raid1.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/module.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/ratelimit.h>
  39. #include "md.h"
  40. #include "raid1.h"
  41. #include "bitmap.h"
  42. /*
  43. * Number of guaranteed r1bios in case of extreme VM load:
  44. */
  45. #define NR_RAID1_BIOS 256
  46. /* When there are this many requests queue to be written by
  47. * the raid1 thread, we become 'congested' to provide back-pressure
  48. * for writeback.
  49. */
  50. static int max_queued_requests = 1024;
  51. static void allow_barrier(struct r1conf *conf);
  52. static void lower_barrier(struct r1conf *conf);
  53. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  54. {
  55. struct pool_info *pi = data;
  56. int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  57. /* allocate a r1bio with room for raid_disks entries in the bios array */
  58. return kzalloc(size, gfp_flags);
  59. }
  60. static void r1bio_pool_free(void *r1_bio, void *data)
  61. {
  62. kfree(r1_bio);
  63. }
  64. #define RESYNC_BLOCK_SIZE (64*1024)
  65. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  66. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  67. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  68. #define RESYNC_WINDOW (2048*1024)
  69. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  70. {
  71. struct pool_info *pi = data;
  72. struct page *page;
  73. struct r1bio *r1_bio;
  74. struct bio *bio;
  75. int i, j;
  76. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  77. if (!r1_bio)
  78. return NULL;
  79. /*
  80. * Allocate bios : 1 for reading, n-1 for writing
  81. */
  82. for (j = pi->raid_disks ; j-- ; ) {
  83. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  84. if (!bio)
  85. goto out_free_bio;
  86. r1_bio->bios[j] = bio;
  87. }
  88. /*
  89. * Allocate RESYNC_PAGES data pages and attach them to
  90. * the first bio.
  91. * If this is a user-requested check/repair, allocate
  92. * RESYNC_PAGES for each bio.
  93. */
  94. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  95. j = pi->raid_disks;
  96. else
  97. j = 1;
  98. while(j--) {
  99. bio = r1_bio->bios[j];
  100. for (i = 0; i < RESYNC_PAGES; i++) {
  101. page = alloc_page(gfp_flags);
  102. if (unlikely(!page))
  103. goto out_free_pages;
  104. bio->bi_io_vec[i].bv_page = page;
  105. bio->bi_vcnt = i+1;
  106. }
  107. }
  108. /* If not user-requests, copy the page pointers to all bios */
  109. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  110. for (i=0; i<RESYNC_PAGES ; i++)
  111. for (j=1; j<pi->raid_disks; j++)
  112. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  113. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  114. }
  115. r1_bio->master_bio = NULL;
  116. return r1_bio;
  117. out_free_pages:
  118. for (j=0 ; j < pi->raid_disks; j++)
  119. for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
  120. put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  121. j = -1;
  122. out_free_bio:
  123. while (++j < pi->raid_disks)
  124. bio_put(r1_bio->bios[j]);
  125. r1bio_pool_free(r1_bio, data);
  126. return NULL;
  127. }
  128. static void r1buf_pool_free(void *__r1_bio, void *data)
  129. {
  130. struct pool_info *pi = data;
  131. int i,j;
  132. struct r1bio *r1bio = __r1_bio;
  133. for (i = 0; i < RESYNC_PAGES; i++)
  134. for (j = pi->raid_disks; j-- ;) {
  135. if (j == 0 ||
  136. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  137. r1bio->bios[0]->bi_io_vec[i].bv_page)
  138. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  139. }
  140. for (i=0 ; i < pi->raid_disks; i++)
  141. bio_put(r1bio->bios[i]);
  142. r1bio_pool_free(r1bio, data);
  143. }
  144. static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
  145. {
  146. int i;
  147. for (i = 0; i < conf->raid_disks * 2; i++) {
  148. struct bio **bio = r1_bio->bios + i;
  149. if (!BIO_SPECIAL(*bio))
  150. bio_put(*bio);
  151. *bio = NULL;
  152. }
  153. }
  154. static void free_r1bio(struct r1bio *r1_bio)
  155. {
  156. struct r1conf *conf = r1_bio->mddev->private;
  157. put_all_bios(conf, r1_bio);
  158. mempool_free(r1_bio, conf->r1bio_pool);
  159. }
  160. static void put_buf(struct r1bio *r1_bio)
  161. {
  162. struct r1conf *conf = r1_bio->mddev->private;
  163. int i;
  164. for (i = 0; i < conf->raid_disks * 2; i++) {
  165. struct bio *bio = r1_bio->bios[i];
  166. if (bio->bi_end_io)
  167. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  168. }
  169. mempool_free(r1_bio, conf->r1buf_pool);
  170. lower_barrier(conf);
  171. }
  172. static void reschedule_retry(struct r1bio *r1_bio)
  173. {
  174. unsigned long flags;
  175. struct mddev *mddev = r1_bio->mddev;
  176. struct r1conf *conf = mddev->private;
  177. spin_lock_irqsave(&conf->device_lock, flags);
  178. list_add(&r1_bio->retry_list, &conf->retry_list);
  179. conf->nr_queued ++;
  180. spin_unlock_irqrestore(&conf->device_lock, flags);
  181. wake_up(&conf->wait_barrier);
  182. md_wakeup_thread(mddev->thread);
  183. }
  184. /*
  185. * raid_end_bio_io() is called when we have finished servicing a mirrored
  186. * operation and are ready to return a success/failure code to the buffer
  187. * cache layer.
  188. */
  189. static void call_bio_endio(struct r1bio *r1_bio)
  190. {
  191. struct bio *bio = r1_bio->master_bio;
  192. int done;
  193. struct r1conf *conf = r1_bio->mddev->private;
  194. if (bio->bi_phys_segments) {
  195. unsigned long flags;
  196. spin_lock_irqsave(&conf->device_lock, flags);
  197. bio->bi_phys_segments--;
  198. done = (bio->bi_phys_segments == 0);
  199. spin_unlock_irqrestore(&conf->device_lock, flags);
  200. } else
  201. done = 1;
  202. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  203. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  204. if (done) {
  205. bio_endio(bio, 0);
  206. /*
  207. * Wake up any possible resync thread that waits for the device
  208. * to go idle.
  209. */
  210. allow_barrier(conf);
  211. }
  212. }
  213. static void raid_end_bio_io(struct r1bio *r1_bio)
  214. {
  215. struct bio *bio = r1_bio->master_bio;
  216. /* if nobody has done the final endio yet, do it now */
  217. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  218. pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
  219. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  220. (unsigned long long) bio->bi_sector,
  221. (unsigned long long) bio->bi_sector +
  222. (bio->bi_size >> 9) - 1);
  223. call_bio_endio(r1_bio);
  224. }
  225. free_r1bio(r1_bio);
  226. }
  227. /*
  228. * Update disk head position estimator based on IRQ completion info.
  229. */
  230. static inline void update_head_pos(int disk, struct r1bio *r1_bio)
  231. {
  232. struct r1conf *conf = r1_bio->mddev->private;
  233. conf->mirrors[disk].head_position =
  234. r1_bio->sector + (r1_bio->sectors);
  235. }
  236. /*
  237. * Find the disk number which triggered given bio
  238. */
  239. static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
  240. {
  241. int mirror;
  242. struct r1conf *conf = r1_bio->mddev->private;
  243. int raid_disks = conf->raid_disks;
  244. for (mirror = 0; mirror < raid_disks * 2; mirror++)
  245. if (r1_bio->bios[mirror] == bio)
  246. break;
  247. BUG_ON(mirror == raid_disks * 2);
  248. update_head_pos(mirror, r1_bio);
  249. return mirror;
  250. }
  251. static void raid1_end_read_request(struct bio *bio, int error)
  252. {
  253. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  254. struct r1bio *r1_bio = bio->bi_private;
  255. int mirror;
  256. struct r1conf *conf = r1_bio->mddev->private;
  257. mirror = r1_bio->read_disk;
  258. /*
  259. * this branch is our 'one mirror IO has finished' event handler:
  260. */
  261. update_head_pos(mirror, r1_bio);
  262. if (uptodate)
  263. set_bit(R1BIO_Uptodate, &r1_bio->state);
  264. else {
  265. /* If all other devices have failed, we want to return
  266. * the error upwards rather than fail the last device.
  267. * Here we redefine "uptodate" to mean "Don't want to retry"
  268. */
  269. unsigned long flags;
  270. spin_lock_irqsave(&conf->device_lock, flags);
  271. if (r1_bio->mddev->degraded == conf->raid_disks ||
  272. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  273. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  274. uptodate = 1;
  275. spin_unlock_irqrestore(&conf->device_lock, flags);
  276. }
  277. if (uptodate)
  278. raid_end_bio_io(r1_bio);
  279. else {
  280. /*
  281. * oops, read error:
  282. */
  283. char b[BDEVNAME_SIZE];
  284. printk_ratelimited(
  285. KERN_ERR "md/raid1:%s: %s: "
  286. "rescheduling sector %llu\n",
  287. mdname(conf->mddev),
  288. bdevname(conf->mirrors[mirror].rdev->bdev,
  289. b),
  290. (unsigned long long)r1_bio->sector);
  291. set_bit(R1BIO_ReadError, &r1_bio->state);
  292. reschedule_retry(r1_bio);
  293. }
  294. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  295. }
  296. static void close_write(struct r1bio *r1_bio)
  297. {
  298. /* it really is the end of this request */
  299. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  300. /* free extra copy of the data pages */
  301. int i = r1_bio->behind_page_count;
  302. while (i--)
  303. safe_put_page(r1_bio->behind_bvecs[i].bv_page);
  304. kfree(r1_bio->behind_bvecs);
  305. r1_bio->behind_bvecs = NULL;
  306. }
  307. /* clear the bitmap if all writes complete successfully */
  308. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  309. r1_bio->sectors,
  310. !test_bit(R1BIO_Degraded, &r1_bio->state),
  311. test_bit(R1BIO_BehindIO, &r1_bio->state));
  312. md_write_end(r1_bio->mddev);
  313. }
  314. static void r1_bio_write_done(struct r1bio *r1_bio)
  315. {
  316. if (!atomic_dec_and_test(&r1_bio->remaining))
  317. return;
  318. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  319. reschedule_retry(r1_bio);
  320. else {
  321. close_write(r1_bio);
  322. if (test_bit(R1BIO_MadeGood, &r1_bio->state))
  323. reschedule_retry(r1_bio);
  324. else
  325. raid_end_bio_io(r1_bio);
  326. }
  327. }
  328. static void raid1_end_write_request(struct bio *bio, int error)
  329. {
  330. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  331. struct r1bio *r1_bio = bio->bi_private;
  332. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  333. struct r1conf *conf = r1_bio->mddev->private;
  334. struct bio *to_put = NULL;
  335. mirror = find_bio_disk(r1_bio, bio);
  336. /*
  337. * 'one mirror IO has finished' event handler:
  338. */
  339. if (!uptodate) {
  340. set_bit(WriteErrorSeen,
  341. &conf->mirrors[mirror].rdev->flags);
  342. if (!test_and_set_bit(WantReplacement,
  343. &conf->mirrors[mirror].rdev->flags))
  344. set_bit(MD_RECOVERY_NEEDED, &
  345. conf->mddev->recovery);
  346. set_bit(R1BIO_WriteError, &r1_bio->state);
  347. } else {
  348. /*
  349. * Set R1BIO_Uptodate in our master bio, so that we
  350. * will return a good error code for to the higher
  351. * levels even if IO on some other mirrored buffer
  352. * fails.
  353. *
  354. * The 'master' represents the composite IO operation
  355. * to user-side. So if something waits for IO, then it
  356. * will wait for the 'master' bio.
  357. */
  358. sector_t first_bad;
  359. int bad_sectors;
  360. r1_bio->bios[mirror] = NULL;
  361. to_put = bio;
  362. set_bit(R1BIO_Uptodate, &r1_bio->state);
  363. /* Maybe we can clear some bad blocks. */
  364. if (is_badblock(conf->mirrors[mirror].rdev,
  365. r1_bio->sector, r1_bio->sectors,
  366. &first_bad, &bad_sectors)) {
  367. r1_bio->bios[mirror] = IO_MADE_GOOD;
  368. set_bit(R1BIO_MadeGood, &r1_bio->state);
  369. }
  370. }
  371. if (behind) {
  372. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  373. atomic_dec(&r1_bio->behind_remaining);
  374. /*
  375. * In behind mode, we ACK the master bio once the I/O
  376. * has safely reached all non-writemostly
  377. * disks. Setting the Returned bit ensures that this
  378. * gets done only once -- we don't ever want to return
  379. * -EIO here, instead we'll wait
  380. */
  381. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  382. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  383. /* Maybe we can return now */
  384. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  385. struct bio *mbio = r1_bio->master_bio;
  386. pr_debug("raid1: behind end write sectors"
  387. " %llu-%llu\n",
  388. (unsigned long long) mbio->bi_sector,
  389. (unsigned long long) mbio->bi_sector +
  390. (mbio->bi_size >> 9) - 1);
  391. call_bio_endio(r1_bio);
  392. }
  393. }
  394. }
  395. if (r1_bio->bios[mirror] == NULL)
  396. rdev_dec_pending(conf->mirrors[mirror].rdev,
  397. conf->mddev);
  398. /*
  399. * Let's see if all mirrored write operations have finished
  400. * already.
  401. */
  402. r1_bio_write_done(r1_bio);
  403. if (to_put)
  404. bio_put(to_put);
  405. }
  406. /*
  407. * This routine returns the disk from which the requested read should
  408. * be done. There is a per-array 'next expected sequential IO' sector
  409. * number - if this matches on the next IO then we use the last disk.
  410. * There is also a per-disk 'last know head position' sector that is
  411. * maintained from IRQ contexts, both the normal and the resync IO
  412. * completion handlers update this position correctly. If there is no
  413. * perfect sequential match then we pick the disk whose head is closest.
  414. *
  415. * If there are 2 mirrors in the same 2 devices, performance degrades
  416. * because position is mirror, not device based.
  417. *
  418. * The rdev for the device selected will have nr_pending incremented.
  419. */
  420. static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
  421. {
  422. const sector_t this_sector = r1_bio->sector;
  423. int sectors;
  424. int best_good_sectors;
  425. int start_disk;
  426. int best_disk;
  427. int i;
  428. sector_t best_dist;
  429. struct md_rdev *rdev;
  430. int choose_first;
  431. rcu_read_lock();
  432. /*
  433. * Check if we can balance. We can balance on the whole
  434. * device if no resync is going on, or below the resync window.
  435. * We take the first readable disk when above the resync window.
  436. */
  437. retry:
  438. sectors = r1_bio->sectors;
  439. best_disk = -1;
  440. best_dist = MaxSector;
  441. best_good_sectors = 0;
  442. if (conf->mddev->recovery_cp < MaxSector &&
  443. (this_sector + sectors >= conf->next_resync)) {
  444. choose_first = 1;
  445. start_disk = 0;
  446. } else {
  447. choose_first = 0;
  448. start_disk = conf->last_used;
  449. }
  450. for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
  451. sector_t dist;
  452. sector_t first_bad;
  453. int bad_sectors;
  454. int disk = start_disk + i;
  455. if (disk >= conf->raid_disks)
  456. disk -= conf->raid_disks;
  457. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  458. if (r1_bio->bios[disk] == IO_BLOCKED
  459. || rdev == NULL
  460. || test_bit(Faulty, &rdev->flags))
  461. continue;
  462. if (!test_bit(In_sync, &rdev->flags) &&
  463. rdev->recovery_offset < this_sector + sectors)
  464. continue;
  465. if (test_bit(WriteMostly, &rdev->flags)) {
  466. /* Don't balance among write-mostly, just
  467. * use the first as a last resort */
  468. if (best_disk < 0)
  469. best_disk = disk;
  470. continue;
  471. }
  472. /* This is a reasonable device to use. It might
  473. * even be best.
  474. */
  475. if (is_badblock(rdev, this_sector, sectors,
  476. &first_bad, &bad_sectors)) {
  477. if (best_dist < MaxSector)
  478. /* already have a better device */
  479. continue;
  480. if (first_bad <= this_sector) {
  481. /* cannot read here. If this is the 'primary'
  482. * device, then we must not read beyond
  483. * bad_sectors from another device..
  484. */
  485. bad_sectors -= (this_sector - first_bad);
  486. if (choose_first && sectors > bad_sectors)
  487. sectors = bad_sectors;
  488. if (best_good_sectors > sectors)
  489. best_good_sectors = sectors;
  490. } else {
  491. sector_t good_sectors = first_bad - this_sector;
  492. if (good_sectors > best_good_sectors) {
  493. best_good_sectors = good_sectors;
  494. best_disk = disk;
  495. }
  496. if (choose_first)
  497. break;
  498. }
  499. continue;
  500. } else
  501. best_good_sectors = sectors;
  502. dist = abs(this_sector - conf->mirrors[disk].head_position);
  503. if (choose_first
  504. /* Don't change to another disk for sequential reads */
  505. || conf->next_seq_sect == this_sector
  506. || dist == 0
  507. /* If device is idle, use it */
  508. || atomic_read(&rdev->nr_pending) == 0) {
  509. best_disk = disk;
  510. break;
  511. }
  512. if (dist < best_dist) {
  513. best_dist = dist;
  514. best_disk = disk;
  515. }
  516. }
  517. if (best_disk >= 0) {
  518. rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
  519. if (!rdev)
  520. goto retry;
  521. atomic_inc(&rdev->nr_pending);
  522. if (test_bit(Faulty, &rdev->flags)) {
  523. /* cannot risk returning a device that failed
  524. * before we inc'ed nr_pending
  525. */
  526. rdev_dec_pending(rdev, conf->mddev);
  527. goto retry;
  528. }
  529. sectors = best_good_sectors;
  530. conf->next_seq_sect = this_sector + sectors;
  531. conf->last_used = best_disk;
  532. }
  533. rcu_read_unlock();
  534. *max_sectors = sectors;
  535. return best_disk;
  536. }
  537. int md_raid1_congested(struct mddev *mddev, int bits)
  538. {
  539. struct r1conf *conf = mddev->private;
  540. int i, ret = 0;
  541. if ((bits & (1 << BDI_async_congested)) &&
  542. conf->pending_count >= max_queued_requests)
  543. return 1;
  544. rcu_read_lock();
  545. for (i = 0; i < conf->raid_disks; i++) {
  546. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  547. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  548. struct request_queue *q = bdev_get_queue(rdev->bdev);
  549. BUG_ON(!q);
  550. /* Note the '|| 1' - when read_balance prefers
  551. * non-congested targets, it can be removed
  552. */
  553. if ((bits & (1<<BDI_async_congested)) || 1)
  554. ret |= bdi_congested(&q->backing_dev_info, bits);
  555. else
  556. ret &= bdi_congested(&q->backing_dev_info, bits);
  557. }
  558. }
  559. rcu_read_unlock();
  560. return ret;
  561. }
  562. EXPORT_SYMBOL_GPL(md_raid1_congested);
  563. static int raid1_congested(void *data, int bits)
  564. {
  565. struct mddev *mddev = data;
  566. return mddev_congested(mddev, bits) ||
  567. md_raid1_congested(mddev, bits);
  568. }
  569. static void flush_pending_writes(struct r1conf *conf)
  570. {
  571. /* Any writes that have been queued but are awaiting
  572. * bitmap updates get flushed here.
  573. */
  574. spin_lock_irq(&conf->device_lock);
  575. if (conf->pending_bio_list.head) {
  576. struct bio *bio;
  577. bio = bio_list_get(&conf->pending_bio_list);
  578. conf->pending_count = 0;
  579. spin_unlock_irq(&conf->device_lock);
  580. /* flush any pending bitmap writes to
  581. * disk before proceeding w/ I/O */
  582. bitmap_unplug(conf->mddev->bitmap);
  583. wake_up(&conf->wait_barrier);
  584. while (bio) { /* submit pending writes */
  585. struct bio *next = bio->bi_next;
  586. bio->bi_next = NULL;
  587. generic_make_request(bio);
  588. bio = next;
  589. }
  590. } else
  591. spin_unlock_irq(&conf->device_lock);
  592. }
  593. /* Barriers....
  594. * Sometimes we need to suspend IO while we do something else,
  595. * either some resync/recovery, or reconfigure the array.
  596. * To do this we raise a 'barrier'.
  597. * The 'barrier' is a counter that can be raised multiple times
  598. * to count how many activities are happening which preclude
  599. * normal IO.
  600. * We can only raise the barrier if there is no pending IO.
  601. * i.e. if nr_pending == 0.
  602. * We choose only to raise the barrier if no-one is waiting for the
  603. * barrier to go down. This means that as soon as an IO request
  604. * is ready, no other operations which require a barrier will start
  605. * until the IO request has had a chance.
  606. *
  607. * So: regular IO calls 'wait_barrier'. When that returns there
  608. * is no backgroup IO happening, It must arrange to call
  609. * allow_barrier when it has finished its IO.
  610. * backgroup IO calls must call raise_barrier. Once that returns
  611. * there is no normal IO happeing. It must arrange to call
  612. * lower_barrier when the particular background IO completes.
  613. */
  614. #define RESYNC_DEPTH 32
  615. static void raise_barrier(struct r1conf *conf)
  616. {
  617. spin_lock_irq(&conf->resync_lock);
  618. /* Wait until no block IO is waiting */
  619. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  620. conf->resync_lock, );
  621. /* block any new IO from starting */
  622. conf->barrier++;
  623. /* Now wait for all pending IO to complete */
  624. wait_event_lock_irq(conf->wait_barrier,
  625. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  626. conf->resync_lock, );
  627. spin_unlock_irq(&conf->resync_lock);
  628. }
  629. static void lower_barrier(struct r1conf *conf)
  630. {
  631. unsigned long flags;
  632. BUG_ON(conf->barrier <= 0);
  633. spin_lock_irqsave(&conf->resync_lock, flags);
  634. conf->barrier--;
  635. spin_unlock_irqrestore(&conf->resync_lock, flags);
  636. wake_up(&conf->wait_barrier);
  637. }
  638. static void wait_barrier(struct r1conf *conf)
  639. {
  640. spin_lock_irq(&conf->resync_lock);
  641. if (conf->barrier) {
  642. conf->nr_waiting++;
  643. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  644. conf->resync_lock,
  645. );
  646. conf->nr_waiting--;
  647. }
  648. conf->nr_pending++;
  649. spin_unlock_irq(&conf->resync_lock);
  650. }
  651. static void allow_barrier(struct r1conf *conf)
  652. {
  653. unsigned long flags;
  654. spin_lock_irqsave(&conf->resync_lock, flags);
  655. conf->nr_pending--;
  656. spin_unlock_irqrestore(&conf->resync_lock, flags);
  657. wake_up(&conf->wait_barrier);
  658. }
  659. static void freeze_array(struct r1conf *conf)
  660. {
  661. /* stop syncio and normal IO and wait for everything to
  662. * go quite.
  663. * We increment barrier and nr_waiting, and then
  664. * wait until nr_pending match nr_queued+1
  665. * This is called in the context of one normal IO request
  666. * that has failed. Thus any sync request that might be pending
  667. * will be blocked by nr_pending, and we need to wait for
  668. * pending IO requests to complete or be queued for re-try.
  669. * Thus the number queued (nr_queued) plus this request (1)
  670. * must match the number of pending IOs (nr_pending) before
  671. * we continue.
  672. */
  673. spin_lock_irq(&conf->resync_lock);
  674. conf->barrier++;
  675. conf->nr_waiting++;
  676. wait_event_lock_irq(conf->wait_barrier,
  677. conf->nr_pending == conf->nr_queued+1,
  678. conf->resync_lock,
  679. flush_pending_writes(conf));
  680. spin_unlock_irq(&conf->resync_lock);
  681. }
  682. static void unfreeze_array(struct r1conf *conf)
  683. {
  684. /* reverse the effect of the freeze */
  685. spin_lock_irq(&conf->resync_lock);
  686. conf->barrier--;
  687. conf->nr_waiting--;
  688. wake_up(&conf->wait_barrier);
  689. spin_unlock_irq(&conf->resync_lock);
  690. }
  691. /* duplicate the data pages for behind I/O
  692. */
  693. static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
  694. {
  695. int i;
  696. struct bio_vec *bvec;
  697. struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
  698. GFP_NOIO);
  699. if (unlikely(!bvecs))
  700. return;
  701. bio_for_each_segment(bvec, bio, i) {
  702. bvecs[i] = *bvec;
  703. bvecs[i].bv_page = alloc_page(GFP_NOIO);
  704. if (unlikely(!bvecs[i].bv_page))
  705. goto do_sync_io;
  706. memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
  707. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  708. kunmap(bvecs[i].bv_page);
  709. kunmap(bvec->bv_page);
  710. }
  711. r1_bio->behind_bvecs = bvecs;
  712. r1_bio->behind_page_count = bio->bi_vcnt;
  713. set_bit(R1BIO_BehindIO, &r1_bio->state);
  714. return;
  715. do_sync_io:
  716. for (i = 0; i < bio->bi_vcnt; i++)
  717. if (bvecs[i].bv_page)
  718. put_page(bvecs[i].bv_page);
  719. kfree(bvecs);
  720. pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  721. }
  722. static void make_request(struct mddev *mddev, struct bio * bio)
  723. {
  724. struct r1conf *conf = mddev->private;
  725. struct mirror_info *mirror;
  726. struct r1bio *r1_bio;
  727. struct bio *read_bio;
  728. int i, disks;
  729. struct bitmap *bitmap;
  730. unsigned long flags;
  731. const int rw = bio_data_dir(bio);
  732. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  733. const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
  734. struct md_rdev *blocked_rdev;
  735. int plugged;
  736. int first_clone;
  737. int sectors_handled;
  738. int max_sectors;
  739. /*
  740. * Register the new request and wait if the reconstruction
  741. * thread has put up a bar for new requests.
  742. * Continue immediately if no resync is active currently.
  743. */
  744. md_write_start(mddev, bio); /* wait on superblock update early */
  745. if (bio_data_dir(bio) == WRITE &&
  746. bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
  747. bio->bi_sector < mddev->suspend_hi) {
  748. /* As the suspend_* range is controlled by
  749. * userspace, we want an interruptible
  750. * wait.
  751. */
  752. DEFINE_WAIT(w);
  753. for (;;) {
  754. flush_signals(current);
  755. prepare_to_wait(&conf->wait_barrier,
  756. &w, TASK_INTERRUPTIBLE);
  757. if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
  758. bio->bi_sector >= mddev->suspend_hi)
  759. break;
  760. schedule();
  761. }
  762. finish_wait(&conf->wait_barrier, &w);
  763. }
  764. wait_barrier(conf);
  765. bitmap = mddev->bitmap;
  766. /*
  767. * make_request() can abort the operation when READA is being
  768. * used and no empty request is available.
  769. *
  770. */
  771. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  772. r1_bio->master_bio = bio;
  773. r1_bio->sectors = bio->bi_size >> 9;
  774. r1_bio->state = 0;
  775. r1_bio->mddev = mddev;
  776. r1_bio->sector = bio->bi_sector;
  777. /* We might need to issue multiple reads to different
  778. * devices if there are bad blocks around, so we keep
  779. * track of the number of reads in bio->bi_phys_segments.
  780. * If this is 0, there is only one r1_bio and no locking
  781. * will be needed when requests complete. If it is
  782. * non-zero, then it is the number of not-completed requests.
  783. */
  784. bio->bi_phys_segments = 0;
  785. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  786. if (rw == READ) {
  787. /*
  788. * read balancing logic:
  789. */
  790. int rdisk;
  791. read_again:
  792. rdisk = read_balance(conf, r1_bio, &max_sectors);
  793. if (rdisk < 0) {
  794. /* couldn't find anywhere to read from */
  795. raid_end_bio_io(r1_bio);
  796. return;
  797. }
  798. mirror = conf->mirrors + rdisk;
  799. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  800. bitmap) {
  801. /* Reading from a write-mostly device must
  802. * take care not to over-take any writes
  803. * that are 'behind'
  804. */
  805. wait_event(bitmap->behind_wait,
  806. atomic_read(&bitmap->behind_writes) == 0);
  807. }
  808. r1_bio->read_disk = rdisk;
  809. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  810. md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
  811. max_sectors);
  812. r1_bio->bios[rdisk] = read_bio;
  813. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  814. read_bio->bi_bdev = mirror->rdev->bdev;
  815. read_bio->bi_end_io = raid1_end_read_request;
  816. read_bio->bi_rw = READ | do_sync;
  817. read_bio->bi_private = r1_bio;
  818. if (max_sectors < r1_bio->sectors) {
  819. /* could not read all from this device, so we will
  820. * need another r1_bio.
  821. */
  822. sectors_handled = (r1_bio->sector + max_sectors
  823. - bio->bi_sector);
  824. r1_bio->sectors = max_sectors;
  825. spin_lock_irq(&conf->device_lock);
  826. if (bio->bi_phys_segments == 0)
  827. bio->bi_phys_segments = 2;
  828. else
  829. bio->bi_phys_segments++;
  830. spin_unlock_irq(&conf->device_lock);
  831. /* Cannot call generic_make_request directly
  832. * as that will be queued in __make_request
  833. * and subsequent mempool_alloc might block waiting
  834. * for it. So hand bio over to raid1d.
  835. */
  836. reschedule_retry(r1_bio);
  837. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  838. r1_bio->master_bio = bio;
  839. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  840. r1_bio->state = 0;
  841. r1_bio->mddev = mddev;
  842. r1_bio->sector = bio->bi_sector + sectors_handled;
  843. goto read_again;
  844. } else
  845. generic_make_request(read_bio);
  846. return;
  847. }
  848. /*
  849. * WRITE:
  850. */
  851. if (conf->pending_count >= max_queued_requests) {
  852. md_wakeup_thread(mddev->thread);
  853. wait_event(conf->wait_barrier,
  854. conf->pending_count < max_queued_requests);
  855. }
  856. /* first select target devices under rcu_lock and
  857. * inc refcount on their rdev. Record them by setting
  858. * bios[x] to bio
  859. * If there are known/acknowledged bad blocks on any device on
  860. * which we have seen a write error, we want to avoid writing those
  861. * blocks.
  862. * This potentially requires several writes to write around
  863. * the bad blocks. Each set of writes gets it's own r1bio
  864. * with a set of bios attached.
  865. */
  866. plugged = mddev_check_plugged(mddev);
  867. disks = conf->raid_disks * 2;
  868. retry_write:
  869. blocked_rdev = NULL;
  870. rcu_read_lock();
  871. max_sectors = r1_bio->sectors;
  872. for (i = 0; i < disks; i++) {
  873. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  874. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  875. atomic_inc(&rdev->nr_pending);
  876. blocked_rdev = rdev;
  877. break;
  878. }
  879. r1_bio->bios[i] = NULL;
  880. if (!rdev || test_bit(Faulty, &rdev->flags)) {
  881. if (i < conf->raid_disks)
  882. set_bit(R1BIO_Degraded, &r1_bio->state);
  883. continue;
  884. }
  885. atomic_inc(&rdev->nr_pending);
  886. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  887. sector_t first_bad;
  888. int bad_sectors;
  889. int is_bad;
  890. is_bad = is_badblock(rdev, r1_bio->sector,
  891. max_sectors,
  892. &first_bad, &bad_sectors);
  893. if (is_bad < 0) {
  894. /* mustn't write here until the bad block is
  895. * acknowledged*/
  896. set_bit(BlockedBadBlocks, &rdev->flags);
  897. blocked_rdev = rdev;
  898. break;
  899. }
  900. if (is_bad && first_bad <= r1_bio->sector) {
  901. /* Cannot write here at all */
  902. bad_sectors -= (r1_bio->sector - first_bad);
  903. if (bad_sectors < max_sectors)
  904. /* mustn't write more than bad_sectors
  905. * to other devices yet
  906. */
  907. max_sectors = bad_sectors;
  908. rdev_dec_pending(rdev, mddev);
  909. /* We don't set R1BIO_Degraded as that
  910. * only applies if the disk is
  911. * missing, so it might be re-added,
  912. * and we want to know to recover this
  913. * chunk.
  914. * In this case the device is here,
  915. * and the fact that this chunk is not
  916. * in-sync is recorded in the bad
  917. * block log
  918. */
  919. continue;
  920. }
  921. if (is_bad) {
  922. int good_sectors = first_bad - r1_bio->sector;
  923. if (good_sectors < max_sectors)
  924. max_sectors = good_sectors;
  925. }
  926. }
  927. r1_bio->bios[i] = bio;
  928. }
  929. rcu_read_unlock();
  930. if (unlikely(blocked_rdev)) {
  931. /* Wait for this device to become unblocked */
  932. int j;
  933. for (j = 0; j < i; j++)
  934. if (r1_bio->bios[j])
  935. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  936. r1_bio->state = 0;
  937. allow_barrier(conf);
  938. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  939. wait_barrier(conf);
  940. goto retry_write;
  941. }
  942. if (max_sectors < r1_bio->sectors) {
  943. /* We are splitting this write into multiple parts, so
  944. * we need to prepare for allocating another r1_bio.
  945. */
  946. r1_bio->sectors = max_sectors;
  947. spin_lock_irq(&conf->device_lock);
  948. if (bio->bi_phys_segments == 0)
  949. bio->bi_phys_segments = 2;
  950. else
  951. bio->bi_phys_segments++;
  952. spin_unlock_irq(&conf->device_lock);
  953. }
  954. sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
  955. atomic_set(&r1_bio->remaining, 1);
  956. atomic_set(&r1_bio->behind_remaining, 0);
  957. first_clone = 1;
  958. for (i = 0; i < disks; i++) {
  959. struct bio *mbio;
  960. if (!r1_bio->bios[i])
  961. continue;
  962. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  963. md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
  964. if (first_clone) {
  965. /* do behind I/O ?
  966. * Not if there are too many, or cannot
  967. * allocate memory, or a reader on WriteMostly
  968. * is waiting for behind writes to flush */
  969. if (bitmap &&
  970. (atomic_read(&bitmap->behind_writes)
  971. < mddev->bitmap_info.max_write_behind) &&
  972. !waitqueue_active(&bitmap->behind_wait))
  973. alloc_behind_pages(mbio, r1_bio);
  974. bitmap_startwrite(bitmap, r1_bio->sector,
  975. r1_bio->sectors,
  976. test_bit(R1BIO_BehindIO,
  977. &r1_bio->state));
  978. first_clone = 0;
  979. }
  980. if (r1_bio->behind_bvecs) {
  981. struct bio_vec *bvec;
  982. int j;
  983. /* Yes, I really want the '__' version so that
  984. * we clear any unused pointer in the io_vec, rather
  985. * than leave them unchanged. This is important
  986. * because when we come to free the pages, we won't
  987. * know the original bi_idx, so we just free
  988. * them all
  989. */
  990. __bio_for_each_segment(bvec, mbio, j, 0)
  991. bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
  992. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  993. atomic_inc(&r1_bio->behind_remaining);
  994. }
  995. r1_bio->bios[i] = mbio;
  996. mbio->bi_sector = (r1_bio->sector +
  997. conf->mirrors[i].rdev->data_offset);
  998. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  999. mbio->bi_end_io = raid1_end_write_request;
  1000. mbio->bi_rw = WRITE | do_flush_fua | do_sync;
  1001. mbio->bi_private = r1_bio;
  1002. atomic_inc(&r1_bio->remaining);
  1003. spin_lock_irqsave(&conf->device_lock, flags);
  1004. bio_list_add(&conf->pending_bio_list, mbio);
  1005. conf->pending_count++;
  1006. spin_unlock_irqrestore(&conf->device_lock, flags);
  1007. }
  1008. /* Mustn't call r1_bio_write_done before this next test,
  1009. * as it could result in the bio being freed.
  1010. */
  1011. if (sectors_handled < (bio->bi_size >> 9)) {
  1012. r1_bio_write_done(r1_bio);
  1013. /* We need another r1_bio. It has already been counted
  1014. * in bio->bi_phys_segments
  1015. */
  1016. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1017. r1_bio->master_bio = bio;
  1018. r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  1019. r1_bio->state = 0;
  1020. r1_bio->mddev = mddev;
  1021. r1_bio->sector = bio->bi_sector + sectors_handled;
  1022. goto retry_write;
  1023. }
  1024. r1_bio_write_done(r1_bio);
  1025. /* In case raid1d snuck in to freeze_array */
  1026. wake_up(&conf->wait_barrier);
  1027. if (do_sync || !bitmap || !plugged)
  1028. md_wakeup_thread(mddev->thread);
  1029. }
  1030. static void status(struct seq_file *seq, struct mddev *mddev)
  1031. {
  1032. struct r1conf *conf = mddev->private;
  1033. int i;
  1034. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  1035. conf->raid_disks - mddev->degraded);
  1036. rcu_read_lock();
  1037. for (i = 0; i < conf->raid_disks; i++) {
  1038. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1039. seq_printf(seq, "%s",
  1040. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  1041. }
  1042. rcu_read_unlock();
  1043. seq_printf(seq, "]");
  1044. }
  1045. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1046. {
  1047. char b[BDEVNAME_SIZE];
  1048. struct r1conf *conf = mddev->private;
  1049. /*
  1050. * If it is not operational, then we have already marked it as dead
  1051. * else if it is the last working disks, ignore the error, let the
  1052. * next level up know.
  1053. * else mark the drive as failed
  1054. */
  1055. if (test_bit(In_sync, &rdev->flags)
  1056. && (conf->raid_disks - mddev->degraded) == 1) {
  1057. /*
  1058. * Don't fail the drive, act as though we were just a
  1059. * normal single drive.
  1060. * However don't try a recovery from this drive as
  1061. * it is very likely to fail.
  1062. */
  1063. conf->recovery_disabled = mddev->recovery_disabled;
  1064. return;
  1065. }
  1066. set_bit(Blocked, &rdev->flags);
  1067. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1068. unsigned long flags;
  1069. spin_lock_irqsave(&conf->device_lock, flags);
  1070. mddev->degraded++;
  1071. set_bit(Faulty, &rdev->flags);
  1072. spin_unlock_irqrestore(&conf->device_lock, flags);
  1073. /*
  1074. * if recovery is running, make sure it aborts.
  1075. */
  1076. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1077. } else
  1078. set_bit(Faulty, &rdev->flags);
  1079. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1080. printk(KERN_ALERT
  1081. "md/raid1:%s: Disk failure on %s, disabling device.\n"
  1082. "md/raid1:%s: Operation continuing on %d devices.\n",
  1083. mdname(mddev), bdevname(rdev->bdev, b),
  1084. mdname(mddev), conf->raid_disks - mddev->degraded);
  1085. }
  1086. static void print_conf(struct r1conf *conf)
  1087. {
  1088. int i;
  1089. printk(KERN_DEBUG "RAID1 conf printout:\n");
  1090. if (!conf) {
  1091. printk(KERN_DEBUG "(!conf)\n");
  1092. return;
  1093. }
  1094. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  1095. conf->raid_disks);
  1096. rcu_read_lock();
  1097. for (i = 0; i < conf->raid_disks; i++) {
  1098. char b[BDEVNAME_SIZE];
  1099. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  1100. if (rdev)
  1101. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1102. i, !test_bit(In_sync, &rdev->flags),
  1103. !test_bit(Faulty, &rdev->flags),
  1104. bdevname(rdev->bdev,b));
  1105. }
  1106. rcu_read_unlock();
  1107. }
  1108. static void close_sync(struct r1conf *conf)
  1109. {
  1110. wait_barrier(conf);
  1111. allow_barrier(conf);
  1112. mempool_destroy(conf->r1buf_pool);
  1113. conf->r1buf_pool = NULL;
  1114. }
  1115. static int raid1_spare_active(struct mddev *mddev)
  1116. {
  1117. int i;
  1118. struct r1conf *conf = mddev->private;
  1119. int count = 0;
  1120. unsigned long flags;
  1121. /*
  1122. * Find all failed disks within the RAID1 configuration
  1123. * and mark them readable.
  1124. * Called under mddev lock, so rcu protection not needed.
  1125. */
  1126. for (i = 0; i < conf->raid_disks; i++) {
  1127. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1128. struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
  1129. if (repl
  1130. && repl->recovery_offset == MaxSector
  1131. && !test_bit(Faulty, &repl->flags)
  1132. && !test_and_set_bit(In_sync, &repl->flags)) {
  1133. /* replacement has just become active */
  1134. if (!rdev ||
  1135. !test_and_clear_bit(In_sync, &rdev->flags))
  1136. count++;
  1137. if (rdev) {
  1138. /* Replaced device not technically
  1139. * faulty, but we need to be sure
  1140. * it gets removed and never re-added
  1141. */
  1142. set_bit(Faulty, &rdev->flags);
  1143. sysfs_notify_dirent_safe(
  1144. rdev->sysfs_state);
  1145. }
  1146. }
  1147. if (rdev
  1148. && !test_bit(Faulty, &rdev->flags)
  1149. && !test_and_set_bit(In_sync, &rdev->flags)) {
  1150. count++;
  1151. sysfs_notify_dirent_safe(rdev->sysfs_state);
  1152. }
  1153. }
  1154. spin_lock_irqsave(&conf->device_lock, flags);
  1155. mddev->degraded -= count;
  1156. spin_unlock_irqrestore(&conf->device_lock, flags);
  1157. print_conf(conf);
  1158. return count;
  1159. }
  1160. static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1161. {
  1162. struct r1conf *conf = mddev->private;
  1163. int err = -EEXIST;
  1164. int mirror = 0;
  1165. struct mirror_info *p;
  1166. int first = 0;
  1167. int last = conf->raid_disks - 1;
  1168. if (mddev->recovery_disabled == conf->recovery_disabled)
  1169. return -EBUSY;
  1170. if (rdev->raid_disk >= 0)
  1171. first = last = rdev->raid_disk;
  1172. for (mirror = first; mirror <= last; mirror++) {
  1173. p = conf->mirrors+mirror;
  1174. if (!p->rdev) {
  1175. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1176. rdev->data_offset << 9);
  1177. /* as we don't honour merge_bvec_fn, we must
  1178. * never risk violating it, so limit
  1179. * ->max_segments to one lying with a single
  1180. * page, as a one page request is never in
  1181. * violation.
  1182. */
  1183. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  1184. blk_queue_max_segments(mddev->queue, 1);
  1185. blk_queue_segment_boundary(mddev->queue,
  1186. PAGE_CACHE_SIZE - 1);
  1187. }
  1188. p->head_position = 0;
  1189. rdev->raid_disk = mirror;
  1190. err = 0;
  1191. /* As all devices are equivalent, we don't need a full recovery
  1192. * if this was recently any drive of the array
  1193. */
  1194. if (rdev->saved_raid_disk < 0)
  1195. conf->fullsync = 1;
  1196. rcu_assign_pointer(p->rdev, rdev);
  1197. break;
  1198. }
  1199. if (test_bit(WantReplacement, &p->rdev->flags) &&
  1200. p[conf->raid_disks].rdev == NULL) {
  1201. /* Add this device as a replacement */
  1202. clear_bit(In_sync, &rdev->flags);
  1203. set_bit(Replacement, &rdev->flags);
  1204. rdev->raid_disk = mirror;
  1205. err = 0;
  1206. conf->fullsync = 1;
  1207. rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
  1208. break;
  1209. }
  1210. }
  1211. md_integrity_add_rdev(rdev, mddev);
  1212. print_conf(conf);
  1213. return err;
  1214. }
  1215. static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
  1216. {
  1217. struct r1conf *conf = mddev->private;
  1218. int err = 0;
  1219. int number = rdev->raid_disk;
  1220. struct mirror_info *p = conf->mirrors+ number;
  1221. if (rdev != p->rdev)
  1222. p = conf->mirrors + conf->raid_disks + number;
  1223. print_conf(conf);
  1224. if (rdev == p->rdev) {
  1225. if (test_bit(In_sync, &rdev->flags) ||
  1226. atomic_read(&rdev->nr_pending)) {
  1227. err = -EBUSY;
  1228. goto abort;
  1229. }
  1230. /* Only remove non-faulty devices if recovery
  1231. * is not possible.
  1232. */
  1233. if (!test_bit(Faulty, &rdev->flags) &&
  1234. mddev->recovery_disabled != conf->recovery_disabled &&
  1235. mddev->degraded < conf->raid_disks) {
  1236. err = -EBUSY;
  1237. goto abort;
  1238. }
  1239. p->rdev = NULL;
  1240. synchronize_rcu();
  1241. if (atomic_read(&rdev->nr_pending)) {
  1242. /* lost the race, try later */
  1243. err = -EBUSY;
  1244. p->rdev = rdev;
  1245. goto abort;
  1246. } else if (conf->mirrors[conf->raid_disks + number].rdev) {
  1247. /* We just removed a device that is being replaced.
  1248. * Move down the replacement. We drain all IO before
  1249. * doing this to avoid confusion.
  1250. */
  1251. struct md_rdev *repl =
  1252. conf->mirrors[conf->raid_disks + number].rdev;
  1253. raise_barrier(conf);
  1254. clear_bit(Replacement, &repl->flags);
  1255. p->rdev = repl;
  1256. conf->mirrors[conf->raid_disks + number].rdev = NULL;
  1257. lower_barrier(conf);
  1258. clear_bit(WantReplacement, &rdev->flags);
  1259. } else
  1260. clear_bit(WantReplacement, &rdev->flags);
  1261. err = md_integrity_register(mddev);
  1262. }
  1263. abort:
  1264. print_conf(conf);
  1265. return err;
  1266. }
  1267. static void end_sync_read(struct bio *bio, int error)
  1268. {
  1269. struct r1bio *r1_bio = bio->bi_private;
  1270. update_head_pos(r1_bio->read_disk, r1_bio);
  1271. /*
  1272. * we have read a block, now it needs to be re-written,
  1273. * or re-read if the read failed.
  1274. * We don't do much here, just schedule handling by raid1d
  1275. */
  1276. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1277. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1278. if (atomic_dec_and_test(&r1_bio->remaining))
  1279. reschedule_retry(r1_bio);
  1280. }
  1281. static void end_sync_write(struct bio *bio, int error)
  1282. {
  1283. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1284. struct r1bio *r1_bio = bio->bi_private;
  1285. struct mddev *mddev = r1_bio->mddev;
  1286. struct r1conf *conf = mddev->private;
  1287. int mirror=0;
  1288. sector_t first_bad;
  1289. int bad_sectors;
  1290. mirror = find_bio_disk(r1_bio, bio);
  1291. if (!uptodate) {
  1292. sector_t sync_blocks = 0;
  1293. sector_t s = r1_bio->sector;
  1294. long sectors_to_go = r1_bio->sectors;
  1295. /* make sure these bits doesn't get cleared. */
  1296. do {
  1297. bitmap_end_sync(mddev->bitmap, s,
  1298. &sync_blocks, 1);
  1299. s += sync_blocks;
  1300. sectors_to_go -= sync_blocks;
  1301. } while (sectors_to_go > 0);
  1302. set_bit(WriteErrorSeen,
  1303. &conf->mirrors[mirror].rdev->flags);
  1304. if (!test_and_set_bit(WantReplacement,
  1305. &conf->mirrors[mirror].rdev->flags))
  1306. set_bit(MD_RECOVERY_NEEDED, &
  1307. mddev->recovery);
  1308. set_bit(R1BIO_WriteError, &r1_bio->state);
  1309. } else if (is_badblock(conf->mirrors[mirror].rdev,
  1310. r1_bio->sector,
  1311. r1_bio->sectors,
  1312. &first_bad, &bad_sectors) &&
  1313. !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
  1314. r1_bio->sector,
  1315. r1_bio->sectors,
  1316. &first_bad, &bad_sectors)
  1317. )
  1318. set_bit(R1BIO_MadeGood, &r1_bio->state);
  1319. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1320. int s = r1_bio->sectors;
  1321. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1322. test_bit(R1BIO_WriteError, &r1_bio->state))
  1323. reschedule_retry(r1_bio);
  1324. else {
  1325. put_buf(r1_bio);
  1326. md_done_sync(mddev, s, uptodate);
  1327. }
  1328. }
  1329. }
  1330. static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
  1331. int sectors, struct page *page, int rw)
  1332. {
  1333. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  1334. /* success */
  1335. return 1;
  1336. if (rw == WRITE) {
  1337. set_bit(WriteErrorSeen, &rdev->flags);
  1338. if (!test_and_set_bit(WantReplacement,
  1339. &rdev->flags))
  1340. set_bit(MD_RECOVERY_NEEDED, &
  1341. rdev->mddev->recovery);
  1342. }
  1343. /* need to record an error - either for the block or the device */
  1344. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  1345. md_error(rdev->mddev, rdev);
  1346. return 0;
  1347. }
  1348. static int fix_sync_read_error(struct r1bio *r1_bio)
  1349. {
  1350. /* Try some synchronous reads of other devices to get
  1351. * good data, much like with normal read errors. Only
  1352. * read into the pages we already have so we don't
  1353. * need to re-issue the read request.
  1354. * We don't need to freeze the array, because being in an
  1355. * active sync request, there is no normal IO, and
  1356. * no overlapping syncs.
  1357. * We don't need to check is_badblock() again as we
  1358. * made sure that anything with a bad block in range
  1359. * will have bi_end_io clear.
  1360. */
  1361. struct mddev *mddev = r1_bio->mddev;
  1362. struct r1conf *conf = mddev->private;
  1363. struct bio *bio = r1_bio->bios[r1_bio->read_disk];
  1364. sector_t sect = r1_bio->sector;
  1365. int sectors = r1_bio->sectors;
  1366. int idx = 0;
  1367. while(sectors) {
  1368. int s = sectors;
  1369. int d = r1_bio->read_disk;
  1370. int success = 0;
  1371. struct md_rdev *rdev;
  1372. int start;
  1373. if (s > (PAGE_SIZE>>9))
  1374. s = PAGE_SIZE >> 9;
  1375. do {
  1376. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1377. /* No rcu protection needed here devices
  1378. * can only be removed when no resync is
  1379. * active, and resync is currently active
  1380. */
  1381. rdev = conf->mirrors[d].rdev;
  1382. if (sync_page_io(rdev, sect, s<<9,
  1383. bio->bi_io_vec[idx].bv_page,
  1384. READ, false)) {
  1385. success = 1;
  1386. break;
  1387. }
  1388. }
  1389. d++;
  1390. if (d == conf->raid_disks * 2)
  1391. d = 0;
  1392. } while (!success && d != r1_bio->read_disk);
  1393. if (!success) {
  1394. char b[BDEVNAME_SIZE];
  1395. int abort = 0;
  1396. /* Cannot read from anywhere, this block is lost.
  1397. * Record a bad block on each device. If that doesn't
  1398. * work just disable and interrupt the recovery.
  1399. * Don't fail devices as that won't really help.
  1400. */
  1401. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
  1402. " for block %llu\n",
  1403. mdname(mddev),
  1404. bdevname(bio->bi_bdev, b),
  1405. (unsigned long long)r1_bio->sector);
  1406. for (d = 0; d < conf->raid_disks * 2; d++) {
  1407. rdev = conf->mirrors[d].rdev;
  1408. if (!rdev || test_bit(Faulty, &rdev->flags))
  1409. continue;
  1410. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1411. abort = 1;
  1412. }
  1413. if (abort) {
  1414. conf->recovery_disabled =
  1415. mddev->recovery_disabled;
  1416. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1417. md_done_sync(mddev, r1_bio->sectors, 0);
  1418. put_buf(r1_bio);
  1419. return 0;
  1420. }
  1421. /* Try next page */
  1422. sectors -= s;
  1423. sect += s;
  1424. idx++;
  1425. continue;
  1426. }
  1427. start = d;
  1428. /* write it back and re-read */
  1429. while (d != r1_bio->read_disk) {
  1430. if (d == 0)
  1431. d = conf->raid_disks * 2;
  1432. d--;
  1433. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1434. continue;
  1435. rdev = conf->mirrors[d].rdev;
  1436. if (r1_sync_page_io(rdev, sect, s,
  1437. bio->bi_io_vec[idx].bv_page,
  1438. WRITE) == 0) {
  1439. r1_bio->bios[d]->bi_end_io = NULL;
  1440. rdev_dec_pending(rdev, mddev);
  1441. }
  1442. }
  1443. d = start;
  1444. while (d != r1_bio->read_disk) {
  1445. if (d == 0)
  1446. d = conf->raid_disks * 2;
  1447. d--;
  1448. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1449. continue;
  1450. rdev = conf->mirrors[d].rdev;
  1451. if (r1_sync_page_io(rdev, sect, s,
  1452. bio->bi_io_vec[idx].bv_page,
  1453. READ) != 0)
  1454. atomic_add(s, &rdev->corrected_errors);
  1455. }
  1456. sectors -= s;
  1457. sect += s;
  1458. idx ++;
  1459. }
  1460. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1461. set_bit(BIO_UPTODATE, &bio->bi_flags);
  1462. return 1;
  1463. }
  1464. static int process_checks(struct r1bio *r1_bio)
  1465. {
  1466. /* We have read all readable devices. If we haven't
  1467. * got the block, then there is no hope left.
  1468. * If we have, then we want to do a comparison
  1469. * and skip the write if everything is the same.
  1470. * If any blocks failed to read, then we need to
  1471. * attempt an over-write
  1472. */
  1473. struct mddev *mddev = r1_bio->mddev;
  1474. struct r1conf *conf = mddev->private;
  1475. int primary;
  1476. int i;
  1477. for (primary = 0; primary < conf->raid_disks * 2; primary++)
  1478. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1479. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1480. r1_bio->bios[primary]->bi_end_io = NULL;
  1481. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1482. break;
  1483. }
  1484. r1_bio->read_disk = primary;
  1485. for (i = 0; i < conf->raid_disks * 2; i++) {
  1486. int j;
  1487. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1488. struct bio *pbio = r1_bio->bios[primary];
  1489. struct bio *sbio = r1_bio->bios[i];
  1490. int size;
  1491. if (r1_bio->bios[i]->bi_end_io != end_sync_read)
  1492. continue;
  1493. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1494. for (j = vcnt; j-- ; ) {
  1495. struct page *p, *s;
  1496. p = pbio->bi_io_vec[j].bv_page;
  1497. s = sbio->bi_io_vec[j].bv_page;
  1498. if (memcmp(page_address(p),
  1499. page_address(s),
  1500. PAGE_SIZE))
  1501. break;
  1502. }
  1503. } else
  1504. j = 0;
  1505. if (j >= 0)
  1506. mddev->resync_mismatches += r1_bio->sectors;
  1507. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1508. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1509. /* No need to write to this device. */
  1510. sbio->bi_end_io = NULL;
  1511. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1512. continue;
  1513. }
  1514. /* fixup the bio for reuse */
  1515. sbio->bi_vcnt = vcnt;
  1516. sbio->bi_size = r1_bio->sectors << 9;
  1517. sbio->bi_idx = 0;
  1518. sbio->bi_phys_segments = 0;
  1519. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1520. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1521. sbio->bi_next = NULL;
  1522. sbio->bi_sector = r1_bio->sector +
  1523. conf->mirrors[i].rdev->data_offset;
  1524. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1525. size = sbio->bi_size;
  1526. for (j = 0; j < vcnt ; j++) {
  1527. struct bio_vec *bi;
  1528. bi = &sbio->bi_io_vec[j];
  1529. bi->bv_offset = 0;
  1530. if (size > PAGE_SIZE)
  1531. bi->bv_len = PAGE_SIZE;
  1532. else
  1533. bi->bv_len = size;
  1534. size -= PAGE_SIZE;
  1535. memcpy(page_address(bi->bv_page),
  1536. page_address(pbio->bi_io_vec[j].bv_page),
  1537. PAGE_SIZE);
  1538. }
  1539. }
  1540. return 0;
  1541. }
  1542. static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
  1543. {
  1544. struct r1conf *conf = mddev->private;
  1545. int i;
  1546. int disks = conf->raid_disks * 2;
  1547. struct bio *bio, *wbio;
  1548. bio = r1_bio->bios[r1_bio->read_disk];
  1549. if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
  1550. /* ouch - failed to read all of that. */
  1551. if (!fix_sync_read_error(r1_bio))
  1552. return;
  1553. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1554. if (process_checks(r1_bio) < 0)
  1555. return;
  1556. /*
  1557. * schedule writes
  1558. */
  1559. atomic_set(&r1_bio->remaining, 1);
  1560. for (i = 0; i < disks ; i++) {
  1561. wbio = r1_bio->bios[i];
  1562. if (wbio->bi_end_io == NULL ||
  1563. (wbio->bi_end_io == end_sync_read &&
  1564. (i == r1_bio->read_disk ||
  1565. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1566. continue;
  1567. wbio->bi_rw = WRITE;
  1568. wbio->bi_end_io = end_sync_write;
  1569. atomic_inc(&r1_bio->remaining);
  1570. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1571. generic_make_request(wbio);
  1572. }
  1573. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1574. /* if we're here, all write(s) have completed, so clean up */
  1575. md_done_sync(mddev, r1_bio->sectors, 1);
  1576. put_buf(r1_bio);
  1577. }
  1578. }
  1579. /*
  1580. * This is a kernel thread which:
  1581. *
  1582. * 1. Retries failed read operations on working mirrors.
  1583. * 2. Updates the raid superblock when problems encounter.
  1584. * 3. Performs writes following reads for array synchronising.
  1585. */
  1586. static void fix_read_error(struct r1conf *conf, int read_disk,
  1587. sector_t sect, int sectors)
  1588. {
  1589. struct mddev *mddev = conf->mddev;
  1590. while(sectors) {
  1591. int s = sectors;
  1592. int d = read_disk;
  1593. int success = 0;
  1594. int start;
  1595. struct md_rdev *rdev;
  1596. if (s > (PAGE_SIZE>>9))
  1597. s = PAGE_SIZE >> 9;
  1598. do {
  1599. /* Note: no rcu protection needed here
  1600. * as this is synchronous in the raid1d thread
  1601. * which is the thread that might remove
  1602. * a device. If raid1d ever becomes multi-threaded....
  1603. */
  1604. sector_t first_bad;
  1605. int bad_sectors;
  1606. rdev = conf->mirrors[d].rdev;
  1607. if (rdev &&
  1608. test_bit(In_sync, &rdev->flags) &&
  1609. is_badblock(rdev, sect, s,
  1610. &first_bad, &bad_sectors) == 0 &&
  1611. sync_page_io(rdev, sect, s<<9,
  1612. conf->tmppage, READ, false))
  1613. success = 1;
  1614. else {
  1615. d++;
  1616. if (d == conf->raid_disks * 2)
  1617. d = 0;
  1618. }
  1619. } while (!success && d != read_disk);
  1620. if (!success) {
  1621. /* Cannot read from anywhere - mark it bad */
  1622. struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
  1623. if (!rdev_set_badblocks(rdev, sect, s, 0))
  1624. md_error(mddev, rdev);
  1625. break;
  1626. }
  1627. /* write it back and re-read */
  1628. start = d;
  1629. while (d != read_disk) {
  1630. if (d==0)
  1631. d = conf->raid_disks * 2;
  1632. d--;
  1633. rdev = conf->mirrors[d].rdev;
  1634. if (rdev &&
  1635. test_bit(In_sync, &rdev->flags))
  1636. r1_sync_page_io(rdev, sect, s,
  1637. conf->tmppage, WRITE);
  1638. }
  1639. d = start;
  1640. while (d != read_disk) {
  1641. char b[BDEVNAME_SIZE];
  1642. if (d==0)
  1643. d = conf->raid_disks * 2;
  1644. d--;
  1645. rdev = conf->mirrors[d].rdev;
  1646. if (rdev &&
  1647. test_bit(In_sync, &rdev->flags)) {
  1648. if (r1_sync_page_io(rdev, sect, s,
  1649. conf->tmppage, READ)) {
  1650. atomic_add(s, &rdev->corrected_errors);
  1651. printk(KERN_INFO
  1652. "md/raid1:%s: read error corrected "
  1653. "(%d sectors at %llu on %s)\n",
  1654. mdname(mddev), s,
  1655. (unsigned long long)(sect +
  1656. rdev->data_offset),
  1657. bdevname(rdev->bdev, b));
  1658. }
  1659. }
  1660. }
  1661. sectors -= s;
  1662. sect += s;
  1663. }
  1664. }
  1665. static void bi_complete(struct bio *bio, int error)
  1666. {
  1667. complete((struct completion *)bio->bi_private);
  1668. }
  1669. static int submit_bio_wait(int rw, struct bio *bio)
  1670. {
  1671. struct completion event;
  1672. rw |= REQ_SYNC;
  1673. init_completion(&event);
  1674. bio->bi_private = &event;
  1675. bio->bi_end_io = bi_complete;
  1676. submit_bio(rw, bio);
  1677. wait_for_completion(&event);
  1678. return test_bit(BIO_UPTODATE, &bio->bi_flags);
  1679. }
  1680. static int narrow_write_error(struct r1bio *r1_bio, int i)
  1681. {
  1682. struct mddev *mddev = r1_bio->mddev;
  1683. struct r1conf *conf = mddev->private;
  1684. struct md_rdev *rdev = conf->mirrors[i].rdev;
  1685. int vcnt, idx;
  1686. struct bio_vec *vec;
  1687. /* bio has the data to be written to device 'i' where
  1688. * we just recently had a write error.
  1689. * We repeatedly clone the bio and trim down to one block,
  1690. * then try the write. Where the write fails we record
  1691. * a bad block.
  1692. * It is conceivable that the bio doesn't exactly align with
  1693. * blocks. We must handle this somehow.
  1694. *
  1695. * We currently own a reference on the rdev.
  1696. */
  1697. int block_sectors;
  1698. sector_t sector;
  1699. int sectors;
  1700. int sect_to_write = r1_bio->sectors;
  1701. int ok = 1;
  1702. if (rdev->badblocks.shift < 0)
  1703. return 0;
  1704. block_sectors = 1 << rdev->badblocks.shift;
  1705. sector = r1_bio->sector;
  1706. sectors = ((sector + block_sectors)
  1707. & ~(sector_t)(block_sectors - 1))
  1708. - sector;
  1709. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  1710. vcnt = r1_bio->behind_page_count;
  1711. vec = r1_bio->behind_bvecs;
  1712. idx = 0;
  1713. while (vec[idx].bv_page == NULL)
  1714. idx++;
  1715. } else {
  1716. vcnt = r1_bio->master_bio->bi_vcnt;
  1717. vec = r1_bio->master_bio->bi_io_vec;
  1718. idx = r1_bio->master_bio->bi_idx;
  1719. }
  1720. while (sect_to_write) {
  1721. struct bio *wbio;
  1722. if (sectors > sect_to_write)
  1723. sectors = sect_to_write;
  1724. /* Write at 'sector' for 'sectors'*/
  1725. wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
  1726. memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
  1727. wbio->bi_sector = r1_bio->sector;
  1728. wbio->bi_rw = WRITE;
  1729. wbio->bi_vcnt = vcnt;
  1730. wbio->bi_size = r1_bio->sectors << 9;
  1731. wbio->bi_idx = idx;
  1732. md_trim_bio(wbio, sector - r1_bio->sector, sectors);
  1733. wbio->bi_sector += rdev->data_offset;
  1734. wbio->bi_bdev = rdev->bdev;
  1735. if (submit_bio_wait(WRITE, wbio) == 0)
  1736. /* failure! */
  1737. ok = rdev_set_badblocks(rdev, sector,
  1738. sectors, 0)
  1739. && ok;
  1740. bio_put(wbio);
  1741. sect_to_write -= sectors;
  1742. sector += sectors;
  1743. sectors = block_sectors;
  1744. }
  1745. return ok;
  1746. }
  1747. static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1748. {
  1749. int m;
  1750. int s = r1_bio->sectors;
  1751. for (m = 0; m < conf->raid_disks * 2 ; m++) {
  1752. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1753. struct bio *bio = r1_bio->bios[m];
  1754. if (bio->bi_end_io == NULL)
  1755. continue;
  1756. if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1757. test_bit(R1BIO_MadeGood, &r1_bio->state)) {
  1758. rdev_clear_badblocks(rdev, r1_bio->sector, s);
  1759. }
  1760. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  1761. test_bit(R1BIO_WriteError, &r1_bio->state)) {
  1762. if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
  1763. md_error(conf->mddev, rdev);
  1764. }
  1765. }
  1766. put_buf(r1_bio);
  1767. md_done_sync(conf->mddev, s, 1);
  1768. }
  1769. static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
  1770. {
  1771. int m;
  1772. for (m = 0; m < conf->raid_disks * 2 ; m++)
  1773. if (r1_bio->bios[m] == IO_MADE_GOOD) {
  1774. struct md_rdev *rdev = conf->mirrors[m].rdev;
  1775. rdev_clear_badblocks(rdev,
  1776. r1_bio->sector,
  1777. r1_bio->sectors);
  1778. rdev_dec_pending(rdev, conf->mddev);
  1779. } else if (r1_bio->bios[m] != NULL) {
  1780. /* This drive got a write error. We need to
  1781. * narrow down and record precise write
  1782. * errors.
  1783. */
  1784. if (!narrow_write_error(r1_bio, m)) {
  1785. md_error(conf->mddev,
  1786. conf->mirrors[m].rdev);
  1787. /* an I/O failed, we can't clear the bitmap */
  1788. set_bit(R1BIO_Degraded, &r1_bio->state);
  1789. }
  1790. rdev_dec_pending(conf->mirrors[m].rdev,
  1791. conf->mddev);
  1792. }
  1793. if (test_bit(R1BIO_WriteError, &r1_bio->state))
  1794. close_write(r1_bio);
  1795. raid_end_bio_io(r1_bio);
  1796. }
  1797. static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
  1798. {
  1799. int disk;
  1800. int max_sectors;
  1801. struct mddev *mddev = conf->mddev;
  1802. struct bio *bio;
  1803. char b[BDEVNAME_SIZE];
  1804. struct md_rdev *rdev;
  1805. clear_bit(R1BIO_ReadError, &r1_bio->state);
  1806. /* we got a read error. Maybe the drive is bad. Maybe just
  1807. * the block and we can fix it.
  1808. * We freeze all other IO, and try reading the block from
  1809. * other devices. When we find one, we re-write
  1810. * and check it that fixes the read error.
  1811. * This is all done synchronously while the array is
  1812. * frozen
  1813. */
  1814. if (mddev->ro == 0) {
  1815. freeze_array(conf);
  1816. fix_read_error(conf, r1_bio->read_disk,
  1817. r1_bio->sector, r1_bio->sectors);
  1818. unfreeze_array(conf);
  1819. } else
  1820. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1821. bio = r1_bio->bios[r1_bio->read_disk];
  1822. bdevname(bio->bi_bdev, b);
  1823. read_more:
  1824. disk = read_balance(conf, r1_bio, &max_sectors);
  1825. if (disk == -1) {
  1826. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
  1827. " read error for block %llu\n",
  1828. mdname(mddev), b, (unsigned long long)r1_bio->sector);
  1829. raid_end_bio_io(r1_bio);
  1830. } else {
  1831. const unsigned long do_sync
  1832. = r1_bio->master_bio->bi_rw & REQ_SYNC;
  1833. if (bio) {
  1834. r1_bio->bios[r1_bio->read_disk] =
  1835. mddev->ro ? IO_BLOCKED : NULL;
  1836. bio_put(bio);
  1837. }
  1838. r1_bio->read_disk = disk;
  1839. bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
  1840. md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
  1841. r1_bio->bios[r1_bio->read_disk] = bio;
  1842. rdev = conf->mirrors[disk].rdev;
  1843. printk_ratelimited(KERN_ERR
  1844. "md/raid1:%s: redirecting sector %llu"
  1845. " to other mirror: %s\n",
  1846. mdname(mddev),
  1847. (unsigned long long)r1_bio->sector,
  1848. bdevname(rdev->bdev, b));
  1849. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1850. bio->bi_bdev = rdev->bdev;
  1851. bio->bi_end_io = raid1_end_read_request;
  1852. bio->bi_rw = READ | do_sync;
  1853. bio->bi_private = r1_bio;
  1854. if (max_sectors < r1_bio->sectors) {
  1855. /* Drat - have to split this up more */
  1856. struct bio *mbio = r1_bio->master_bio;
  1857. int sectors_handled = (r1_bio->sector + max_sectors
  1858. - mbio->bi_sector);
  1859. r1_bio->sectors = max_sectors;
  1860. spin_lock_irq(&conf->device_lock);
  1861. if (mbio->bi_phys_segments == 0)
  1862. mbio->bi_phys_segments = 2;
  1863. else
  1864. mbio->bi_phys_segments++;
  1865. spin_unlock_irq(&conf->device_lock);
  1866. generic_make_request(bio);
  1867. bio = NULL;
  1868. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  1869. r1_bio->master_bio = mbio;
  1870. r1_bio->sectors = (mbio->bi_size >> 9)
  1871. - sectors_handled;
  1872. r1_bio->state = 0;
  1873. set_bit(R1BIO_ReadError, &r1_bio->state);
  1874. r1_bio->mddev = mddev;
  1875. r1_bio->sector = mbio->bi_sector + sectors_handled;
  1876. goto read_more;
  1877. } else
  1878. generic_make_request(bio);
  1879. }
  1880. }
  1881. static void raid1d(struct mddev *mddev)
  1882. {
  1883. struct r1bio *r1_bio;
  1884. unsigned long flags;
  1885. struct r1conf *conf = mddev->private;
  1886. struct list_head *head = &conf->retry_list;
  1887. struct blk_plug plug;
  1888. md_check_recovery(mddev);
  1889. blk_start_plug(&plug);
  1890. for (;;) {
  1891. if (atomic_read(&mddev->plug_cnt) == 0)
  1892. flush_pending_writes(conf);
  1893. spin_lock_irqsave(&conf->device_lock, flags);
  1894. if (list_empty(head)) {
  1895. spin_unlock_irqrestore(&conf->device_lock, flags);
  1896. break;
  1897. }
  1898. r1_bio = list_entry(head->prev, struct r1bio, retry_list);
  1899. list_del(head->prev);
  1900. conf->nr_queued--;
  1901. spin_unlock_irqrestore(&conf->device_lock, flags);
  1902. mddev = r1_bio->mddev;
  1903. conf = mddev->private;
  1904. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1905. if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1906. test_bit(R1BIO_WriteError, &r1_bio->state))
  1907. handle_sync_write_finished(conf, r1_bio);
  1908. else
  1909. sync_request_write(mddev, r1_bio);
  1910. } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
  1911. test_bit(R1BIO_WriteError, &r1_bio->state))
  1912. handle_write_finished(conf, r1_bio);
  1913. else if (test_bit(R1BIO_ReadError, &r1_bio->state))
  1914. handle_read_error(conf, r1_bio);
  1915. else
  1916. /* just a partial read to be scheduled from separate
  1917. * context
  1918. */
  1919. generic_make_request(r1_bio->bios[r1_bio->read_disk]);
  1920. cond_resched();
  1921. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  1922. md_check_recovery(mddev);
  1923. }
  1924. blk_finish_plug(&plug);
  1925. }
  1926. static int init_resync(struct r1conf *conf)
  1927. {
  1928. int buffs;
  1929. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1930. BUG_ON(conf->r1buf_pool);
  1931. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1932. conf->poolinfo);
  1933. if (!conf->r1buf_pool)
  1934. return -ENOMEM;
  1935. conf->next_resync = 0;
  1936. return 0;
  1937. }
  1938. /*
  1939. * perform a "sync" on one "block"
  1940. *
  1941. * We need to make sure that no normal I/O request - particularly write
  1942. * requests - conflict with active sync requests.
  1943. *
  1944. * This is achieved by tracking pending requests and a 'barrier' concept
  1945. * that can be installed to exclude normal IO requests.
  1946. */
  1947. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1948. {
  1949. struct r1conf *conf = mddev->private;
  1950. struct r1bio *r1_bio;
  1951. struct bio *bio;
  1952. sector_t max_sector, nr_sectors;
  1953. int disk = -1;
  1954. int i;
  1955. int wonly = -1;
  1956. int write_targets = 0, read_targets = 0;
  1957. sector_t sync_blocks;
  1958. int still_degraded = 0;
  1959. int good_sectors = RESYNC_SECTORS;
  1960. int min_bad = 0; /* number of sectors that are bad in all devices */
  1961. if (!conf->r1buf_pool)
  1962. if (init_resync(conf))
  1963. return 0;
  1964. max_sector = mddev->dev_sectors;
  1965. if (sector_nr >= max_sector) {
  1966. /* If we aborted, we need to abort the
  1967. * sync on the 'current' bitmap chunk (there will
  1968. * only be one in raid1 resync.
  1969. * We can find the current addess in mddev->curr_resync
  1970. */
  1971. if (mddev->curr_resync < max_sector) /* aborted */
  1972. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1973. &sync_blocks, 1);
  1974. else /* completed sync */
  1975. conf->fullsync = 0;
  1976. bitmap_close_sync(mddev->bitmap);
  1977. close_sync(conf);
  1978. return 0;
  1979. }
  1980. if (mddev->bitmap == NULL &&
  1981. mddev->recovery_cp == MaxSector &&
  1982. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1983. conf->fullsync == 0) {
  1984. *skipped = 1;
  1985. return max_sector - sector_nr;
  1986. }
  1987. /* before building a request, check if we can skip these blocks..
  1988. * This call the bitmap_start_sync doesn't actually record anything
  1989. */
  1990. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1991. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1992. /* We can skip this block, and probably several more */
  1993. *skipped = 1;
  1994. return sync_blocks;
  1995. }
  1996. /*
  1997. * If there is non-resync activity waiting for a turn,
  1998. * and resync is going fast enough,
  1999. * then let it though before starting on this new sync request.
  2000. */
  2001. if (!go_faster && conf->nr_waiting)
  2002. msleep_interruptible(1000);
  2003. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  2004. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  2005. raise_barrier(conf);
  2006. conf->next_resync = sector_nr;
  2007. rcu_read_lock();
  2008. /*
  2009. * If we get a correctably read error during resync or recovery,
  2010. * we might want to read from a different device. So we
  2011. * flag all drives that could conceivably be read from for READ,
  2012. * and any others (which will be non-In_sync devices) for WRITE.
  2013. * If a read fails, we try reading from something else for which READ
  2014. * is OK.
  2015. */
  2016. r1_bio->mddev = mddev;
  2017. r1_bio->sector = sector_nr;
  2018. r1_bio->state = 0;
  2019. set_bit(R1BIO_IsSync, &r1_bio->state);
  2020. for (i = 0; i < conf->raid_disks * 2; i++) {
  2021. struct md_rdev *rdev;
  2022. bio = r1_bio->bios[i];
  2023. /* take from bio_init */
  2024. bio->bi_next = NULL;
  2025. bio->bi_flags &= ~(BIO_POOL_MASK-1);
  2026. bio->bi_flags |= 1 << BIO_UPTODATE;
  2027. bio->bi_rw = READ;
  2028. bio->bi_vcnt = 0;
  2029. bio->bi_idx = 0;
  2030. bio->bi_phys_segments = 0;
  2031. bio->bi_size = 0;
  2032. bio->bi_end_io = NULL;
  2033. bio->bi_private = NULL;
  2034. rdev = rcu_dereference(conf->mirrors[i].rdev);
  2035. if (rdev == NULL ||
  2036. test_bit(Faulty, &rdev->flags)) {
  2037. if (i < conf->raid_disks)
  2038. still_degraded = 1;
  2039. } else if (!test_bit(In_sync, &rdev->flags)) {
  2040. bio->bi_rw = WRITE;
  2041. bio->bi_end_io = end_sync_write;
  2042. write_targets ++;
  2043. } else {
  2044. /* may need to read from here */
  2045. sector_t first_bad = MaxSector;
  2046. int bad_sectors;
  2047. if (is_badblock(rdev, sector_nr, good_sectors,
  2048. &first_bad, &bad_sectors)) {
  2049. if (first_bad > sector_nr)
  2050. good_sectors = first_bad - sector_nr;
  2051. else {
  2052. bad_sectors -= (sector_nr - first_bad);
  2053. if (min_bad == 0 ||
  2054. min_bad > bad_sectors)
  2055. min_bad = bad_sectors;
  2056. }
  2057. }
  2058. if (sector_nr < first_bad) {
  2059. if (test_bit(WriteMostly, &rdev->flags)) {
  2060. if (wonly < 0)
  2061. wonly = i;
  2062. } else {
  2063. if (disk < 0)
  2064. disk = i;
  2065. }
  2066. bio->bi_rw = READ;
  2067. bio->bi_end_io = end_sync_read;
  2068. read_targets++;
  2069. }
  2070. }
  2071. if (bio->bi_end_io) {
  2072. atomic_inc(&rdev->nr_pending);
  2073. bio->bi_sector = sector_nr + rdev->data_offset;
  2074. bio->bi_bdev = rdev->bdev;
  2075. bio->bi_private = r1_bio;
  2076. }
  2077. }
  2078. rcu_read_unlock();
  2079. if (disk < 0)
  2080. disk = wonly;
  2081. r1_bio->read_disk = disk;
  2082. if (read_targets == 0 && min_bad > 0) {
  2083. /* These sectors are bad on all InSync devices, so we
  2084. * need to mark them bad on all write targets
  2085. */
  2086. int ok = 1;
  2087. for (i = 0 ; i < conf->raid_disks * 2 ; i++)
  2088. if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
  2089. struct md_rdev *rdev =
  2090. rcu_dereference(conf->mirrors[i].rdev);
  2091. ok = rdev_set_badblocks(rdev, sector_nr,
  2092. min_bad, 0
  2093. ) && ok;
  2094. }
  2095. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2096. *skipped = 1;
  2097. put_buf(r1_bio);
  2098. if (!ok) {
  2099. /* Cannot record the badblocks, so need to
  2100. * abort the resync.
  2101. * If there are multiple read targets, could just
  2102. * fail the really bad ones ???
  2103. */
  2104. conf->recovery_disabled = mddev->recovery_disabled;
  2105. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2106. return 0;
  2107. } else
  2108. return min_bad;
  2109. }
  2110. if (min_bad > 0 && min_bad < good_sectors) {
  2111. /* only resync enough to reach the next bad->good
  2112. * transition */
  2113. good_sectors = min_bad;
  2114. }
  2115. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  2116. /* extra read targets are also write targets */
  2117. write_targets += read_targets-1;
  2118. if (write_targets == 0 || read_targets == 0) {
  2119. /* There is nowhere to write, so all non-sync
  2120. * drives must be failed - so we are finished
  2121. */
  2122. sector_t rv = max_sector - sector_nr;
  2123. *skipped = 1;
  2124. put_buf(r1_bio);
  2125. return rv;
  2126. }
  2127. if (max_sector > mddev->resync_max)
  2128. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2129. if (max_sector > sector_nr + good_sectors)
  2130. max_sector = sector_nr + good_sectors;
  2131. nr_sectors = 0;
  2132. sync_blocks = 0;
  2133. do {
  2134. struct page *page;
  2135. int len = PAGE_SIZE;
  2136. if (sector_nr + (len>>9) > max_sector)
  2137. len = (max_sector - sector_nr) << 9;
  2138. if (len == 0)
  2139. break;
  2140. if (sync_blocks == 0) {
  2141. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2142. &sync_blocks, still_degraded) &&
  2143. !conf->fullsync &&
  2144. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2145. break;
  2146. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  2147. if ((len >> 9) > sync_blocks)
  2148. len = sync_blocks<<9;
  2149. }
  2150. for (i = 0 ; i < conf->raid_disks * 2; i++) {
  2151. bio = r1_bio->bios[i];
  2152. if (bio->bi_end_io) {
  2153. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  2154. if (bio_add_page(bio, page, len, 0) == 0) {
  2155. /* stop here */
  2156. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  2157. while (i > 0) {
  2158. i--;
  2159. bio = r1_bio->bios[i];
  2160. if (bio->bi_end_io==NULL)
  2161. continue;
  2162. /* remove last page from this bio */
  2163. bio->bi_vcnt--;
  2164. bio->bi_size -= len;
  2165. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  2166. }
  2167. goto bio_full;
  2168. }
  2169. }
  2170. }
  2171. nr_sectors += len>>9;
  2172. sector_nr += len>>9;
  2173. sync_blocks -= (len>>9);
  2174. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  2175. bio_full:
  2176. r1_bio->sectors = nr_sectors;
  2177. /* For a user-requested sync, we read all readable devices and do a
  2178. * compare
  2179. */
  2180. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  2181. atomic_set(&r1_bio->remaining, read_targets);
  2182. for (i = 0; i < conf->raid_disks * 2; i++) {
  2183. bio = r1_bio->bios[i];
  2184. if (bio->bi_end_io == end_sync_read) {
  2185. md_sync_acct(bio->bi_bdev, nr_sectors);
  2186. generic_make_request(bio);
  2187. }
  2188. }
  2189. } else {
  2190. atomic_set(&r1_bio->remaining, 1);
  2191. bio = r1_bio->bios[r1_bio->read_disk];
  2192. md_sync_acct(bio->bi_bdev, nr_sectors);
  2193. generic_make_request(bio);
  2194. }
  2195. return nr_sectors;
  2196. }
  2197. static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  2198. {
  2199. if (sectors)
  2200. return sectors;
  2201. return mddev->dev_sectors;
  2202. }
  2203. static struct r1conf *setup_conf(struct mddev *mddev)
  2204. {
  2205. struct r1conf *conf;
  2206. int i;
  2207. struct mirror_info *disk;
  2208. struct md_rdev *rdev;
  2209. int err = -ENOMEM;
  2210. conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
  2211. if (!conf)
  2212. goto abort;
  2213. conf->mirrors = kzalloc(sizeof(struct mirror_info)
  2214. * mddev->raid_disks * 2,
  2215. GFP_KERNEL);
  2216. if (!conf->mirrors)
  2217. goto abort;
  2218. conf->tmppage = alloc_page(GFP_KERNEL);
  2219. if (!conf->tmppage)
  2220. goto abort;
  2221. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  2222. if (!conf->poolinfo)
  2223. goto abort;
  2224. conf->poolinfo->raid_disks = mddev->raid_disks * 2;
  2225. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2226. r1bio_pool_free,
  2227. conf->poolinfo);
  2228. if (!conf->r1bio_pool)
  2229. goto abort;
  2230. conf->poolinfo->mddev = mddev;
  2231. err = -EINVAL;
  2232. spin_lock_init(&conf->device_lock);
  2233. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2234. int disk_idx = rdev->raid_disk;
  2235. if (disk_idx >= mddev->raid_disks
  2236. || disk_idx < 0)
  2237. continue;
  2238. if (test_bit(Replacement, &rdev->flags))
  2239. disk = conf->mirrors + conf->raid_disks + disk_idx;
  2240. else
  2241. disk = conf->mirrors + disk_idx;
  2242. if (disk->rdev)
  2243. goto abort;
  2244. disk->rdev = rdev;
  2245. disk->head_position = 0;
  2246. }
  2247. conf->raid_disks = mddev->raid_disks;
  2248. conf->mddev = mddev;
  2249. INIT_LIST_HEAD(&conf->retry_list);
  2250. spin_lock_init(&conf->resync_lock);
  2251. init_waitqueue_head(&conf->wait_barrier);
  2252. bio_list_init(&conf->pending_bio_list);
  2253. conf->pending_count = 0;
  2254. conf->recovery_disabled = mddev->recovery_disabled - 1;
  2255. err = -EIO;
  2256. conf->last_used = -1;
  2257. for (i = 0; i < conf->raid_disks * 2; i++) {
  2258. disk = conf->mirrors + i;
  2259. if (i < conf->raid_disks &&
  2260. disk[conf->raid_disks].rdev) {
  2261. /* This slot has a replacement. */
  2262. if (!disk->rdev) {
  2263. /* No original, just make the replacement
  2264. * a recovering spare
  2265. */
  2266. disk->rdev =
  2267. disk[conf->raid_disks].rdev;
  2268. disk[conf->raid_disks].rdev = NULL;
  2269. } else if (!test_bit(In_sync, &disk->rdev->flags))
  2270. /* Original is not in_sync - bad */
  2271. goto abort;
  2272. }
  2273. if (!disk->rdev ||
  2274. !test_bit(In_sync, &disk->rdev->flags)) {
  2275. disk->head_position = 0;
  2276. if (disk->rdev)
  2277. conf->fullsync = 1;
  2278. } else if (conf->last_used < 0)
  2279. /*
  2280. * The first working device is used as a
  2281. * starting point to read balancing.
  2282. */
  2283. conf->last_used = i;
  2284. }
  2285. if (conf->last_used < 0) {
  2286. printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
  2287. mdname(mddev));
  2288. goto abort;
  2289. }
  2290. err = -ENOMEM;
  2291. conf->thread = md_register_thread(raid1d, mddev, NULL);
  2292. if (!conf->thread) {
  2293. printk(KERN_ERR
  2294. "md/raid1:%s: couldn't allocate thread\n",
  2295. mdname(mddev));
  2296. goto abort;
  2297. }
  2298. return conf;
  2299. abort:
  2300. if (conf) {
  2301. if (conf->r1bio_pool)
  2302. mempool_destroy(conf->r1bio_pool);
  2303. kfree(conf->mirrors);
  2304. safe_put_page(conf->tmppage);
  2305. kfree(conf->poolinfo);
  2306. kfree(conf);
  2307. }
  2308. return ERR_PTR(err);
  2309. }
  2310. static int run(struct mddev *mddev)
  2311. {
  2312. struct r1conf *conf;
  2313. int i;
  2314. struct md_rdev *rdev;
  2315. if (mddev->level != 1) {
  2316. printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
  2317. mdname(mddev), mddev->level);
  2318. return -EIO;
  2319. }
  2320. if (mddev->reshape_position != MaxSector) {
  2321. printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
  2322. mdname(mddev));
  2323. return -EIO;
  2324. }
  2325. /*
  2326. * copy the already verified devices into our private RAID1
  2327. * bookkeeping area. [whatever we allocate in run(),
  2328. * should be freed in stop()]
  2329. */
  2330. if (mddev->private == NULL)
  2331. conf = setup_conf(mddev);
  2332. else
  2333. conf = mddev->private;
  2334. if (IS_ERR(conf))
  2335. return PTR_ERR(conf);
  2336. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2337. if (!mddev->gendisk)
  2338. continue;
  2339. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2340. rdev->data_offset << 9);
  2341. /* as we don't honour merge_bvec_fn, we must never risk
  2342. * violating it, so limit ->max_segments to 1 lying within
  2343. * a single page, as a one page request is never in violation.
  2344. */
  2345. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  2346. blk_queue_max_segments(mddev->queue, 1);
  2347. blk_queue_segment_boundary(mddev->queue,
  2348. PAGE_CACHE_SIZE - 1);
  2349. }
  2350. }
  2351. mddev->degraded = 0;
  2352. for (i=0; i < conf->raid_disks; i++)
  2353. if (conf->mirrors[i].rdev == NULL ||
  2354. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  2355. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  2356. mddev->degraded++;
  2357. if (conf->raid_disks - mddev->degraded == 1)
  2358. mddev->recovery_cp = MaxSector;
  2359. if (mddev->recovery_cp != MaxSector)
  2360. printk(KERN_NOTICE "md/raid1:%s: not clean"
  2361. " -- starting background reconstruction\n",
  2362. mdname(mddev));
  2363. printk(KERN_INFO
  2364. "md/raid1:%s: active with %d out of %d mirrors\n",
  2365. mdname(mddev), mddev->raid_disks - mddev->degraded,
  2366. mddev->raid_disks);
  2367. /*
  2368. * Ok, everything is just fine now
  2369. */
  2370. mddev->thread = conf->thread;
  2371. conf->thread = NULL;
  2372. mddev->private = conf;
  2373. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  2374. if (mddev->queue) {
  2375. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  2376. mddev->queue->backing_dev_info.congested_data = mddev;
  2377. }
  2378. return md_integrity_register(mddev);
  2379. }
  2380. static int stop(struct mddev *mddev)
  2381. {
  2382. struct r1conf *conf = mddev->private;
  2383. struct bitmap *bitmap = mddev->bitmap;
  2384. /* wait for behind writes to complete */
  2385. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  2386. printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
  2387. mdname(mddev));
  2388. /* need to kick something here to make sure I/O goes? */
  2389. wait_event(bitmap->behind_wait,
  2390. atomic_read(&bitmap->behind_writes) == 0);
  2391. }
  2392. raise_barrier(conf);
  2393. lower_barrier(conf);
  2394. md_unregister_thread(&mddev->thread);
  2395. if (conf->r1bio_pool)
  2396. mempool_destroy(conf->r1bio_pool);
  2397. kfree(conf->mirrors);
  2398. kfree(conf->poolinfo);
  2399. kfree(conf);
  2400. mddev->private = NULL;
  2401. return 0;
  2402. }
  2403. static int raid1_resize(struct mddev *mddev, sector_t sectors)
  2404. {
  2405. /* no resync is happening, and there is enough space
  2406. * on all devices, so we can resize.
  2407. * We need to make sure resync covers any new space.
  2408. * If the array is shrinking we should possibly wait until
  2409. * any io in the removed space completes, but it hardly seems
  2410. * worth it.
  2411. */
  2412. md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
  2413. if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
  2414. return -EINVAL;
  2415. set_capacity(mddev->gendisk, mddev->array_sectors);
  2416. revalidate_disk(mddev->gendisk);
  2417. if (sectors > mddev->dev_sectors &&
  2418. mddev->recovery_cp > mddev->dev_sectors) {
  2419. mddev->recovery_cp = mddev->dev_sectors;
  2420. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2421. }
  2422. mddev->dev_sectors = sectors;
  2423. mddev->resync_max_sectors = sectors;
  2424. return 0;
  2425. }
  2426. static int raid1_reshape(struct mddev *mddev)
  2427. {
  2428. /* We need to:
  2429. * 1/ resize the r1bio_pool
  2430. * 2/ resize conf->mirrors
  2431. *
  2432. * We allocate a new r1bio_pool if we can.
  2433. * Then raise a device barrier and wait until all IO stops.
  2434. * Then resize conf->mirrors and swap in the new r1bio pool.
  2435. *
  2436. * At the same time, we "pack" the devices so that all the missing
  2437. * devices have the higher raid_disk numbers.
  2438. */
  2439. mempool_t *newpool, *oldpool;
  2440. struct pool_info *newpoolinfo;
  2441. struct mirror_info *newmirrors;
  2442. struct r1conf *conf = mddev->private;
  2443. int cnt, raid_disks;
  2444. unsigned long flags;
  2445. int d, d2, err;
  2446. /* Cannot change chunk_size, layout, or level */
  2447. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  2448. mddev->layout != mddev->new_layout ||
  2449. mddev->level != mddev->new_level) {
  2450. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2451. mddev->new_layout = mddev->layout;
  2452. mddev->new_level = mddev->level;
  2453. return -EINVAL;
  2454. }
  2455. err = md_allow_write(mddev);
  2456. if (err)
  2457. return err;
  2458. raid_disks = mddev->raid_disks + mddev->delta_disks;
  2459. if (raid_disks < conf->raid_disks) {
  2460. cnt=0;
  2461. for (d= 0; d < conf->raid_disks; d++)
  2462. if (conf->mirrors[d].rdev)
  2463. cnt++;
  2464. if (cnt > raid_disks)
  2465. return -EBUSY;
  2466. }
  2467. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  2468. if (!newpoolinfo)
  2469. return -ENOMEM;
  2470. newpoolinfo->mddev = mddev;
  2471. newpoolinfo->raid_disks = raid_disks * 2;
  2472. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  2473. r1bio_pool_free, newpoolinfo);
  2474. if (!newpool) {
  2475. kfree(newpoolinfo);
  2476. return -ENOMEM;
  2477. }
  2478. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
  2479. GFP_KERNEL);
  2480. if (!newmirrors) {
  2481. kfree(newpoolinfo);
  2482. mempool_destroy(newpool);
  2483. return -ENOMEM;
  2484. }
  2485. raise_barrier(conf);
  2486. /* ok, everything is stopped */
  2487. oldpool = conf->r1bio_pool;
  2488. conf->r1bio_pool = newpool;
  2489. for (d = d2 = 0; d < conf->raid_disks; d++) {
  2490. struct md_rdev *rdev = conf->mirrors[d].rdev;
  2491. if (rdev && rdev->raid_disk != d2) {
  2492. sysfs_unlink_rdev(mddev, rdev);
  2493. rdev->raid_disk = d2;
  2494. sysfs_unlink_rdev(mddev, rdev);
  2495. if (sysfs_link_rdev(mddev, rdev))
  2496. printk(KERN_WARNING
  2497. "md/raid1:%s: cannot register rd%d\n",
  2498. mdname(mddev), rdev->raid_disk);
  2499. }
  2500. if (rdev)
  2501. newmirrors[d2++].rdev = rdev;
  2502. }
  2503. kfree(conf->mirrors);
  2504. conf->mirrors = newmirrors;
  2505. kfree(conf->poolinfo);
  2506. conf->poolinfo = newpoolinfo;
  2507. spin_lock_irqsave(&conf->device_lock, flags);
  2508. mddev->degraded += (raid_disks - conf->raid_disks);
  2509. spin_unlock_irqrestore(&conf->device_lock, flags);
  2510. conf->raid_disks = mddev->raid_disks = raid_disks;
  2511. mddev->delta_disks = 0;
  2512. conf->last_used = 0; /* just make sure it is in-range */
  2513. lower_barrier(conf);
  2514. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2515. md_wakeup_thread(mddev->thread);
  2516. mempool_destroy(oldpool);
  2517. return 0;
  2518. }
  2519. static void raid1_quiesce(struct mddev *mddev, int state)
  2520. {
  2521. struct r1conf *conf = mddev->private;
  2522. switch(state) {
  2523. case 2: /* wake for suspend */
  2524. wake_up(&conf->wait_barrier);
  2525. break;
  2526. case 1:
  2527. raise_barrier(conf);
  2528. break;
  2529. case 0:
  2530. lower_barrier(conf);
  2531. break;
  2532. }
  2533. }
  2534. static void *raid1_takeover(struct mddev *mddev)
  2535. {
  2536. /* raid1 can take over:
  2537. * raid5 with 2 devices, any layout or chunk size
  2538. */
  2539. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2540. struct r1conf *conf;
  2541. mddev->new_level = 1;
  2542. mddev->new_layout = 0;
  2543. mddev->new_chunk_sectors = 0;
  2544. conf = setup_conf(mddev);
  2545. if (!IS_ERR(conf))
  2546. conf->barrier = 1;
  2547. return conf;
  2548. }
  2549. return ERR_PTR(-EINVAL);
  2550. }
  2551. static struct md_personality raid1_personality =
  2552. {
  2553. .name = "raid1",
  2554. .level = 1,
  2555. .owner = THIS_MODULE,
  2556. .make_request = make_request,
  2557. .run = run,
  2558. .stop = stop,
  2559. .status = status,
  2560. .error_handler = error,
  2561. .hot_add_disk = raid1_add_disk,
  2562. .hot_remove_disk= raid1_remove_disk,
  2563. .spare_active = raid1_spare_active,
  2564. .sync_request = sync_request,
  2565. .resize = raid1_resize,
  2566. .size = raid1_size,
  2567. .check_reshape = raid1_reshape,
  2568. .quiesce = raid1_quiesce,
  2569. .takeover = raid1_takeover,
  2570. };
  2571. static int __init raid_init(void)
  2572. {
  2573. return register_md_personality(&raid1_personality);
  2574. }
  2575. static void raid_exit(void)
  2576. {
  2577. unregister_md_personality(&raid1_personality);
  2578. }
  2579. module_init(raid_init);
  2580. module_exit(raid_exit);
  2581. MODULE_LICENSE("GPL");
  2582. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2583. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2584. MODULE_ALIAS("md-raid1");
  2585. MODULE_ALIAS("md-level-1");
  2586. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);