb_event_length(event);
  3075. /*
  3076. * This should not be called to advance the header if we are
  3077. * at the tail of the buffer.
  3078. */
  3079. if (RB_WARN_ON(cpu_buffer,
  3080. (iter->head_page == cpu_buffer->commit_page) &&
  3081. (iter->head + length > rb_commit_index(cpu_buffer))))
  3082. return;
  3083. rb_update_iter_read_stamp(iter, event);
  3084. iter->head += length;
  3085. /* check for end of page padding */
  3086. if ((iter->head >= rb_page_size(iter->head_page)) &&
  3087. (iter->head_page != cpu_buffer->commit_page))
  3088. rb_inc_iter(iter);
  3089. }
  3090. static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
  3091. {
  3092. return cpu_buffer->lost_events;
  3093. }
  3094. static struct ring_buffer_event *
  3095. rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
  3096. unsigned long *lost_events)
  3097. {
  3098. struct ring_buffer_event *event;
  3099. struct buffer_page *reader;
  3100. int nr_loops = 0;
  3101. again:
  3102. /*
  3103. * We repeat when a time extend is encountered.
  3104. * Since the time extend is always attached to a data event,
  3105. * we should never loop more than once.
  3106. * (We never hit the following condition more than twice).
  3107. */
  3108. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
  3109. return NULL;
  3110. reader = rb_get_reader_page(cpu_buffer);
  3111. if (!reader)
  3112. return NULL;
  3113. event = rb_reader_event(cpu_buffer);
  3114. switch (event->type_len) {
  3115. case RINGBUF_TYPE_PADDING:
  3116. if (rb_null_event(event))
  3117. RB_WARN_ON(cpu_buffer, 1);
  3118. /*
  3119. * Because the writer could be discarding every
  3120. * event it creates (which would probably be bad)
  3121. * if we were to go back to "again" then we may never
  3122. * catch up, and will trigger the warn on, or lock
  3123. * the box. Return the padding, and we will release
  3124. * the current locks, and try again.
  3125. */
  3126. return event;
  3127. case RINGBUF_TYPE_TIME_EXTEND:
  3128. /* Internal data, OK to advance */
  3129. rb_advance_reader(cpu_buffer);
  3130. goto again;
  3131. case RINGBUF_TYPE_TIME_STAMP:
  3132. /* FIXME: not implemented */
  3133. rb_advance_reader(cpu_buffer);
  3134. goto again;
  3135. case RINGBUF_TYPE_DATA:
  3136. if (ts) {
  3137. *ts = cpu_buffer->read_stamp + event->time_delta;
  3138. ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
  3139. cpu_buffer->cpu, ts);
  3140. }
  3141. if (lost_events)
  3142. *lost_events = rb_lost_events(cpu_buffer);
  3143. return event;
  3144. default:
  3145. BUG();
  3146. }
  3147. return NULL;
  3148. }
  3149. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  3150. static struct ring_buffer_event *
  3151. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3152. {
  3153. struct ring_buffer *buffer;
  3154. struct ring_buffer_per_cpu *cpu_buffer;
  3155. struct ring_buffer_event *event;
  3156. int nr_loops = 0;
  3157. cpu_buffer = iter->cpu_buffer;
  3158. buffer = cpu_buffer->buffer;
  3159. /*
  3160. * Check if someone performed a consuming read to
  3161. * the buffer. A consuming read invalidates the iterator
  3162. * and we need to reset the iterator in this case.
  3163. */
  3164. if (unlikely(iter->cache_read != cpu_buffer->read ||
  3165. iter->cache_reader_page != cpu_buffer->reader_page))
  3166. rb_iter_reset(iter);
  3167. again:
  3168. if (ring_buffer_iter_empty(iter))
  3169. return NULL;
  3170. /*
  3171. * We repeat when a time extend is encountered or we hit
  3172. * the end of the page. Since the time extend is always attached
  3173. * to a data event, we should never loop more than three times.
  3174. * Once for going to next page, once on time extend, and
  3175. * finally once to get the event.
  3176. * (We never hit the following condition more than thrice).
  3177. */
  3178. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
  3179. return NULL;
  3180. if (rb_per_cpu_empty(cpu_buffer))
  3181. return NULL;
  3182. if (iter->head >= rb_page_size(iter->head_page)) {
  3183. rb_inc_iter(iter);
  3184. goto again;
  3185. }
  3186. event = rb_iter_head_event(iter);
  3187. switch (event->type_len) {
  3188. case RINGBUF_TYPE_PADDING:
  3189. if (rb_null_event(event)) {
  3190. rb_inc_iter(iter);
  3191. goto again;
  3192. }
  3193. rb_advance_iter(iter);
  3194. return event;
  3195. case RINGBUF_TYPE_TIME_EXTEND:
  3196. /* Internal data, OK to advance */
  3197. rb_advance_iter(iter);
  3198. goto again;
  3199. case RINGBUF_TYPE_TIME_STAMP:
  3200. /* FIXME: not implemented */
  3201. rb_advance_iter(iter);
  3202. goto again;
  3203. case RINGBUF_TYPE_DATA:
  3204. if (ts) {
  3205. *ts = iter->read_stamp + event->time_delta;
  3206. ring_buffer_normalize_time_stamp(buffer,
  3207. cpu_buffer->cpu, ts);
  3208. }
  3209. return event;
  3210. default:
  3211. BUG();
  3212. }
  3213. return NULL;
  3214. }
  3215. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  3216. static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
  3217. {
  3218. if (likely(!in_nmi())) {
  3219. raw_spin_lock(&cpu_buffer->reader_lock);
  3220. return true;
  3221. }
  3222. /*
  3223. * If an NMI die dumps out the content of the ring buffer
  3224. * trylock must be used to prevent a deadlock if the NMI
  3225. * preempted a task that holds the ring buffer locks. If
  3226. * we get the lock then all is fine, if not, then continue
  3227. * to do the read, but this can corrupt the ring buffer,
  3228. * so it must be permanently disabled from future writes.
  3229. * Reading from NMI is a oneshot deal.
  3230. */
  3231. if (raw_spin_trylock(&cpu_buffer->reader_lock))
  3232. return true;
  3233. /* Continue without locking, but disable the ring buffer */
  3234. atomic_inc(&cpu_buffer->record_disabled);
  3235. return false;
  3236. }
  3237. static inline void
  3238. rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
  3239. {
  3240. if (likely(locked))
  3241. raw_spin_unlock(&cpu_buffer->reader_lock);
  3242. return;
  3243. }
  3244. /**
  3245. * ring_buffer_peek - peek at the next event to be read
  3246. * @buffer: The ring buffer to read
  3247. * @cpu: The cpu to peak at
  3248. * @ts: The timestamp counter of this event.
  3249. * @lost_events: a variable to store if events were lost (may be NULL)
  3250. *
  3251. * This will return the event that will be read next, but does
  3252. * not consume the data.
  3253. */
  3254. struct ring_buffer_event *
  3255. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
  3256. unsigned long *lost_events)
  3257. {
  3258. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3259. struct ring_buffer_event *event;
  3260. unsigned long flags;
  3261. bool dolock;
  3262. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3263. return NULL;
  3264. again:
  3265. local_irq_save(flags);
  3266. dolock = rb_reader_lock(cpu_buffer);
  3267. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3268. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3269. rb_advance_reader(cpu_buffer);
  3270. rb_reader_unlock(cpu_buffer, dolock);
  3271. local_irq_restore(flags);
  3272. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3273. goto again;
  3274. return event;
  3275. }
  3276. /**
  3277. * ring_buffer_iter_peek - peek at the next event to be read
  3278. * @iter: The ring buffer iterator
  3279. * @ts: The timestamp counter of this event.
  3280. *
  3281. * This will return the event that will be read next, but does
  3282. * not increment the iterator.
  3283. */
  3284. struct ring_buffer_event *
  3285. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3286. {
  3287. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3288. struct ring_buffer_event *event;
  3289. unsigned long flags;
  3290. again:
  3291. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3292. event = rb_iter_peek(iter, ts);
  3293. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3294. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3295. goto again;
  3296. return event;
  3297. }
  3298. /**
  3299. * ring_buffer_consume - return an event and consume it
  3300. * @buffer: The ring buffer to get the next event from
  3301. * @cpu: the cpu to read the buffer from
  3302. * @ts: a variable to store the timestamp (may be NULL)
  3303. * @lost_events: a variable to store if events were lost (may be NULL)
  3304. *
  3305. * Returns the next event in the ring buffer, and that event is consumed.
  3306. * Meaning, that sequential reads will keep returning a different event,
  3307. * and eventually empty the ring buffer if the producer is slower.
  3308. */
  3309. struct ring_buffer_event *
  3310. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
  3311. unsigned long *lost_events)
  3312. {
  3313. struct ring_buffer_per_cpu *cpu_buffer;
  3314. struct ring_buffer_event *event = NULL;
  3315. unsigned long flags;
  3316. bool dolock;
  3317. again:
  3318. /* might be called in atomic */
  3319. preempt_disable();
  3320. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3321. goto out;
  3322. cpu_buffer = buffer->buffers[cpu];
  3323. local_irq_save(flags);
  3324. dolock = rb_reader_lock(cpu_buffer);
  3325. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3326. if (event) {
  3327. cpu_buffer->lost_events = 0;
  3328. rb_advance_reader(cpu_buffer);
  3329. }
  3330. rb_reader_unlock(cpu_buffer, dolock);
  3331. local_irq_restore(flags);
  3332. out:
  3333. preempt_enable();
  3334. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3335. goto again;
  3336. return event;
  3337. }
  3338. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  3339. /**
  3340. * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
  3341. * @buffer: The ring buffer to read from
  3342. * @cpu: The cpu buffer to iterate over
  3343. *
  3344. * This performs the initial preparations necessary to iterate
  3345. * through the buffer. Memory is allocated, buffer recording
  3346. * is disabled, and the iterator pointer is returned to the caller.
  3347. *
  3348. * Disabling buffer recordng prevents the reading from being
  3349. * corrupted. This is not a consuming read, so a producer is not
  3350. * expected.
  3351. *
  3352. * After a sequence of ring_buffer_read_prepare calls, the user is
  3353. * expected to make at least one call to ring_buffer_read_prepare_sync.
  3354. * Afterwards, ring_buffer_read_start is invoked to get things going
  3355. * for real.
  3356. *
  3357. * This overall must be paired with ring_buffer_read_finish.
  3358. */
  3359. struct ring_buffer_iter *
  3360. ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
  3361. {
  3362. struct ring_buffer_per_cpu *cpu_buffer;
  3363. struct ring_buffer_iter *iter;
  3364. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3365. return NULL;
  3366. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  3367. if (!iter)
  3368. return NULL;
  3369. cpu_buffer = buffer->buffers[cpu];
  3370. iter->cpu_buffer = cpu_buffer;
  3371. atomic_inc(&buffer->resize_disabled);
  3372. atomic_inc(&cpu_buffer->record_disabled);
  3373. return iter;
  3374. }
  3375. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
  3376. /**
  3377. * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
  3378. *
  3379. * All previously invoked ring_buffer_read_prepare calls to prepare
  3380. * iterators will be synchronized. Afterwards, read_buffer_read_start
  3381. * calls on those iterators are allowed.
  3382. */
  3383. void
  3384. ring_buffer_read_prepare_sync(void)
  3385. {
  3386. synchronize_sched();
  3387. }
  3388. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
  3389. /**
  3390. * ring_buffer_read_start - start a non consuming read of the buffer
  3391. * @iter: The iterator returned by ring_buffer_read_prepare
  3392. *
  3393. * This finalizes the startup of an iteration through the buffer.
  3394. * The iterator comes from a call to ring_buffer_read_prepare and
  3395. * an intervening ring_buffer_read_prepare_sync must have been
  3396. * performed.
  3397. *
  3398. * Must be paired with ring_buffer_read_finish.
  3399. */
  3400. void
  3401. ring_buffer_read_start(struct ring_buffer_iter *iter)
  3402. {
  3403. struct ring_buffer_per_cpu *cpu_buffer;
  3404. unsigned long flags;
  3405. if (!iter)
  3406. return;
  3407. cpu_buffer = iter->cpu_buffer;
  3408. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3409. arch_spin_lock(&cpu_buffer->lock);
  3410. rb_iter_reset(iter);
  3411. arch_spin_unlock(&cpu_buffer->lock);
  3412. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3413. }
  3414. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  3415. /**
  3416. * ring_buffer_read_finish - finish reading the iterator of the buffer
  3417. * @iter: The iterator retrieved by ring_buffer_start
  3418. *
  3419. * This re-enables the recording to the buffer, and frees the
  3420. * iterator.
  3421. */
  3422. void
  3423. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  3424. {
  3425. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3426. unsigned long flags;
  3427. /*
  3428. * Ring buffer is disabled from recording, here's a good place
  3429. * to check the integrity of the ring buffer.
  3430. * Must prevent readers from trying to read, as the check
  3431. * clears the HEAD page and readers require it.
  3432. */
  3433. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3434. rb_check_pages(cpu_buffer);
  3435. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3436. atomic_dec(&cpu_buffer->record_disabled);
  3437. atomic_dec(&cpu_buffer->buffer->resize_disabled);
  3438. kfree(iter);
  3439. }
  3440. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  3441. /**
  3442. * ring_buffer_read - read the next item in the ring buffer by the iterator
  3443. * @iter: The ring buffer iterator
  3444. * @ts: The time stamp of the event read.
  3445. *
  3446. * This reads the next event in the ring buffer and increments the iterator.
  3447. */
  3448. struct ring_buffer_event *
  3449. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  3450. {
  3451. struct ring_buffer_event *event;
  3452. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3453. unsigned long flags;
  3454. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3455. again:
  3456. event = rb_iter_peek(iter, ts);
  3457. if (!event)
  3458. goto out;
  3459. if (event->type_len == RINGBUF_TYPE_PADDING)
  3460. goto again;
  3461. rb_advance_iter(iter);
  3462. out:
  3463. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3464. return event;
  3465. }
  3466. EXPORT_SYMBOL_GPL(ring_buffer_read);
  3467. /**
  3468. * ring_buffer_size - return the size of the ring buffer (in bytes)
  3469. * @buffer: The ring buffer.
  3470. */
  3471. unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
  3472. {
  3473. /*
  3474. * Earlier, this method returned
  3475. * BUF_PAGE_SIZE * buffer->nr_pages
  3476. * Since the nr_pages field is now removed, we have converted this to
  3477. * return the per cpu buffer value.
  3478. */
  3479. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3480. return 0;
  3481. return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
  3482. }
  3483. EXPORT_SYMBOL_GPL(ring_buffer_size);
  3484. static void
  3485. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  3486. {
  3487. rb_head_page_deactivate(cpu_buffer);
  3488. cpu_buffer->head_page
  3489. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  3490. local_set(&cpu_buffer->head_page->write, 0);
  3491. local_set(&cpu_buffer->head_page->entries, 0);
  3492. local_set(&cpu_buffer->head_page->page->commit, 0);
  3493. cpu_buffer->head_page->read = 0;
  3494. cpu_buffer->tail_page = cpu_buffer->head_page;
  3495. cpu_buffer->commit_page = cpu_buffer->head_page;
  3496. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  3497. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  3498. local_set(&cpu_buffer->reader_page->write, 0);
  3499. local_set(&cpu_buffer->reader_page->entries, 0);
  3500. local_set(&cpu_buffer->reader_page->page->commit, 0);
  3501. cpu_buffer->reader_page->read = 0;
  3502. local_set(&cpu_buffer->entries_bytes, 0);
  3503. local_set(&cpu_buffer->overrun, 0);
  3504. local_set(&cpu_buffer->commit_overrun, 0);
  3505. local_set(&cpu_buffer->dropped_events, 0);
  3506. local_set(&cpu_buffer->entries, 0);
  3507. local_set(&cpu_buffer->committing, 0);
  3508. local_set(&cpu_buffer->commits, 0);
  3509. cpu_buffer->read = 0;
  3510. cpu_buffer->read_bytes = 0;
  3511. cpu_buffer->write_stamp = 0;
  3512. cpu_buffer->read_stamp = 0;
  3513. cpu_buffer->lost_events = 0;
  3514. cpu_buffer->last_overrun = 0;
  3515. rb_head_page_activate(cpu_buffer);
  3516. }
  3517. /**
  3518. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  3519. * @buffer: The ring buffer to reset a per cpu buffer of
  3520. * @cpu: The CPU buffer to be reset
  3521. */
  3522. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  3523. {
  3524. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3525. unsigned long flags;
  3526. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3527. return;
  3528. atomic_inc(&buffer->resize_disabled);
  3529. atomic_inc(&cpu_buffer->record_disabled);
  3530. /* Make sure all commits have finished */
  3531. synchronize_sched();
  3532. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3533. if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
  3534. goto out;
  3535. arch_spin_lock(&cpu_buffer->lock);
  3536. rb_reset_cpu(cpu_buffer);
  3537. arch_spin_unlock(&cpu_buffer->lock);
  3538. out:
  3539. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3540. atomic_dec(&cpu_buffer->record_disabled);
  3541. atomic_dec(&buffer->resize_disabled);
  3542. }
  3543. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  3544. /**
  3545. * ring_buffer_reset - reset a ring buffer
  3546. * @buffer: The ring buffer to reset all cpu buffers
  3547. */
  3548. void ring_buffer_reset(struct ring_buffer *buffer)
  3549. {
  3550. int cpu;
  3551. for_each_buffer_cpu(buffer, cpu)
  3552. ring_buffer_reset_cpu(buffer, cpu);
  3553. }
  3554. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  3555. /**
  3556. * rind_buffer_empty - is the ring buffer empty?
  3557. * @buffer: The ring buffer to test
  3558. */
  3559. bool ring_buffer_empty(struct ring_buffer *buffer)
  3560. {
  3561. struct ring_buffer_per_cpu *cpu_buffer;
  3562. unsigned long flags;
  3563. bool dolock;
  3564. int cpu;
  3565. int ret;
  3566. /* yes this is racy, but if you don't like the race, lock the buffer */
  3567. for_each_buffer_cpu(buffer, cpu) {
  3568. cpu_buffer = buffer->buffers[cpu];
  3569. local_irq_save(flags);
  3570. dolock = rb_reader_lock(cpu_buffer);
  3571. ret = rb_per_cpu_empty(cpu_buffer);
  3572. rb_reader_unlock(cpu_buffer, dolock);
  3573. local_irq_restore(flags);
  3574. if (!ret)
  3575. return false;
  3576. }
  3577. return true;
  3578. }
  3579. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  3580. /**
  3581. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  3582. * @buffer: The ring buffer
  3583. * @cpu: The CPU buffer to test
  3584. */
  3585. bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  3586. {
  3587. struct ring_buffer_per_cpu *cpu_buffer;
  3588. unsigned long flags;
  3589. bool dolock;
  3590. int ret;
  3591. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3592. return true;
  3593. cpu_buffer = buffer->buffers[cpu];
  3594. local_irq_save(flags);
  3595. dolock = rb_reader_lock(cpu_buffer);
  3596. ret = rb_per_cpu_empty(cpu_buffer);
  3597. rb_reader_unlock(cpu_buffer, dolock);
  3598. local_irq_restore(flags);
  3599. return ret;
  3600. }
  3601. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  3602. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  3603. /**
  3604. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  3605. * @buffer_a: One buffer to swap with
  3606. * @buffer_b: The other buffer to swap with
  3607. *
  3608. * This function is useful for tracers that want to take a "snapshot"
  3609. * of a CPU buffer and has another back up buffer lying around.
  3610. * it is expected that the tracer handles the cpu buffer not being
  3611. * used at the moment.
  3612. */
  3613. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  3614. struct ring_buffer *buffer_b, int cpu)
  3615. {
  3616. struct ring_buffer_per_cpu *cpu_buffer_a;
  3617. struct ring_buffer_per_cpu *cpu_buffer_b;
  3618. int ret = -EINVAL;
  3619. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  3620. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  3621. goto out;
  3622. cpu_buffer_a = buffer_a->buffers[cpu];
  3623. cpu_buffer_b = buffer_b->buffers[cpu];
  3624. /* At least make sure the two buffers are somewhat the same */
  3625. if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
  3626. goto out;
  3627. ret = -EAGAIN;
  3628. if (atomic_read(&buffer_a->record_disabled))
  3629. goto out;
  3630. if (atomic_read(&buffer_b->record_disabled))
  3631. goto out;
  3632. if (atomic_read(&cpu_buffer_a->record_disabled))
  3633. goto out;
  3634. if (atomic_read(&cpu_buffer_b->record_disabled))
  3635. goto out;
  3636. /*
  3637. * We can't do a synchronize_sched here because this
  3638. * function can be called in atomic context.
  3639. * Normally this will be called from the same CPU as cpu.
  3640. * If not it's up to the caller to protect this.
  3641. */
  3642. atomic_inc(&cpu_buffer_a->record_disabled);
  3643. atomic_inc(&cpu_buffer_b->record_disabled);
  3644. ret = -EBUSY;
  3645. if (local_read(&cpu_buffer_a->committing))
  3646. goto out_dec;
  3647. if (local_read(&cpu_buffer_b->committing))
  3648. goto out_dec;
  3649. buffer_a->buffers[cpu] = cpu_buffer_b;
  3650. buffer_b->buffers[cpu] = cpu_buffer_a;
  3651. cpu_buffer_b->buffer = buffer_a;
  3652. cpu_buffer_a->buffer = buffer_b;
  3653. ret = 0;
  3654. out_dec:
  3655. atomic_dec(&cpu_buffer_a->record_disabled);
  3656. atomic_dec(&cpu_buffer_b->record_disabled);
  3657. out:
  3658. return ret;
  3659. }
  3660. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  3661. #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
  3662. /**
  3663. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  3664. * @buffer: the buffer to allocate for.
  3665. * @cpu: the cpu buffer to allocate.
  3666. *
  3667. * This function is used in conjunction with ring_buffer_read_page.
  3668. * When reading a full page from the ring buffer, these functions
  3669. * can be used to speed up the process. The calling function should
  3670. * allocate a few pages first with this function. Then when it
  3671. * needs to get pages from the ring buffer, it passes the result
  3672. * of this function into ring_buffer_read_page, which will swap
  3673. * the page that was allocated, with the read page of the buffer.
  3674. *
  3675. * Returns:
  3676. * The page allocated, or ERR_PTR
  3677. */
  3678. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
  3679. {
  3680. struct ring_buffer_per_cpu *cpu_buffer;
  3681. struct buffer_data_page *bpage = NULL;
  3682. unsigned long flags;
  3683. struct page *page;
  3684. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3685. return ERR_PTR(-ENODEV);
  3686. cpu_buffer = buffer->buffers[cpu];
  3687. local_irq_save(flags);
  3688. arch_spin_lock(&cpu_buffer->lock);
  3689. if (cpu_buffer->free_page) {
  3690. bpage = cpu_buffer->free_page;
  3691. cpu_buffer->free_page = NULL;
  3692. }
  3693. arch_spin_unlock(&cpu_buffer->lock);
  3694. local_irq_restore(flags);
  3695. if (bpage)
  3696. goto out;
  3697. page = alloc_pages_node(cpu_to_node(cpu),
  3698. GFP_KERNEL | __GFP_NORETRY, 0);
  3699. if (!page)
  3700. return ERR_PTR(-ENOMEM);
  3701. bpage = page_address(page);
  3702. out:
  3703. rb_init_page(bpage);
  3704. return bpage;
  3705. }
  3706. EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
  3707. /**
  3708. * ring_buffer_free_read_page - free an allocated read page
  3709. * @buffer: the buffer the page was allocate for
  3710. * @cpu: the cpu buffer the page came from
  3711. * @data: the page to free
  3712. *
  3713. * Free a page allocated from ring_buffer_alloc_read_page.
  3714. */
  3715. void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
  3716. {
  3717. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3718. struct buffer_data_page *bpage = data;
  3719. struct page *page = virt_to_page(bpage);
  3720. unsigned long flags;
  3721. /* If the page is still in use someplace else, we can't reuse it */
  3722. if (page_ref_count(page) > 1)
  3723. goto out;
  3724. local_irq_save(flags);
  3725. arch_spin_lock(&cpu_buffer->lock);
  3726. if (!cpu_buffer->free_page) {
  3727. cpu_buffer->free_page = bpage;
  3728. bpage = NULL;
  3729. }
  3730. arch_spin_unlock(&cpu_buffer->lock);
  3731. local_irq_restore(flags);
  3732. out:
  3733. free_page((unsigned long)bpage);
  3734. }
  3735. EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
  3736. /**
  3737. * ring_buffer_read_page - extract a page from the ring buffer
  3738. * @buffer: buffer to extract from
  3739. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  3740. * @len: amount to extract
  3741. * @cpu: the cpu of the buffer to extract
  3742. * @full: should the extraction only happen when the page is full.
  3743. *
  3744. * This function will pull out a page from the ring buffer and consume it.
  3745. * @data_page must be the address of the variable that was returned
  3746. * from ring_buffer_alloc_read_page. This is because the page might be used
  3747. * to swap with a page in the ring buffer.
  3748. *
  3749. * for example:
  3750. * rpage = ring_buffer_alloc_read_page(buffer, cpu);
  3751. * if (IS_ERR(rpage))
  3752. * return PTR_ERR(rpage);
  3753. * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
  3754. * if (ret >= 0)
  3755. * process_page(rpage, ret);
  3756. *
  3757. * When @full is set, the function will not return true unless
  3758. * the writer is off the reader page.
  3759. *
  3760. * Note: it is up to the calling functions to handle sleeps and wakeups.
  3761. * The ring buffer can be used anywhere in the kernel and can not
  3762. * blindly call wake_up. The layer that uses the ring buffer must be
  3763. * responsible for that.
  3764. *
  3765. * Returns:
  3766. * >=0 if data has been transferred, returns the offset of consumed data.
  3767. * <0 if no data has been transferred.
  3768. */
  3769. int ring_buffer_read_page(struct ring_buffer *buffer,
  3770. void **data_page, size_t len, int cpu, int full)
  3771. {
  3772. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3773. struct ring_buffer_event *event;
  3774. struct buffer_data_page *bpage;
  3775. struct buffer_page *reader;
  3776. unsigned long missed_events;
  3777. unsigned long flags;
  3778. unsigned int commit;
  3779. unsigned int read;
  3780. u64 save_timestamp;
  3781. int ret = -1;
  3782. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3783. goto out;
  3784. /*
  3785. * If len is not big enough to hold the page header, then
  3786. * we can not copy anything.
  3787. */
  3788. if (len <= BUF_PAGE_HDR_SIZE)
  3789. goto out;
  3790. len -= BUF_PAGE_HDR_SIZE;
  3791. if (!data_page)
  3792. goto out;
  3793. bpage = *data_page;
  3794. if (!bpage)
  3795. goto out;
  3796. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3797. reader = rb_get_reader_page(cpu_buffer);
  3798. if (!reader)
  3799. goto out_unlock;
  3800. event = rb_reader_event(cpu_buffer);
  3801. read = reader->read;
  3802. commit = rb_page_commit(reader);
  3803. /* Check if any events were dropped */
  3804. missed_events = cpu_buffer->lost_events;
  3805. /*
  3806. * If this page has been partially read or
  3807. * if len is not big enough to read the rest of the page or
  3808. * a writer is still on the page, then
  3809. * we must copy the data from the page to the buffer.
  3810. * Otherwise, we can simply swap the page with the one passed in.
  3811. */
  3812. if (read || (len < (commit - read)) ||
  3813. cpu_buffer->reader_page == cpu_buffer->commit_page) {
  3814. struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
  3815. unsigned int rpos = read;
  3816. unsigned int pos = 0;
  3817. unsigned int size;
  3818. if (full)
  3819. goto out_unlock;
  3820. if (len > (commit - read))
  3821. len = (commit - read);
  3822. /* Always keep the time extend and data together */
  3823. size = rb_event_ts_length(event);
  3824. if (len < size)
  3825. goto out_unlock;
  3826. /* save the current timestamp, since the user will need it */
  3827. save_timestamp = cpu_buffer->read_stamp;
  3828. /* Need to copy one event at a time */
  3829. do {
  3830. /* We need the size of one event, because
  3831. * rb_advance_reader only advances by one event,
  3832. * whereas rb_event_ts_length may include the size of
  3833. * one or two events.
  3834. * We have already ensured there's enough space if this
  3835. * is a time extend. */
  3836. size = rb_event_length(event);
  3837. memcpy(bpage->data + pos, rpage->data + rpos, size);
  3838. len -= size;
  3839. rb_advance_reader(cpu_buffer);
  3840. rpos = reader->read;
  3841. pos += size;
  3842. if (rpos >= commit)
  3843. break;
  3844. event = rb_reader_event(cpu_buffer);
  3845. /* Always keep the time extend and data together */
  3846. size = rb_event_ts_length(event);
  3847. } while (len >= size);
  3848. /* update bpage */
  3849. local_set(&bpage->commit, pos);
  3850. bpage->time_stamp = save_timestamp;
  3851. /* we copied everything to the beginning */
  3852. read = 0;
  3853. } else {
  3854. /* update the entry counter */
  3855. cpu_buffer->read += rb_page_entries(reader);
  3856. cpu_buffer->read_bytes += BUF_PAGE_SIZE;
  3857. /* swap the pages */
  3858. rb_init_page(bpage);
  3859. bpage = reader->page;
  3860. reader->page = *data_page;
  3861. local_set(&reader->write, 0);
  3862. local_set(&reader->entries, 0);
  3863. reader->read = 0;
  3864. *data_page = bpage;
  3865. /*
  3866. * Use the real_end for the data size,
  3867. * This gives us a chance to store the lost events
  3868. * on the page.
  3869. */
  3870. if (reader->real_end)
  3871. local_set(&bpage->commit, reader->real_end);
  3872. }
  3873. ret = read;
  3874. cpu_buffer->lost_events = 0;
  3875. commit = local_read(&bpage->commit);
  3876. /*
  3877. * Set a flag in the commit field if we lost events
  3878. */
  3879. if (missed_events) {
  3880. /* If there is room at the end of the page to save the
  3881. * missed events, then record it there.
  3882. */
  3883. if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
  3884. memcpy(&bpage->data[commit], &missed_events,
  3885. sizeof(missed_events));
  3886. local_add(RB_MISSED_STORED, &bpage->commit);
  3887. commit += sizeof(missed_events);
  3888. }
  3889. local_add(RB_MISSED_EVENTS, &bpage->commit);
  3890. }
  3891. /*
  3892. * This page may be off to user land. Zero it out here.
  3893. */
  3894. if (commit < BUF_PAGE_SIZE)
  3895. memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
  3896. out_unlock:
  3897. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3898. out:
  3899. return ret;
  3900. }
  3901. EXPORT_SYMBOL_GPL(ring_buffer_read_page);
  3902. /*
  3903. * We only allocate new buffers, never free them if the CPU goes down.
  3904. * If we were to free the buffer, then the user would lose any trace that was in
  3905. * the buffer.
  3906. */
  3907. int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
  3908. {
  3909. struct ring_buffer *buffer;
  3910. long nr_pages_same;
  3911. int cpu_i;
  3912. unsigned long nr_pages;
  3913. buffer = container_of(node, struct ring_buffer, node);
  3914. if (cpumask_test_cpu(cpu, buffer->cpumask))
  3915. return 0;
  3916. nr_pages = 0;
  3917. nr_pages_same = 1;
  3918. /* check if all cpu sizes are same */
  3919. for_each_buffer_cpu(buffer, cpu_i) {
  3920. /* fill in the size from first enabled cpu */
  3921. if (nr_pages == 0)
  3922. nr_pages = buffer->buffers[cpu_i]->nr_pages;
  3923. if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
  3924. nr_pages_same = 0;
  3925. break;
  3926. }
  3927. }
  3928. /* allocate minimum pages, user can later expand it */
  3929. if (!nr_pages_same)
  3930. nr_pages = 2;
  3931. buffer->buffers[cpu] =
  3932. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  3933. if (!buffer->buffers[cpu]) {
  3934. WARN(1, "failed to allocate ring buffer on CPU %u\n",
  3935. cpu);
  3936. return -ENOMEM;
  3937. }
  3938. smp_wmb();
  3939. cpumask_set_cpu(cpu, buffer->cpumask);
  3940. return 0;
  3941. }
  3942. #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
  3943. /*
  3944. * This is a basic integrity check of the ring buffer.
  3945. * Late in the boot cycle this test will run when configured in.
  3946. * It will kick off a thread per CPU that will go into a loop
  3947. * writing to the per cpu ring buffer various sizes of data.
  3948. * Some of the data will be large items, some small.
  3949. *
  3950. * Another thread is created that goes into a spin, sending out
  3951. * IPIs to the other CPUs to also write into the ring buffer.
  3952. * this is to test the nesting ability of the buffer.
  3953. *
  3954. * Basic stats are recorded and reported. If something in the
  3955. * ring buffer should happen that's not expected, a big warning
  3956. * is displayed and all ring buffers are disabled.
  3957. */
  3958. static struct task_struct *rb_threads[NR_CPUS] __initdata;
  3959. struct rb_test_data {
  3960. struct ring_buffer *buffer;
  3961. unsigned long events;
  3962. unsigned long bytes_written;
  3963. unsigned long bytes_alloc;
  3964. unsigned long bytes_dropped;
  3965. unsigned long events_nested;
  3966. unsigned long bytes_written_nested;
  3967. unsigned long bytes_alloc_nested;
  3968. unsigned long bytes_dropped_nested;
  3969. int min_size_nested;
  3970. int max_size_nested;
  3971. int max_size;
  3972. int min_size;
  3973. int cpu;
  3974. int cnt;
  3975. };
  3976. static struct rb_test_data rb_data[NR_CPUS] __initdata;
  3977. /* 1 meg per cpu */
  3978. #define RB_TEST_BUFFER_SIZE 1048576
  3979. static char rb_string[] __initdata =
  3980. "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
  3981. "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
  3982. "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
  3983. static bool rb_test_started __initdata;
  3984. struct rb_item {
  3985. int size;
  3986. char str[];
  3987. };
  3988. static __init int rb_write_something(struct rb_test_data *data, bool nested)
  3989. {
  3990. struct ring_buffer_event *event;
  3991. struct rb_item *item;
  3992. bool started;
  3993. int event_len;
  3994. int size;
  3995. int len;
  3996. int cnt;
  3997. /* Have nested writes different that what is written */
  3998. cnt = data->cnt + (nested ? 27 : 0);
  3999. /* Multiply cnt by ~e, to make some unique increment */
  4000. size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
  4001. len = size + sizeof(struct rb_item);
  4002. started = rb_test_started;
  4003. /* read rb_test_started before checking buffer enabled */
  4004. smp_rmb();
  4005. event = ring_buffer_lock_reserve(data->buffer, len);
  4006. if (!event) {
  4007. /* Ignore dropped events before test starts. */
  4008. if (started) {
  4009. if (nested)
  4010. data->bytes_dropped += len;
  4011. else
  4012. data->bytes_dropped_nested += len;
  4013. }
  4014. return len;
  4015. }
  4016. event_len = ring_buffer_event_length(event);
  4017. if (RB_WARN_ON(data->buffer, event_len < len))
  4018. goto out;
  4019. item = ring_buffer_event_data(event);
  4020. item->size = size;
  4021. memcpy(item->str, rb_string, size);
  4022. if (nested) {
  4023. data->bytes_alloc_nested += event_len;
  4024. data->bytes_written_nested += len;
  4025. data->events_nested++;
  4026. if (!data->min_size_nested || len < data->min_size_nested)
  4027. data->min_size_nested = len;
  4028. if (len > data->max_size_nested)
  4029. data->max_size_nested = len;
  4030. } else {
  4031. data->bytes_alloc += event_len;
  4032. data->bytes_written += len;
  4033. data->events++;
  4034. if (!data->min_size || len < data->min_size)
  4035. data->max_size = len;
  4036. if (len > data->max_size)
  4037. data->max_size = len;
  4038. }
  4039. out:
  4040. ring_buffer_unlock_commit(data->buffer, event);
  4041. return 0;
  4042. }
  4043. static __init int rb_test(void *arg)
  4044. {
  4045. struct rb_test_data *data = arg;
  4046. while (!kthread_should_stop()) {
  4047. rb_write_something(data, false);
  4048. data->cnt++;
  4049. set_current_state(TASK_INTERRUPTIBLE);
  4050. /* Now sleep between a min of 100-300us and a max of 1ms */
  4051. usleep_range(((data->cnt % 3) + 1) * 100, 1000);
  4052. }
  4053. return 0;
  4054. }
  4055. static __init void rb_ipi(void *ignore)
  4056. {
  4057. struct rb_test_data *data;
  4058. int cpu = smp_processor_id();
  4059. data = &rb_data[cpu];
  4060. rb_write_something(data, true);
  4061. }
  4062. static __init int rb_hammer_test(void *arg)
  4063. {
  4064. while (!kthread_should_stop()) {
  4065. /* Send an IPI to all cpus to write data! */
  4066. smp_call_function(rb_ipi, NULL, 1);
  4067. /* No sleep, but for non preempt, let others run */
  4068. schedule();
  4069. }
  4070. return 0;
  4071. }
  4072. static __init int test_ringbuffer(void)
  4073. {
  4074. struct task_struct *rb_hammer;
  4075. struct ring_buffer *buffer;
  4076. int cpu;
  4077. int ret = 0;
  4078. pr_info("Running ring buffer tests...\n");
  4079. buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
  4080. if (WARN_ON(!buffer))
  4081. return 0;
  4082. /* Disable buffer so that threads can't write to it yet */
  4083. ring_buffer_record_off(buffer);
  4084. for_each_online_cpu(cpu) {
  4085. rb_data[cpu].buffer = buffer;
  4086. rb_data[cpu].cpu = cpu;
  4087. rb_data[cpu].cnt = cpu;
  4088. rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
  4089. "rbtester/%d", cpu);
  4090. if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
  4091. pr_cont("FAILED\n");
  4092. ret = PTR_ERR(rb_threads[cpu]);
  4093. goto out_free;
  4094. }
  4095. kthread_bind(rb_threads[cpu], cpu);
  4096. wake_up_process(rb_threads[cpu]);
  4097. }
  4098. /* Now create the rb hammer! */
  4099. rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
  4100. if (WARN_ON(IS_ERR(rb_hammer))) {
  4101. pr_cont("FAILED\n");
  4102. ret = PTR_ERR(rb_hammer);
  4103. goto out_free;
  4104. }
  4105. ring_buffer_record_on(buffer);
  4106. /*
  4107. * Show buffer is enabled before setting rb_test_started.
  4108. * Yes there's a small race window where events could be
  4109. * dropped and the thread wont catch it. But when a ring
  4110. * buffer gets enabled, there will always be some kind of
  4111. * delay before other CPUs see it. Thus, we don't care about
  4112. * those dropped events. We care about events dropped after
  4113. * the threads see that the buffer is active.
  4114. */
  4115. smp_wmb();
  4116. rb_test_started = true;
  4117. set_current_state(TASK_INTERRUPTIBLE);
  4118. /* Just run for 10 seconds */;
  4119. schedule_timeout(10 * HZ);
  4120. kthread_stop(rb_hammer);
  4121. out_free:
  4122. for_each_online_cpu(cpu) {
  4123. if (!rb_threads[cpu])
  4124. break;
  4125. kthread_stop(rb_threads[cpu]);
  4126. }
  4127. if (ret) {
  4128. ring_buffer_free(buffer);
  4129. return ret;
  4130. }
  4131. /* Report! */
  4132. pr_info("finished\n");
  4133. for_each_online_cpu(cpu) {
  4134. struct ring_buffer_event *event;
  4135. struct rb_test_data *data = &rb_data[cpu];
  4136. struct rb_item *item;
  4137. unsigned long total_events;
  4138. unsigned long total_dropped;
  4139. unsigned long total_written;
  4140. unsigned long total_alloc;
  4141. unsigned long total_read = 0;
  4142. unsigned long total_size = 0;
  4143. unsigned long total_len = 0;
  4144. unsigned long total_lost = 0;
  4145. unsigned long lost;
  4146. int big_event_size;
  4147. int small_event_size;
  4148. ret = -1;
  4149. total_events = data->events + data->events_nested;
  4150. total_written = data->bytes_written + data->bytes_written_nested;
  4151. total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
  4152. total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
  4153. big_event_size = data->max_size + data->max_size_nested;
  4154. small_event_size = data->min_size + data->min_size_nested;
  4155. pr_info("CPU %d:\n", cpu);
  4156. pr_info(" events: %ld\n", total_events);
  4157. pr_info(" dropped bytes: %ld\n", total_dropped);
  4158. pr_info(" alloced bytes: %ld\n", total_alloc);
  4159. pr_info(" written bytes: %ld\n", total_written);
  4160. pr_info(" biggest event: %d\n", big_event_size);
  4161. pr_info(" smallest event: %d\n", small_event_size);
  4162. if (RB_WARN_ON(buffer, total_dropped))
  4163. break;
  4164. ret = 0;
  4165. while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
  4166. total_lost += lost;
  4167. item = ring_buffer_event_data(event);
  4168. total_len += ring_buffer_event_length(event);
  4169. total_size += item->size + sizeof(struct rb_item);
  4170. if (memcmp(&item->str[0], rb_string, item->size) != 0) {
  4171. pr_info("FAILED!\n");
  4172. pr_info("buffer had: %.*s\n", item->size, item->str);
  4173. pr_info("expected: %.*s\n", item->size, rb_string);
  4174. RB_WARN_ON(buffer, 1);
  4175. ret = -1;
  4176. break;
  4177. }
  4178. total_read++;
  4179. }
  4180. if (ret)
  4181. break;
  4182. ret = -1;
  4183. pr_info(" read events: %ld\n", total_read);
  4184. pr_info(" lost events: %ld\n", total_lost);
  4185. pr_info(" total events: %ld\n", total_lost + total_read);
  4186. pr_info(" recorded len bytes: %ld\n", total_len);
  4187. pr_info(" recorded size bytes: %ld\n", total_size);
  4188. if (total_lost)
  4189. pr_info(" With dropped events, record len and size may not match\n"
  4190. " alloced and written from above\n");
  4191. if (!total_lost) {
  4192. if (RB_WARN_ON(buffer, total_len != total_alloc ||
  4193. total_size != total_written))
  4194. break;
  4195. }
  4196. if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
  4197. break;
  4198. ret = 0;
  4199. }
  4200. if (!ret)
  4201. pr_info("Ring buffer PASSED!\n");
  4202. ring_buffer_free(buffer);
  4203. return 0;
  4204. }
  4205. late_initcall(test_ringbuffer);
  4206. #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */