arraymap.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699
  1. /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
  2. * Copyright (c) 2016,2017 Facebook
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of version 2 of the GNU General Public
  6. * License as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. */
  13. #include <linux/bpf.h>
  14. #include <linux/err.h>
  15. #include <linux/slab.h>
  16. #include <linux/mm.h>
  17. #include <linux/filter.h>
  18. #include <linux/perf_event.h>
  19. #include "map_in_map.h"
  20. #define ARRAY_CREATE_FLAG_MASK \
  21. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  22. static void bpf_array_free_percpu(struct bpf_array *array)
  23. {
  24. int i;
  25. for (i = 0; i < array->map.max_entries; i++)
  26. free_percpu(array->pptrs[i]);
  27. }
  28. static int bpf_array_alloc_percpu(struct bpf_array *array)
  29. {
  30. void __percpu *ptr;
  31. int i;
  32. for (i = 0; i < array->map.max_entries; i++) {
  33. ptr = __alloc_percpu_gfp(array->elem_size, 8,
  34. GFP_USER | __GFP_NOWARN);
  35. if (!ptr) {
  36. bpf_array_free_percpu(array);
  37. return -ENOMEM;
  38. }
  39. array->pptrs[i] = ptr;
  40. }
  41. return 0;
  42. }
  43. /* Called from syscall */
  44. static int array_map_alloc_check(union bpf_attr *attr)
  45. {
  46. bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
  47. int numa_node = bpf_map_attr_numa_node(attr);
  48. /* check sanity of attributes */
  49. if (attr->max_entries == 0 || attr->key_size != 4 ||
  50. attr->value_size == 0 ||
  51. attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
  52. (percpu && numa_node != NUMA_NO_NODE))
  53. return -EINVAL;
  54. if (attr->value_size > KMALLOC_MAX_SIZE)
  55. /* if value_size is bigger, the user space won't be able to
  56. * access the elements.
  57. */
  58. return -E2BIG;
  59. return 0;
  60. }
  61. static struct bpf_map *array_map_alloc(union bpf_attr *attr)
  62. {
  63. bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
  64. int numa_node = bpf_map_attr_numa_node(attr);
  65. u32 elem_size, index_mask, max_entries;
  66. bool unpriv = !capable(CAP_SYS_ADMIN);
  67. struct bpf_array *array;
  68. u64 array_size, mask64;
  69. elem_size = round_up(attr->value_size, 8);
  70. max_entries = attr->max_entries;
  71. /* On 32 bit archs roundup_pow_of_two() with max_entries that has
  72. * upper most bit set in u32 space is undefined behavior due to
  73. * resulting 1U << 32, so do it manually here in u64 space.
  74. */
  75. mask64 = fls_long(max_entries - 1);
  76. mask64 = 1ULL << mask64;
  77. mask64 -= 1;
  78. index_mask = mask64;
  79. if (unpriv) {
  80. /* round up array size to nearest power of 2,
  81. * since cpu will speculate within index_mask limits
  82. */
  83. max_entries = index_mask + 1;
  84. /* Check for overflows. */
  85. if (max_entries < attr->max_entries)
  86. return ERR_PTR(-E2BIG);
  87. }
  88. array_size = sizeof(*array);
  89. if (percpu)
  90. array_size += (u64) max_entries * sizeof(void *);
  91. else
  92. array_size += (u64) max_entries * elem_size;
  93. /* make sure there is no u32 overflow later in round_up() */
  94. if (array_size >= U32_MAX - PAGE_SIZE)
  95. return ERR_PTR(-ENOMEM);
  96. /* allocate all map elements and zero-initialize them */
  97. array = bpf_map_area_alloc(array_size, numa_node);
  98. if (!array)
  99. return ERR_PTR(-ENOMEM);
  100. array->index_mask = index_mask;
  101. array->map.unpriv_array = unpriv;
  102. /* copy mandatory map attributes */
  103. array->map.map_type = attr->map_type;
  104. array->map.key_size = attr->key_size;
  105. array->map.value_size = attr->value_size;
  106. array->map.max_entries = attr->max_entries;
  107. array->map.map_flags = attr->map_flags;
  108. array->map.numa_node = numa_node;
  109. array->elem_size = elem_size;
  110. if (!percpu)
  111. goto out;
  112. array_size += (u64) attr->max_entries * elem_size * num_possible_cpus();
  113. if (array_size >= U32_MAX - PAGE_SIZE ||
  114. bpf_array_alloc_percpu(array)) {
  115. bpf_map_area_free(array);
  116. return ERR_PTR(-ENOMEM);
  117. }
  118. out:
  119. array->map.pages = round_up(array_size, PAGE_SIZE) >> PAGE_SHIFT;
  120. return &array->map;
  121. }
  122. /* Called from syscall or from eBPF program */
  123. static void *array_map_lookup_elem(struct bpf_map *map, void *key)
  124. {
  125. struct bpf_array *array = container_of(map, struct bpf_array, map);
  126. u32 index = *(u32 *)key;
  127. if (unlikely(index >= array->map.max_entries))
  128. return NULL;
  129. return array->value + array->elem_size * (index & array->index_mask);
  130. }
  131. /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
  132. static u32 array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
  133. {
  134. struct bpf_array *array = container_of(map, struct bpf_array, map);
  135. struct bpf_insn *insn = insn_buf;
  136. u32 elem_size = round_up(map->value_size, 8);
  137. const int ret = BPF_REG_0;
  138. const int map_ptr = BPF_REG_1;
  139. const int index = BPF_REG_2;
  140. *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
  141. *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
  142. if (map->unpriv_array) {
  143. *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
  144. *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
  145. } else {
  146. *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
  147. }
  148. if (is_power_of_2(elem_size)) {
  149. *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
  150. } else {
  151. *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
  152. }
  153. *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
  154. *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
  155. *insn++ = BPF_MOV64_IMM(ret, 0);
  156. return insn - insn_buf;
  157. }
  158. /* Called from eBPF program */
  159. static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
  160. {
  161. struct bpf_array *array = container_of(map, struct bpf_array, map);
  162. u32 index = *(u32 *)key;
  163. if (unlikely(index >= array->map.max_entries))
  164. return NULL;
  165. return this_cpu_ptr(array->pptrs[index & array->index_mask]);
  166. }
  167. int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
  168. {
  169. struct bpf_array *array = container_of(map, struct bpf_array, map);
  170. u32 index = *(u32 *)key;
  171. void __percpu *pptr;
  172. int cpu, off = 0;
  173. u32 size;
  174. if (unlikely(index >= array->map.max_entries))
  175. return -ENOENT;
  176. /* per_cpu areas are zero-filled and bpf programs can only
  177. * access 'value_size' of them, so copying rounded areas
  178. * will not leak any kernel data
  179. */
  180. size = round_up(map->value_size, 8);
  181. rcu_read_lock();
  182. pptr = array->pptrs[index & array->index_mask];
  183. for_each_possible_cpu(cpu) {
  184. bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size);
  185. off += size;
  186. }
  187. rcu_read_unlock();
  188. return 0;
  189. }
  190. /* Called from syscall */
  191. static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  192. {
  193. struct bpf_array *array = container_of(map, struct bpf_array, map);
  194. u32 index = key ? *(u32 *)key : U32_MAX;
  195. u32 *next = (u32 *)next_key;
  196. if (index >= array->map.max_entries) {
  197. *next = 0;
  198. return 0;
  199. }
  200. if (index == array->map.max_entries - 1)
  201. return -ENOENT;
  202. *next = index + 1;
  203. return 0;
  204. }
  205. /* Called from syscall or from eBPF program */
  206. static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
  207. u64 map_flags)
  208. {
  209. struct bpf_array *array = container_of(map, struct bpf_array, map);
  210. u32 index = *(u32 *)key;
  211. if (unlikely(map_flags > BPF_EXIST))
  212. /* unknown flags */
  213. return -EINVAL;
  214. if (unlikely(index >= array->map.max_entries))
  215. /* all elements were pre-allocated, cannot insert a new one */
  216. return -E2BIG;
  217. if (unlikely(map_flags == BPF_NOEXIST))
  218. /* all elements already exist */
  219. return -EEXIST;
  220. if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
  221. memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]),
  222. value, map->value_size);
  223. else
  224. memcpy(array->value +
  225. array->elem_size * (index & array->index_mask),
  226. value, map->value_size);
  227. return 0;
  228. }
  229. int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
  230. u64 map_flags)
  231. {
  232. struct bpf_array *array = container_of(map, struct bpf_array, map);
  233. u32 index = *(u32 *)key;
  234. void __percpu *pptr;
  235. int cpu, off = 0;
  236. u32 size;
  237. if (unlikely(map_flags > BPF_EXIST))
  238. /* unknown flags */
  239. return -EINVAL;
  240. if (unlikely(index >= array->map.max_entries))
  241. /* all elements were pre-allocated, cannot insert a new one */
  242. return -E2BIG;
  243. if (unlikely(map_flags == BPF_NOEXIST))
  244. /* all elements already exist */
  245. return -EEXIST;
  246. /* the user space will provide round_up(value_size, 8) bytes that
  247. * will be copied into per-cpu area. bpf programs can only access
  248. * value_size of it. During lookup the same extra bytes will be
  249. * returned or zeros which were zero-filled by percpu_alloc,
  250. * so no kernel data leaks possible
  251. */
  252. size = round_up(map->value_size, 8);
  253. rcu_read_lock();
  254. pptr = array->pptrs[index & array->index_mask];
  255. for_each_possible_cpu(cpu) {
  256. bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size);
  257. off += size;
  258. }
  259. rcu_read_unlock();
  260. return 0;
  261. }
  262. /* Called from syscall or from eBPF program */
  263. static int array_map_delete_elem(struct bpf_map *map, void *key)
  264. {
  265. return -EINVAL;
  266. }
  267. /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
  268. static void array_map_free(struct bpf_map *map)
  269. {
  270. struct bpf_array *array = container_of(map, struct bpf_array, map);
  271. /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
  272. * so the programs (can be more than one that used this map) were
  273. * disconnected from events. Wait for outstanding programs to complete
  274. * and free the array
  275. */
  276. synchronize_rcu();
  277. if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
  278. bpf_array_free_percpu(array);
  279. bpf_map_area_free(array);
  280. }
  281. const struct bpf_map_ops array_map_ops = {
  282. .map_alloc_check = array_map_alloc_check,
  283. .map_alloc = array_map_alloc,
  284. .map_free = array_map_free,
  285. .map_get_next_key = array_map_get_next_key,
  286. .map_lookup_elem = array_map_lookup_elem,
  287. .map_update_elem = array_map_update_elem,
  288. .map_delete_elem = array_map_delete_elem,
  289. .map_gen_lookup = array_map_gen_lookup,
  290. };
  291. const struct bpf_map_ops percpu_array_map_ops = {
  292. .map_alloc_check = array_map_alloc_check,
  293. .map_alloc = array_map_alloc,
  294. .map_free = array_map_free,
  295. .map_get_next_key = array_map_get_next_key,
  296. .map_lookup_elem = percpu_array_map_lookup_elem,
  297. .map_update_elem = array_map_update_elem,
  298. .map_delete_elem = array_map_delete_elem,
  299. };
  300. static int fd_array_map_alloc_check(union bpf_attr *attr)
  301. {
  302. /* only file descriptors can be stored in this type of map */
  303. if (attr->value_size != sizeof(u32))
  304. return -EINVAL;
  305. return array_map_alloc_check(attr);
  306. }
  307. static void fd_array_map_free(struct bpf_map *map)
  308. {
  309. struct bpf_array *array = container_of(map, struct bpf_array, map);
  310. int i;
  311. synchronize_rcu();
  312. /* make sure it's empty */
  313. for (i = 0; i < array->map.max_entries; i++)
  314. BUG_ON(array->ptrs[i] != NULL);
  315. bpf_map_area_free(array);
  316. }
  317. static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
  318. {
  319. return NULL;
  320. }
  321. /* only called from syscall */
  322. int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
  323. {
  324. void **elem, *ptr;
  325. int ret = 0;
  326. if (!map->ops->map_fd_sys_lookup_elem)
  327. return -ENOTSUPP;
  328. rcu_read_lock();
  329. elem = array_map_lookup_elem(map, key);
  330. if (elem && (ptr = READ_ONCE(*elem)))
  331. *value = map->ops->map_fd_sys_lookup_elem(ptr);
  332. else
  333. ret = -ENOENT;
  334. rcu_read_unlock();
  335. return ret;
  336. }
  337. /* only called from syscall */
  338. int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
  339. void *key, void *value, u64 map_flags)
  340. {
  341. struct bpf_array *array = container_of(map, struct bpf_array, map);
  342. void *new_ptr, *old_ptr;
  343. u32 index = *(u32 *)key, ufd;
  344. if (map_flags != BPF_ANY)
  345. return -EINVAL;
  346. if (index >= array->map.max_entries)
  347. return -E2BIG;
  348. ufd = *(u32 *)value;
  349. new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
  350. if (IS_ERR(new_ptr))
  351. return PTR_ERR(new_ptr);
  352. old_ptr = xchg(array->ptrs + index, new_ptr);
  353. if (old_ptr)
  354. map->ops->map_fd_put_ptr(old_ptr);
  355. return 0;
  356. }
  357. static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
  358. {
  359. struct bpf_array *array = container_of(map, struct bpf_array, map);
  360. void *old_ptr;
  361. u32 index = *(u32 *)key;
  362. if (index >= array->map.max_entries)
  363. return -E2BIG;
  364. old_ptr = xchg(array->ptrs + index, NULL);
  365. if (old_ptr) {
  366. map->ops->map_fd_put_ptr(old_ptr);
  367. return 0;
  368. } else {
  369. return -ENOENT;
  370. }
  371. }
  372. static void *prog_fd_array_get_ptr(struct bpf_map *map,
  373. struct file *map_file, int fd)
  374. {
  375. struct bpf_array *array = container_of(map, struct bpf_array, map);
  376. struct bpf_prog *prog = bpf_prog_get(fd);
  377. if (IS_ERR(prog))
  378. return prog;
  379. if (!bpf_prog_array_compatible(array, prog)) {
  380. bpf_prog_put(prog);
  381. return ERR_PTR(-EINVAL);
  382. }
  383. return prog;
  384. }
  385. static void prog_fd_array_put_ptr(void *ptr)
  386. {
  387. bpf_prog_put(ptr);
  388. }
  389. static u32 prog_fd_array_sys_lookup_elem(void *ptr)
  390. {
  391. return ((struct bpf_prog *)ptr)->aux->id;
  392. }
  393. /* decrement refcnt of all bpf_progs that are stored in this map */
  394. void bpf_fd_array_map_clear(struct bpf_map *map)
  395. {
  396. struct bpf_array *array = container_of(map, struct bpf_array, map);
  397. int i;
  398. for (i = 0; i < array->map.max_entries; i++)
  399. fd_array_map_delete_elem(map, &i);
  400. }
  401. const struct bpf_map_ops prog_array_map_ops = {
  402. .map_alloc_check = fd_array_map_alloc_check,
  403. .map_alloc = array_map_alloc,
  404. .map_free = fd_array_map_free,
  405. .map_get_next_key = array_map_get_next_key,
  406. .map_lookup_elem = fd_array_map_lookup_elem,
  407. .map_delete_elem = fd_array_map_delete_elem,
  408. .map_fd_get_ptr = prog_fd_array_get_ptr,
  409. .map_fd_put_ptr = prog_fd_array_put_ptr,
  410. .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
  411. };
  412. static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
  413. struct file *map_file)
  414. {
  415. struct bpf_event_entry *ee;
  416. ee = kzalloc(sizeof(*ee), GFP_ATOMIC);
  417. if (ee) {
  418. ee->event = perf_file->private_data;
  419. ee->perf_file = perf_file;
  420. ee->map_file = map_file;
  421. }
  422. return ee;
  423. }
  424. static void __bpf_event_entry_free(struct rcu_head *rcu)
  425. {
  426. struct bpf_event_entry *ee;
  427. ee = container_of(rcu, struct bpf_event_entry, rcu);
  428. fput(ee->perf_file);
  429. kfree(ee);
  430. }
  431. static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
  432. {
  433. call_rcu(&ee->rcu, __bpf_event_entry_free);
  434. }
  435. static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
  436. struct file *map_file, int fd)
  437. {
  438. struct bpf_event_entry *ee;
  439. struct perf_event *event;
  440. struct file *perf_file;
  441. u64 value;
  442. perf_file = perf_event_get(fd);
  443. if (IS_ERR(perf_file))
  444. return perf_file;
  445. ee = ERR_PTR(-EOPNOTSUPP);
  446. event = perf_file->private_data;
  447. if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
  448. goto err_out;
  449. ee = bpf_event_entry_gen(perf_file, map_file);
  450. if (ee)
  451. return ee;
  452. ee = ERR_PTR(-ENOMEM);
  453. err_out:
  454. fput(perf_file);
  455. return ee;
  456. }
  457. static void perf_event_fd_array_put_ptr(void *ptr)
  458. {
  459. bpf_event_entry_free_rcu(ptr);
  460. }
  461. static void perf_event_fd_array_release(struct bpf_map *map,
  462. struct file *map_file)
  463. {
  464. struct bpf_array *array = container_of(map, struct bpf_array, map);
  465. struct bpf_event_entry *ee;
  466. int i;
  467. rcu_read_lock();
  468. for (i = 0; i < array->map.max_entries; i++) {
  469. ee = READ_ONCE(array->ptrs[i]);
  470. if (ee && ee->map_file == map_file)
  471. fd_array_map_delete_elem(map, &i);
  472. }
  473. rcu_read_unlock();
  474. }
  475. const struct bpf_map_ops perf_event_array_map_ops = {
  476. .map_alloc_check = fd_array_map_alloc_check,
  477. .map_alloc = array_map_alloc,
  478. .map_free = fd_array_map_free,
  479. .map_get_next_key = array_map_get_next_key,
  480. .map_lookup_elem = fd_array_map_lookup_elem,
  481. .map_delete_elem = fd_array_map_delete_elem,
  482. .map_fd_get_ptr = perf_event_fd_array_get_ptr,
  483. .map_fd_put_ptr = perf_event_fd_array_put_ptr,
  484. .map_release = perf_event_fd_array_release,
  485. };
  486. #ifdef CONFIG_CGROUPS
  487. static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
  488. struct file *map_file /* not used */,
  489. int fd)
  490. {
  491. return cgroup_get_from_fd(fd);
  492. }
  493. static void cgroup_fd_array_put_ptr(void *ptr)
  494. {
  495. /* cgroup_put free cgrp after a rcu grace period */
  496. cgroup_put(ptr);
  497. }
  498. static void cgroup_fd_array_free(struct bpf_map *map)
  499. {
  500. bpf_fd_array_map_clear(map);
  501. fd_array_map_free(map);
  502. }
  503. const struct bpf_map_ops cgroup_array_map_ops = {
  504. .map_alloc_check = fd_array_map_alloc_check,
  505. .map_alloc = array_map_alloc,
  506. .map_free = cgroup_fd_array_free,
  507. .map_get_next_key = array_map_get_next_key,
  508. .map_lookup_elem = fd_array_map_lookup_elem,
  509. .map_delete_elem = fd_array_map_delete_elem,
  510. .map_fd_get_ptr = cgroup_fd_array_get_ptr,
  511. .map_fd_put_ptr = cgroup_fd_array_put_ptr,
  512. };
  513. #endif
  514. static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
  515. {
  516. struct bpf_map *map, *inner_map_meta;
  517. inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
  518. if (IS_ERR(inner_map_meta))
  519. return inner_map_meta;
  520. map = array_map_alloc(attr);
  521. if (IS_ERR(map)) {
  522. bpf_map_meta_free(inner_map_meta);
  523. return map;
  524. }
  525. map->inner_map_meta = inner_map_meta;
  526. return map;
  527. }
  528. static void array_of_map_free(struct bpf_map *map)
  529. {
  530. /* map->inner_map_meta is only accessed by syscall which
  531. * is protected by fdget/fdput.
  532. */
  533. bpf_map_meta_free(map->inner_map_meta);
  534. bpf_fd_array_map_clear(map);
  535. fd_array_map_free(map);
  536. }
  537. static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
  538. {
  539. struct bpf_map **inner_map = array_map_lookup_elem(map, key);
  540. if (!inner_map)
  541. return NULL;
  542. return READ_ONCE(*inner_map);
  543. }
  544. static u32 array_of_map_gen_lookup(struct bpf_map *map,
  545. struct bpf_insn *insn_buf)
  546. {
  547. struct bpf_array *array = container_of(map, struct bpf_array, map);
  548. u32 elem_size = round_up(map->value_size, 8);
  549. struct bpf_insn *insn = insn_buf;
  550. const int ret = BPF_REG_0;
  551. const int map_ptr = BPF_REG_1;
  552. const int index = BPF_REG_2;
  553. *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
  554. *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
  555. if (map->unpriv_array) {
  556. *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
  557. *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
  558. } else {
  559. *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
  560. }
  561. if (is_power_of_2(elem_size))
  562. *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
  563. else
  564. *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
  565. *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
  566. *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
  567. *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
  568. *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
  569. *insn++ = BPF_MOV64_IMM(ret, 0);
  570. return insn - insn_buf;
  571. }
  572. const struct bpf_map_ops array_of_maps_map_ops = {
  573. .map_alloc_check = fd_array_map_alloc_check,
  574. .map_alloc = array_of_map_alloc,
  575. .map_free = array_of_map_free,
  576. .map_get_next_key = array_map_get_next_key,
  577. .map_lookup_elem = array_of_map_lookup_elem,
  578. .map_delete_elem = fd_array_map_delete_elem,
  579. .map_fd_get_ptr = bpf_map_fd_get_ptr,
  580. .map_fd_put_ptr = bpf_map_fd_put_ptr,
  581. .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
  582. .map_gen_lookup = array_of_map_gen_lookup,
  583. };