intel_ringbuffer.c 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. bool intel_engine_stopped(struct intel_engine_cs *engine)
  56. {
  57. struct drm_i915_private *dev_priv = engine->i915;
  58. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  59. }
  60. static void __intel_ring_advance(struct intel_engine_cs *engine)
  61. {
  62. struct intel_ringbuffer *ringbuf = engine->buffer;
  63. ringbuf->tail &= ringbuf->size - 1;
  64. if (intel_engine_stopped(engine))
  65. return;
  66. engine->write_tail(engine, ringbuf->tail);
  67. }
  68. static int
  69. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  70. u32 invalidate_domains,
  71. u32 flush_domains)
  72. {
  73. struct intel_engine_cs *engine = req->engine;
  74. u32 cmd;
  75. int ret;
  76. cmd = MI_FLUSH;
  77. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  78. cmd |= MI_NO_WRITE_FLUSH;
  79. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  80. cmd |= MI_READ_FLUSH;
  81. ret = intel_ring_begin(req, 2);
  82. if (ret)
  83. return ret;
  84. intel_ring_emit(engine, cmd);
  85. intel_ring_emit(engine, MI_NOOP);
  86. intel_ring_advance(engine);
  87. return 0;
  88. }
  89. static int
  90. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  91. u32 invalidate_domains,
  92. u32 flush_domains)
  93. {
  94. struct intel_engine_cs *engine = req->engine;
  95. u32 cmd;
  96. int ret;
  97. /*
  98. * read/write caches:
  99. *
  100. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  101. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  102. * also flushed at 2d versus 3d pipeline switches.
  103. *
  104. * read-only caches:
  105. *
  106. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  107. * MI_READ_FLUSH is set, and is always flushed on 965.
  108. *
  109. * I915_GEM_DOMAIN_COMMAND may not exist?
  110. *
  111. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  112. * invalidated when MI_EXE_FLUSH is set.
  113. *
  114. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  115. * invalidated with every MI_FLUSH.
  116. *
  117. * TLBs:
  118. *
  119. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  120. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  121. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  122. * are flushed at any MI_FLUSH.
  123. */
  124. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  125. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  126. cmd &= ~MI_NO_WRITE_FLUSH;
  127. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  128. cmd |= MI_EXE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  130. (IS_G4X(req->i915) || IS_GEN5(req->i915)))
  131. cmd |= MI_INVALIDATE_ISP;
  132. ret = intel_ring_begin(req, 2);
  133. if (ret)
  134. return ret;
  135. intel_ring_emit(engine, cmd);
  136. intel_ring_emit(engine, MI_NOOP);
  137. intel_ring_advance(engine);
  138. return 0;
  139. }
  140. /**
  141. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  142. * implementing two workarounds on gen6. From section 1.4.7.1
  143. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  144. *
  145. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  146. * produced by non-pipelined state commands), software needs to first
  147. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  148. * 0.
  149. *
  150. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  151. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  152. *
  153. * And the workaround for these two requires this workaround first:
  154. *
  155. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  156. * BEFORE the pipe-control with a post-sync op and no write-cache
  157. * flushes.
  158. *
  159. * And this last workaround is tricky because of the requirements on
  160. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  161. * volume 2 part 1:
  162. *
  163. * "1 of the following must also be set:
  164. * - Render Target Cache Flush Enable ([12] of DW1)
  165. * - Depth Cache Flush Enable ([0] of DW1)
  166. * - Stall at Pixel Scoreboard ([1] of DW1)
  167. * - Depth Stall ([13] of DW1)
  168. * - Post-Sync Operation ([13] of DW1)
  169. * - Notify Enable ([8] of DW1)"
  170. *
  171. * The cache flushes require the workaround flush that triggered this
  172. * one, so we can't use it. Depth stall would trigger the same.
  173. * Post-sync nonzero is what triggered this second workaround, so we
  174. * can't use that one either. Notify enable is IRQs, which aren't
  175. * really our business. That leaves only stall at scoreboard.
  176. */
  177. static int
  178. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  179. {
  180. struct intel_engine_cs *engine = req->engine;
  181. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  182. int ret;
  183. ret = intel_ring_begin(req, 6);
  184. if (ret)
  185. return ret;
  186. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  187. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  188. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  189. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  190. intel_ring_emit(engine, 0); /* low dword */
  191. intel_ring_emit(engine, 0); /* high dword */
  192. intel_ring_emit(engine, MI_NOOP);
  193. intel_ring_advance(engine);
  194. ret = intel_ring_begin(req, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  199. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  200. intel_ring_emit(engine, 0);
  201. intel_ring_emit(engine, 0);
  202. intel_ring_emit(engine, MI_NOOP);
  203. intel_ring_advance(engine);
  204. return 0;
  205. }
  206. static int
  207. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  208. u32 invalidate_domains, u32 flush_domains)
  209. {
  210. struct intel_engine_cs *engine = req->engine;
  211. u32 flags = 0;
  212. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  213. int ret;
  214. /* Force SNB workarounds for PIPE_CONTROL flushes */
  215. ret = intel_emit_post_sync_nonzero_flush(req);
  216. if (ret)
  217. return ret;
  218. /* Just flush everything. Experiments have shown that reducing the
  219. * number of bits based on the write domains has little performance
  220. * impact.
  221. */
  222. if (flush_domains) {
  223. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  224. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  225. /*
  226. * Ensure that any following seqno writes only happen
  227. * when the render cache is indeed flushed.
  228. */
  229. flags |= PIPE_CONTROL_CS_STALL;
  230. }
  231. if (invalidate_domains) {
  232. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  233. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  234. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  238. /*
  239. * TLB invalidate requires a post-sync write.
  240. */
  241. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  242. }
  243. ret = intel_ring_begin(req, 4);
  244. if (ret)
  245. return ret;
  246. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  247. intel_ring_emit(engine, flags);
  248. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  249. intel_ring_emit(engine, 0);
  250. intel_ring_advance(engine);
  251. return 0;
  252. }
  253. static int
  254. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  255. {
  256. struct intel_engine_cs *engine = req->engine;
  257. int ret;
  258. ret = intel_ring_begin(req, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(engine, 0);
  265. intel_ring_emit(engine, 0);
  266. intel_ring_advance(engine);
  267. return 0;
  268. }
  269. static int
  270. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  271. u32 invalidate_domains, u32 flush_domains)
  272. {
  273. struct intel_engine_cs *engine = req->engine;
  274. u32 flags = 0;
  275. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  276. int ret;
  277. /*
  278. * Ensure that any following seqno writes only happen when the render
  279. * cache is indeed flushed.
  280. *
  281. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  282. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  283. * don't try to be clever and just set it unconditionally.
  284. */
  285. flags |= PIPE_CONTROL_CS_STALL;
  286. /* Just flush everything. Experiments have shown that reducing the
  287. * number of bits based on the write domains has little performance
  288. * impact.
  289. */
  290. if (flush_domains) {
  291. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  292. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  293. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  294. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  295. }
  296. if (invalidate_domains) {
  297. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  298. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  299. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  304. /*
  305. * TLB invalidate requires a post-sync write.
  306. */
  307. flags |= PIPE_CONTROL_QW_WRITE;
  308. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  309. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  310. /* Workaround: we must issue a pipe_control with CS-stall bit
  311. * set before a pipe_control command that has the state cache
  312. * invalidate bit set. */
  313. gen7_render_ring_cs_stall_wa(req);
  314. }
  315. ret = intel_ring_begin(req, 4);
  316. if (ret)
  317. return ret;
  318. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  319. intel_ring_emit(engine, flags);
  320. intel_ring_emit(engine, scratch_addr);
  321. intel_ring_emit(engine, 0);
  322. intel_ring_advance(engine);
  323. return 0;
  324. }
  325. static int
  326. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  327. u32 flags, u32 scratch_addr)
  328. {
  329. struct intel_engine_cs *engine = req->engine;
  330. int ret;
  331. ret = intel_ring_begin(req, 6);
  332. if (ret)
  333. return ret;
  334. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  335. intel_ring_emit(engine, flags);
  336. intel_ring_emit(engine, scratch_addr);
  337. intel_ring_emit(engine, 0);
  338. intel_ring_emit(engine, 0);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_advance(engine);
  341. return 0;
  342. }
  343. static int
  344. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  345. u32 invalidate_domains, u32 flush_domains)
  346. {
  347. u32 flags = 0;
  348. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  349. int ret;
  350. flags |= PIPE_CONTROL_CS_STALL;
  351. if (flush_domains) {
  352. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  353. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  354. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  355. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  356. }
  357. if (invalidate_domains) {
  358. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  359. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  360. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_QW_WRITE;
  365. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  366. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  367. ret = gen8_emit_pipe_control(req,
  368. PIPE_CONTROL_CS_STALL |
  369. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  370. 0);
  371. if (ret)
  372. return ret;
  373. }
  374. return gen8_emit_pipe_control(req, flags, scratch_addr);
  375. }
  376. static void ring_write_tail(struct intel_engine_cs *engine,
  377. u32 value)
  378. {
  379. struct drm_i915_private *dev_priv = engine->i915;
  380. I915_WRITE_TAIL(engine, value);
  381. }
  382. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  383. {
  384. struct drm_i915_private *dev_priv = engine->i915;
  385. u64 acthd;
  386. if (INTEL_GEN(dev_priv) >= 8)
  387. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  388. RING_ACTHD_UDW(engine->mmio_base));
  389. else if (INTEL_GEN(dev_priv) >= 4)
  390. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  391. else
  392. acthd = I915_READ(ACTHD);
  393. return acthd;
  394. }
  395. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  396. {
  397. struct drm_i915_private *dev_priv = engine->i915;
  398. u32 addr;
  399. addr = dev_priv->status_page_dmah->busaddr;
  400. if (INTEL_GEN(dev_priv) >= 4)
  401. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  402. I915_WRITE(HWS_PGA, addr);
  403. }
  404. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  405. {
  406. struct drm_i915_private *dev_priv = engine->i915;
  407. i915_reg_t mmio;
  408. /* The ring status page addresses are no longer next to the rest of
  409. * the ring registers as of gen7.
  410. */
  411. if (IS_GEN7(dev_priv)) {
  412. switch (engine->id) {
  413. case RCS:
  414. mmio = RENDER_HWS_PGA_GEN7;
  415. break;
  416. case BCS:
  417. mmio = BLT_HWS_PGA_GEN7;
  418. break;
  419. /*
  420. * VCS2 actually doesn't exist on Gen7. Only shut up
  421. * gcc switch check warning
  422. */
  423. case VCS2:
  424. case VCS:
  425. mmio = BSD_HWS_PGA_GEN7;
  426. break;
  427. case VECS:
  428. mmio = VEBOX_HWS_PGA_GEN7;
  429. break;
  430. }
  431. } else if (IS_GEN6(dev_priv)) {
  432. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  433. } else {
  434. /* XXX: gen8 returns to sanity */
  435. mmio = RING_HWS_PGA(engine->mmio_base);
  436. }
  437. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  438. POSTING_READ(mmio);
  439. /*
  440. * Flush the TLB for this page
  441. *
  442. * FIXME: These two bits have disappeared on gen8, so a question
  443. * arises: do we still need this and if so how should we go about
  444. * invalidating the TLB?
  445. */
  446. if (IS_GEN(dev_priv, 6, 7)) {
  447. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  448. /* ring should be idle before issuing a sync flush*/
  449. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  450. I915_WRITE(reg,
  451. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  452. INSTPM_SYNC_FLUSH));
  453. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  454. 1000))
  455. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  456. engine->name);
  457. }
  458. }
  459. static bool stop_ring(struct intel_engine_cs *engine)
  460. {
  461. struct drm_i915_private *dev_priv = engine->i915;
  462. if (!IS_GEN2(dev_priv)) {
  463. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  464. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  465. DRM_ERROR("%s : timed out trying to stop ring\n",
  466. engine->name);
  467. /* Sometimes we observe that the idle flag is not
  468. * set even though the ring is empty. So double
  469. * check before giving up.
  470. */
  471. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  472. return false;
  473. }
  474. }
  475. I915_WRITE_CTL(engine, 0);
  476. I915_WRITE_HEAD(engine, 0);
  477. engine->write_tail(engine, 0);
  478. if (!IS_GEN2(dev_priv)) {
  479. (void)I915_READ_CTL(engine);
  480. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  481. }
  482. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  483. }
  484. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  485. {
  486. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  487. }
  488. static int init_ring_common(struct intel_engine_cs *engine)
  489. {
  490. struct drm_i915_private *dev_priv = engine->i915;
  491. struct intel_ringbuffer *ringbuf = engine->buffer;
  492. struct drm_i915_gem_object *obj = ringbuf->obj;
  493. int ret = 0;
  494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  495. if (!stop_ring(engine)) {
  496. /* G45 ring initialization often fails to reset head to zero */
  497. DRM_DEBUG_KMS("%s head not reset to zero "
  498. "ctl %08x head %08x tail %08x start %08x\n",
  499. engine->name,
  500. I915_READ_CTL(engine),
  501. I915_READ_HEAD(engine),
  502. I915_READ_TAIL(engine),
  503. I915_READ_START(engine));
  504. if (!stop_ring(engine)) {
  505. DRM_ERROR("failed to set %s head to zero "
  506. "ctl %08x head %08x tail %08x start %08x\n",
  507. engine->name,
  508. I915_READ_CTL(engine),
  509. I915_READ_HEAD(engine),
  510. I915_READ_TAIL(engine),
  511. I915_READ_START(engine));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. }
  516. if (I915_NEED_GFX_HWS(dev_priv))
  517. intel_ring_setup_status_page(engine);
  518. else
  519. ring_setup_phys_status_page(engine);
  520. /* Enforce ordering by reading HEAD register back */
  521. I915_READ_HEAD(engine);
  522. /* Initialize the ring. This must happen _after_ we've cleared the ring
  523. * registers with the above sequence (the readback of the HEAD registers
  524. * also enforces ordering), otherwise the hw might lose the new ring
  525. * register values. */
  526. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  527. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  528. if (I915_READ_HEAD(engine))
  529. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  530. engine->name, I915_READ_HEAD(engine));
  531. I915_WRITE_HEAD(engine, 0);
  532. (void)I915_READ_HEAD(engine);
  533. I915_WRITE_CTL(engine,
  534. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  535. | RING_VALID);
  536. /* If the head is still not zero, the ring is dead */
  537. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  538. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  539. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  540. DRM_ERROR("%s initialization failed "
  541. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  542. engine->name,
  543. I915_READ_CTL(engine),
  544. I915_READ_CTL(engine) & RING_VALID,
  545. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  546. I915_READ_START(engine),
  547. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  548. ret = -EIO;
  549. goto out;
  550. }
  551. ringbuf->last_retired_head = -1;
  552. ringbuf->head = I915_READ_HEAD(engine);
  553. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  554. intel_ring_update_space(ringbuf);
  555. intel_engine_init_hangcheck(engine);
  556. out:
  557. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  558. return ret;
  559. }
  560. void
  561. intel_fini_pipe_control(struct intel_engine_cs *engine)
  562. {
  563. if (engine->scratch.obj == NULL)
  564. return;
  565. if (INTEL_GEN(engine->i915) >= 5) {
  566. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  567. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  568. }
  569. drm_gem_object_unreference(&engine->scratch.obj->base);
  570. engine->scratch.obj = NULL;
  571. }
  572. int
  573. intel_init_pipe_control(struct intel_engine_cs *engine)
  574. {
  575. int ret;
  576. WARN_ON(engine->scratch.obj);
  577. engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
  578. if (IS_ERR(engine->scratch.obj)) {
  579. DRM_ERROR("Failed to allocate seqno page\n");
  580. ret = PTR_ERR(engine->scratch.obj);
  581. engine->scratch.obj = NULL;
  582. goto err;
  583. }
  584. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  585. I915_CACHE_LLC);
  586. if (ret)
  587. goto err_unref;
  588. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  589. if (ret)
  590. goto err_unref;
  591. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  592. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  593. if (engine->scratch.cpu_page == NULL) {
  594. ret = -ENOMEM;
  595. goto err_unpin;
  596. }
  597. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  598. engine->name, engine->scratch.gtt_offset);
  599. return 0;
  600. err_unpin:
  601. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  602. err_unref:
  603. drm_gem_object_unreference(&engine->scratch.obj->base);
  604. err:
  605. return ret;
  606. }
  607. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  608. {
  609. struct intel_engine_cs *engine = req->engine;
  610. struct i915_workarounds *w = &req->i915->workarounds;
  611. int ret, i;
  612. if (w->count == 0)
  613. return 0;
  614. engine->gpu_caches_dirty = true;
  615. ret = intel_ring_flush_all_caches(req);
  616. if (ret)
  617. return ret;
  618. ret = intel_ring_begin(req, (w->count * 2 + 2));
  619. if (ret)
  620. return ret;
  621. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  622. for (i = 0; i < w->count; i++) {
  623. intel_ring_emit_reg(engine, w->reg[i].addr);
  624. intel_ring_emit(engine, w->reg[i].value);
  625. }
  626. intel_ring_emit(engine, MI_NOOP);
  627. intel_ring_advance(engine);
  628. engine->gpu_caches_dirty = true;
  629. ret = intel_ring_flush_all_caches(req);
  630. if (ret)
  631. return ret;
  632. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  633. return 0;
  634. }
  635. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  636. {
  637. int ret;
  638. ret = intel_ring_workarounds_emit(req);
  639. if (ret != 0)
  640. return ret;
  641. ret = i915_gem_render_state_init(req);
  642. if (ret)
  643. return ret;
  644. return 0;
  645. }
  646. static int wa_add(struct drm_i915_private *dev_priv,
  647. i915_reg_t addr,
  648. const u32 mask, const u32 val)
  649. {
  650. const u32 idx = dev_priv->workarounds.count;
  651. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  652. return -ENOSPC;
  653. dev_priv->workarounds.reg[idx].addr = addr;
  654. dev_priv->workarounds.reg[idx].value = val;
  655. dev_priv->workarounds.reg[idx].mask = mask;
  656. dev_priv->workarounds.count++;
  657. return 0;
  658. }
  659. #define WA_REG(addr, mask, val) do { \
  660. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  661. if (r) \
  662. return r; \
  663. } while (0)
  664. #define WA_SET_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  666. #define WA_CLR_BIT_MASKED(addr, mask) \
  667. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  668. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  669. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  670. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  671. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  672. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  673. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  674. i915_reg_t reg)
  675. {
  676. struct drm_i915_private *dev_priv = engine->i915;
  677. struct i915_workarounds *wa = &dev_priv->workarounds;
  678. const uint32_t index = wa->hw_whitelist_count[engine->id];
  679. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  680. return -EINVAL;
  681. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  682. i915_mmio_reg_offset(reg));
  683. wa->hw_whitelist_count[engine->id]++;
  684. return 0;
  685. }
  686. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  687. {
  688. struct drm_i915_private *dev_priv = engine->i915;
  689. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  690. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  691. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  692. /* WaDisablePartialInstShootdown:bdw,chv */
  693. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  694. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  695. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  696. * workaround for for a possible hang in the unlikely event a TLB
  697. * invalidation occurs during a PSD flush.
  698. */
  699. /* WaForceEnableNonCoherent:bdw,chv */
  700. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  701. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  702. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  703. HDC_FORCE_NON_COHERENT);
  704. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  705. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  706. * polygons in the same 8x4 pixel/sample area to be processed without
  707. * stalling waiting for the earlier ones to write to Hierarchical Z
  708. * buffer."
  709. *
  710. * This optimization is off by default for BDW and CHV; turn it on.
  711. */
  712. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  713. /* Wa4x4STCOptimizationDisable:bdw,chv */
  714. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  715. /*
  716. * BSpec recommends 8x4 when MSAA is used,
  717. * however in practice 16x4 seems fastest.
  718. *
  719. * Note that PS/WM thread counts depend on the WIZ hashing
  720. * disable bit, which we don't touch here, but it's good
  721. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  722. */
  723. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  724. GEN6_WIZ_HASHING_MASK,
  725. GEN6_WIZ_HASHING_16x4);
  726. return 0;
  727. }
  728. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  729. {
  730. struct drm_i915_private *dev_priv = engine->i915;
  731. int ret;
  732. ret = gen8_init_workarounds(engine);
  733. if (ret)
  734. return ret;
  735. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  736. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  737. /* WaDisableDopClockGating:bdw */
  738. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  739. DOP_CLOCK_GATING_DISABLE);
  740. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  741. GEN8_SAMPLER_POWER_BYPASS_DIS);
  742. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  743. /* WaForceContextSaveRestoreNonCoherent:bdw */
  744. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  745. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  746. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  747. return 0;
  748. }
  749. static int chv_init_workarounds(struct intel_engine_cs *engine)
  750. {
  751. struct drm_i915_private *dev_priv = engine->i915;
  752. int ret;
  753. ret = gen8_init_workarounds(engine);
  754. if (ret)
  755. return ret;
  756. /* WaDisableThreadStallDopClockGating:chv */
  757. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  758. /* Improve HiZ throughput on CHV. */
  759. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  760. return 0;
  761. }
  762. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  763. {
  764. struct drm_i915_private *dev_priv = engine->i915;
  765. uint32_t tmp;
  766. int ret;
  767. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  768. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  769. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  770. /* WaDisableKillLogic:bxt,skl */
  771. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  772. ECOCHK_DIS_TLB);
  773. /* WaClearFlowControlGpgpuContextSave:skl,bxt */
  774. /* WaDisablePartialInstShootdown:skl,bxt */
  775. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  776. FLOW_CONTROL_ENABLE |
  777. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  778. /* Syncing dependencies between camera and graphics:skl,bxt */
  779. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  780. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  781. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  782. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  783. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  784. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  785. GEN9_DG_MIRROR_FIX_ENABLE);
  786. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  787. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  788. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  789. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  790. GEN9_RHWO_OPTIMIZATION_DISABLE);
  791. /*
  792. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  793. * but we do that in per ctx batchbuffer as there is an issue
  794. * with this register not getting restored on ctx restore
  795. */
  796. }
  797. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  798. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt */
  799. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  800. GEN9_ENABLE_YV12_BUGFIX |
  801. GEN9_ENABLE_GPGPU_PREEMPTION);
  802. /* Wa4x4STCOptimizationDisable:skl,bxt */
  803. /* WaDisablePartialResolveInVc:skl,bxt */
  804. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  805. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  806. /* WaCcsTlbPrefetchDisable:skl,bxt */
  807. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  808. GEN9_CCS_TLB_PREFETCH_ENABLE);
  809. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  810. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  811. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  812. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  813. PIXEL_MASK_CAMMING_DISABLE);
  814. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  815. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  816. if (IS_SKL_REVID(dev_priv, SKL_REVID_F0, REVID_FOREVER) ||
  817. IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  818. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  819. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  820. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
  821. if (IS_SKYLAKE(dev_priv) || IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  822. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  823. GEN8_SAMPLER_POWER_BYPASS_DIS);
  824. /* WaDisableSTUnitPowerOptimization:skl,bxt */
  825. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  826. /* WaOCLCoherentLineFlush:skl,bxt */
  827. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  828. GEN8_LQSC_FLUSH_COHERENT_LINES));
  829. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
  830. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  831. if (ret)
  832. return ret;
  833. /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
  834. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  835. if (ret)
  836. return ret;
  837. return 0;
  838. }
  839. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  840. {
  841. struct drm_i915_private *dev_priv = engine->i915;
  842. u8 vals[3] = { 0, 0, 0 };
  843. unsigned int i;
  844. for (i = 0; i < 3; i++) {
  845. u8 ss;
  846. /*
  847. * Only consider slices where one, and only one, subslice has 7
  848. * EUs
  849. */
  850. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  851. continue;
  852. /*
  853. * subslice_7eu[i] != 0 (because of the check above) and
  854. * ss_max == 4 (maximum number of subslices possible per slice)
  855. *
  856. * -> 0 <= ss <= 3;
  857. */
  858. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  859. vals[i] = 3 - ss;
  860. }
  861. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  862. return 0;
  863. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  864. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  865. GEN9_IZ_HASHING_MASK(2) |
  866. GEN9_IZ_HASHING_MASK(1) |
  867. GEN9_IZ_HASHING_MASK(0),
  868. GEN9_IZ_HASHING(2, vals[2]) |
  869. GEN9_IZ_HASHING(1, vals[1]) |
  870. GEN9_IZ_HASHING(0, vals[0]));
  871. return 0;
  872. }
  873. static int skl_init_workarounds(struct intel_engine_cs *engine)
  874. {
  875. struct drm_i915_private *dev_priv = engine->i915;
  876. int ret;
  877. ret = gen9_init_workarounds(engine);
  878. if (ret)
  879. return ret;
  880. /*
  881. * Actual WA is to disable percontext preemption granularity control
  882. * until D0 which is the default case so this is equivalent to
  883. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  884. */
  885. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  886. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  887. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  888. }
  889. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0)) {
  890. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  891. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  892. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  893. }
  894. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  895. * involving this register should also be added to WA batch as required.
  896. */
  897. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  898. /* WaDisableLSQCROPERFforOCL:skl */
  899. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  900. GEN8_LQSC_RO_PERF_DIS);
  901. /* WaEnableGapsTsvCreditFix:skl */
  902. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  903. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  904. GEN9_GAPS_TSV_CREDIT_DISABLE));
  905. }
  906. /* WaDisablePowerCompilerClockGating:skl */
  907. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  908. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  909. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  910. /* This is tied to WaForceContextSaveRestoreNonCoherent */
  911. if (IS_SKL_REVID(dev_priv, 0, REVID_FOREVER)) {
  912. /*
  913. *Use Force Non-Coherent whenever executing a 3D context. This
  914. * is a workaround for a possible hang in the unlikely event
  915. * a TLB invalidation occurs during a PSD flush.
  916. */
  917. /* WaForceEnableNonCoherent:skl */
  918. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  919. HDC_FORCE_NON_COHERENT);
  920. /* WaDisableHDCInvalidation:skl */
  921. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  922. BDW_DISABLE_HDC_INVALIDATION);
  923. }
  924. /* WaBarrierPerformanceFixDisable:skl */
  925. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  926. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  927. HDC_FENCE_DEST_SLM_DISABLE |
  928. HDC_BARRIER_PERFORMANCE_DISABLE);
  929. /* WaDisableSbeCacheDispatchPortSharing:skl */
  930. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  931. WA_SET_BIT_MASKED(
  932. GEN7_HALF_SLICE_CHICKEN1,
  933. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  934. /* WaDisableLSQCROPERFforOCL:skl */
  935. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  936. if (ret)
  937. return ret;
  938. return skl_tune_iz_hashing(engine);
  939. }
  940. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  941. {
  942. struct drm_i915_private *dev_priv = engine->i915;
  943. int ret;
  944. ret = gen9_init_workarounds(engine);
  945. if (ret)
  946. return ret;
  947. /* WaStoreMultiplePTEenable:bxt */
  948. /* This is a requirement according to Hardware specification */
  949. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  950. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  951. /* WaSetClckGatingDisableMedia:bxt */
  952. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  953. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  954. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  955. }
  956. /* WaDisableThreadStallDopClockGating:bxt */
  957. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  958. STALL_DOP_GATING_DISABLE);
  959. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  960. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  961. WA_SET_BIT_MASKED(
  962. GEN7_HALF_SLICE_CHICKEN1,
  963. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  964. }
  965. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  966. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  967. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  968. /* WaDisableLSQCROPERFforOCL:bxt */
  969. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  970. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  971. if (ret)
  972. return ret;
  973. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  974. if (ret)
  975. return ret;
  976. }
  977. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  978. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  979. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  980. L3_HIGH_PRIO_CREDITS(2));
  981. return 0;
  982. }
  983. int init_workarounds_ring(struct intel_engine_cs *engine)
  984. {
  985. struct drm_i915_private *dev_priv = engine->i915;
  986. WARN_ON(engine->id != RCS);
  987. dev_priv->workarounds.count = 0;
  988. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  989. if (IS_BROADWELL(dev_priv))
  990. return bdw_init_workarounds(engine);
  991. if (IS_CHERRYVIEW(dev_priv))
  992. return chv_init_workarounds(engine);
  993. if (IS_SKYLAKE(dev_priv))
  994. return skl_init_workarounds(engine);
  995. if (IS_BROXTON(dev_priv))
  996. return bxt_init_workarounds(engine);
  997. return 0;
  998. }
  999. static int init_render_ring(struct intel_engine_cs *engine)
  1000. {
  1001. struct drm_i915_private *dev_priv = engine->i915;
  1002. int ret = init_ring_common(engine);
  1003. if (ret)
  1004. return ret;
  1005. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1006. if (IS_GEN(dev_priv, 4, 6))
  1007. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1008. /* We need to disable the AsyncFlip performance optimisations in order
  1009. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1010. * programmed to '1' on all products.
  1011. *
  1012. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1013. */
  1014. if (IS_GEN(dev_priv, 6, 7))
  1015. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1016. /* Required for the hardware to program scanline values for waiting */
  1017. /* WaEnableFlushTlbInvalidationMode:snb */
  1018. if (IS_GEN6(dev_priv))
  1019. I915_WRITE(GFX_MODE,
  1020. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1021. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1022. if (IS_GEN7(dev_priv))
  1023. I915_WRITE(GFX_MODE_GEN7,
  1024. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1025. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1026. if (IS_GEN6(dev_priv)) {
  1027. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1028. * "If this bit is set, STCunit will have LRA as replacement
  1029. * policy. [...] This bit must be reset. LRA replacement
  1030. * policy is not supported."
  1031. */
  1032. I915_WRITE(CACHE_MODE_0,
  1033. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1034. }
  1035. if (IS_GEN(dev_priv, 6, 7))
  1036. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1037. if (HAS_L3_DPF(dev_priv))
  1038. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1039. return init_workarounds_ring(engine);
  1040. }
  1041. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1042. {
  1043. struct drm_i915_private *dev_priv = engine->i915;
  1044. if (dev_priv->semaphore_obj) {
  1045. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1046. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1047. dev_priv->semaphore_obj = NULL;
  1048. }
  1049. intel_fini_pipe_control(engine);
  1050. }
  1051. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1052. unsigned int num_dwords)
  1053. {
  1054. #define MBOX_UPDATE_DWORDS 8
  1055. struct intel_engine_cs *signaller = signaller_req->engine;
  1056. struct drm_i915_private *dev_priv = signaller_req->i915;
  1057. struct intel_engine_cs *waiter;
  1058. enum intel_engine_id id;
  1059. int ret, num_rings;
  1060. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1061. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1062. #undef MBOX_UPDATE_DWORDS
  1063. ret = intel_ring_begin(signaller_req, num_dwords);
  1064. if (ret)
  1065. return ret;
  1066. for_each_engine_id(waiter, dev_priv, id) {
  1067. u32 seqno;
  1068. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1069. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1070. continue;
  1071. seqno = i915_gem_request_get_seqno(signaller_req);
  1072. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1073. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1074. PIPE_CONTROL_QW_WRITE |
  1075. PIPE_CONTROL_CS_STALL);
  1076. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1077. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1078. intel_ring_emit(signaller, seqno);
  1079. intel_ring_emit(signaller, 0);
  1080. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1081. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1082. intel_ring_emit(signaller, 0);
  1083. }
  1084. return 0;
  1085. }
  1086. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1087. unsigned int num_dwords)
  1088. {
  1089. #define MBOX_UPDATE_DWORDS 6
  1090. struct intel_engine_cs *signaller = signaller_req->engine;
  1091. struct drm_i915_private *dev_priv = signaller_req->i915;
  1092. struct intel_engine_cs *waiter;
  1093. enum intel_engine_id id;
  1094. int ret, num_rings;
  1095. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1096. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1097. #undef MBOX_UPDATE_DWORDS
  1098. ret = intel_ring_begin(signaller_req, num_dwords);
  1099. if (ret)
  1100. return ret;
  1101. for_each_engine_id(waiter, dev_priv, id) {
  1102. u32 seqno;
  1103. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1104. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1105. continue;
  1106. seqno = i915_gem_request_get_seqno(signaller_req);
  1107. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1108. MI_FLUSH_DW_OP_STOREDW);
  1109. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1110. MI_FLUSH_DW_USE_GTT);
  1111. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1112. intel_ring_emit(signaller, seqno);
  1113. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1114. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1115. intel_ring_emit(signaller, 0);
  1116. }
  1117. return 0;
  1118. }
  1119. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1120. unsigned int num_dwords)
  1121. {
  1122. struct intel_engine_cs *signaller = signaller_req->engine;
  1123. struct drm_i915_private *dev_priv = signaller_req->i915;
  1124. struct intel_engine_cs *useless;
  1125. enum intel_engine_id id;
  1126. int ret, num_rings;
  1127. #define MBOX_UPDATE_DWORDS 3
  1128. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1129. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1130. #undef MBOX_UPDATE_DWORDS
  1131. ret = intel_ring_begin(signaller_req, num_dwords);
  1132. if (ret)
  1133. return ret;
  1134. for_each_engine_id(useless, dev_priv, id) {
  1135. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1136. if (i915_mmio_reg_valid(mbox_reg)) {
  1137. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1138. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1139. intel_ring_emit_reg(signaller, mbox_reg);
  1140. intel_ring_emit(signaller, seqno);
  1141. }
  1142. }
  1143. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1144. if (num_rings % 2 == 0)
  1145. intel_ring_emit(signaller, MI_NOOP);
  1146. return 0;
  1147. }
  1148. /**
  1149. * gen6_add_request - Update the semaphore mailbox registers
  1150. *
  1151. * @request - request to write to the ring
  1152. *
  1153. * Update the mailbox registers in the *other* rings with the current seqno.
  1154. * This acts like a signal in the canonical semaphore.
  1155. */
  1156. static int
  1157. gen6_add_request(struct drm_i915_gem_request *req)
  1158. {
  1159. struct intel_engine_cs *engine = req->engine;
  1160. int ret;
  1161. if (engine->semaphore.signal)
  1162. ret = engine->semaphore.signal(req, 4);
  1163. else
  1164. ret = intel_ring_begin(req, 4);
  1165. if (ret)
  1166. return ret;
  1167. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1168. intel_ring_emit(engine,
  1169. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1170. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1171. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1172. __intel_ring_advance(engine);
  1173. return 0;
  1174. }
  1175. static int
  1176. gen8_render_add_request(struct drm_i915_gem_request *req)
  1177. {
  1178. struct intel_engine_cs *engine = req->engine;
  1179. int ret;
  1180. if (engine->semaphore.signal)
  1181. ret = engine->semaphore.signal(req, 8);
  1182. else
  1183. ret = intel_ring_begin(req, 8);
  1184. if (ret)
  1185. return ret;
  1186. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1187. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1188. PIPE_CONTROL_CS_STALL |
  1189. PIPE_CONTROL_QW_WRITE));
  1190. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1191. intel_ring_emit(engine, 0);
  1192. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1193. /* We're thrashing one dword of HWS. */
  1194. intel_ring_emit(engine, 0);
  1195. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1196. intel_ring_emit(engine, MI_NOOP);
  1197. __intel_ring_advance(engine);
  1198. return 0;
  1199. }
  1200. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1201. u32 seqno)
  1202. {
  1203. return dev_priv->last_seqno < seqno;
  1204. }
  1205. /**
  1206. * intel_ring_sync - sync the waiter to the signaller on seqno
  1207. *
  1208. * @waiter - ring that is waiting
  1209. * @signaller - ring which has, or will signal
  1210. * @seqno - seqno which the waiter will block on
  1211. */
  1212. static int
  1213. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1214. struct intel_engine_cs *signaller,
  1215. u32 seqno)
  1216. {
  1217. struct intel_engine_cs *waiter = waiter_req->engine;
  1218. struct drm_i915_private *dev_priv = waiter_req->i915;
  1219. struct i915_hw_ppgtt *ppgtt;
  1220. int ret;
  1221. ret = intel_ring_begin(waiter_req, 4);
  1222. if (ret)
  1223. return ret;
  1224. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1225. MI_SEMAPHORE_GLOBAL_GTT |
  1226. MI_SEMAPHORE_SAD_GTE_SDD);
  1227. intel_ring_emit(waiter, seqno);
  1228. intel_ring_emit(waiter,
  1229. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1230. intel_ring_emit(waiter,
  1231. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1232. intel_ring_advance(waiter);
  1233. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1234. * pagetables and we must reload them before executing the batch.
  1235. * We do this on the i915_switch_context() following the wait and
  1236. * before the dispatch.
  1237. */
  1238. ppgtt = waiter_req->ctx->ppgtt;
  1239. if (ppgtt && waiter_req->engine->id != RCS)
  1240. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1241. return 0;
  1242. }
  1243. static int
  1244. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1245. struct intel_engine_cs *signaller,
  1246. u32 seqno)
  1247. {
  1248. struct intel_engine_cs *waiter = waiter_req->engine;
  1249. u32 dw1 = MI_SEMAPHORE_MBOX |
  1250. MI_SEMAPHORE_COMPARE |
  1251. MI_SEMAPHORE_REGISTER;
  1252. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1253. int ret;
  1254. /* Throughout all of the GEM code, seqno passed implies our current
  1255. * seqno is >= the last seqno executed. However for hardware the
  1256. * comparison is strictly greater than.
  1257. */
  1258. seqno -= 1;
  1259. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1260. ret = intel_ring_begin(waiter_req, 4);
  1261. if (ret)
  1262. return ret;
  1263. /* If seqno wrap happened, omit the wait with no-ops */
  1264. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1265. intel_ring_emit(waiter, dw1 | wait_mbox);
  1266. intel_ring_emit(waiter, seqno);
  1267. intel_ring_emit(waiter, 0);
  1268. intel_ring_emit(waiter, MI_NOOP);
  1269. } else {
  1270. intel_ring_emit(waiter, MI_NOOP);
  1271. intel_ring_emit(waiter, MI_NOOP);
  1272. intel_ring_emit(waiter, MI_NOOP);
  1273. intel_ring_emit(waiter, MI_NOOP);
  1274. }
  1275. intel_ring_advance(waiter);
  1276. return 0;
  1277. }
  1278. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1279. do { \
  1280. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1281. PIPE_CONTROL_DEPTH_STALL); \
  1282. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1283. intel_ring_emit(ring__, 0); \
  1284. intel_ring_emit(ring__, 0); \
  1285. } while (0)
  1286. static int
  1287. pc_render_add_request(struct drm_i915_gem_request *req)
  1288. {
  1289. struct intel_engine_cs *engine = req->engine;
  1290. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1291. int ret;
  1292. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1293. * incoherent with writes to memory, i.e. completely fubar,
  1294. * so we need to use PIPE_NOTIFY instead.
  1295. *
  1296. * However, we also need to workaround the qword write
  1297. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1298. * memory before requesting an interrupt.
  1299. */
  1300. ret = intel_ring_begin(req, 32);
  1301. if (ret)
  1302. return ret;
  1303. intel_ring_emit(engine,
  1304. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1305. PIPE_CONTROL_WRITE_FLUSH |
  1306. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1307. intel_ring_emit(engine,
  1308. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1309. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1310. intel_ring_emit(engine, 0);
  1311. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1312. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1313. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1314. scratch_addr += 2 * CACHELINE_BYTES;
  1315. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1316. scratch_addr += 2 * CACHELINE_BYTES;
  1317. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1318. scratch_addr += 2 * CACHELINE_BYTES;
  1319. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1320. scratch_addr += 2 * CACHELINE_BYTES;
  1321. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1322. intel_ring_emit(engine,
  1323. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1324. PIPE_CONTROL_WRITE_FLUSH |
  1325. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1326. PIPE_CONTROL_NOTIFY);
  1327. intel_ring_emit(engine,
  1328. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1329. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1330. intel_ring_emit(engine, 0);
  1331. __intel_ring_advance(engine);
  1332. return 0;
  1333. }
  1334. static void
  1335. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1336. {
  1337. struct drm_i915_private *dev_priv = engine->i915;
  1338. /* Workaround to force correct ordering between irq and seqno writes on
  1339. * ivb (and maybe also on snb) by reading from a CS register (like
  1340. * ACTHD) before reading the status page.
  1341. *
  1342. * Note that this effectively stalls the read by the time it takes to
  1343. * do a memory transaction, which more or less ensures that the write
  1344. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1345. * Alternatively we could delay the interrupt from the CS ring to give
  1346. * the write time to land, but that would incur a delay after every
  1347. * batch i.e. much more frequent than a delay when waiting for the
  1348. * interrupt (with the same net latency).
  1349. *
  1350. * Also note that to prevent whole machine hangs on gen7, we have to
  1351. * take the spinlock to guard against concurrent cacheline access.
  1352. */
  1353. spin_lock_irq(&dev_priv->uncore.lock);
  1354. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1355. spin_unlock_irq(&dev_priv->uncore.lock);
  1356. }
  1357. static u32
  1358. ring_get_seqno(struct intel_engine_cs *engine)
  1359. {
  1360. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1361. }
  1362. static void
  1363. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1364. {
  1365. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1366. }
  1367. static u32
  1368. pc_render_get_seqno(struct intel_engine_cs *engine)
  1369. {
  1370. return engine->scratch.cpu_page[0];
  1371. }
  1372. static void
  1373. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1374. {
  1375. engine->scratch.cpu_page[0] = seqno;
  1376. }
  1377. static bool
  1378. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1379. {
  1380. struct drm_i915_private *dev_priv = engine->i915;
  1381. unsigned long flags;
  1382. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1383. return false;
  1384. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1385. if (engine->irq_refcount++ == 0)
  1386. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1387. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1388. return true;
  1389. }
  1390. static void
  1391. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1392. {
  1393. struct drm_i915_private *dev_priv = engine->i915;
  1394. unsigned long flags;
  1395. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1396. if (--engine->irq_refcount == 0)
  1397. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1398. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1399. }
  1400. static bool
  1401. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1402. {
  1403. struct drm_i915_private *dev_priv = engine->i915;
  1404. unsigned long flags;
  1405. if (!intel_irqs_enabled(dev_priv))
  1406. return false;
  1407. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1408. if (engine->irq_refcount++ == 0) {
  1409. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1410. I915_WRITE(IMR, dev_priv->irq_mask);
  1411. POSTING_READ(IMR);
  1412. }
  1413. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1414. return true;
  1415. }
  1416. static void
  1417. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1418. {
  1419. struct drm_i915_private *dev_priv = engine->i915;
  1420. unsigned long flags;
  1421. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1422. if (--engine->irq_refcount == 0) {
  1423. dev_priv->irq_mask |= engine->irq_enable_mask;
  1424. I915_WRITE(IMR, dev_priv->irq_mask);
  1425. POSTING_READ(IMR);
  1426. }
  1427. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1428. }
  1429. static bool
  1430. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1431. {
  1432. struct drm_i915_private *dev_priv = engine->i915;
  1433. unsigned long flags;
  1434. if (!intel_irqs_enabled(dev_priv))
  1435. return false;
  1436. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1437. if (engine->irq_refcount++ == 0) {
  1438. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1439. I915_WRITE16(IMR, dev_priv->irq_mask);
  1440. POSTING_READ16(IMR);
  1441. }
  1442. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1443. return true;
  1444. }
  1445. static void
  1446. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1447. {
  1448. struct drm_i915_private *dev_priv = engine->i915;
  1449. unsigned long flags;
  1450. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1451. if (--engine->irq_refcount == 0) {
  1452. dev_priv->irq_mask |= engine->irq_enable_mask;
  1453. I915_WRITE16(IMR, dev_priv->irq_mask);
  1454. POSTING_READ16(IMR);
  1455. }
  1456. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1457. }
  1458. static int
  1459. bsd_ring_flush(struct drm_i915_gem_request *req,
  1460. u32 invalidate_domains,
  1461. u32 flush_domains)
  1462. {
  1463. struct intel_engine_cs *engine = req->engine;
  1464. int ret;
  1465. ret = intel_ring_begin(req, 2);
  1466. if (ret)
  1467. return ret;
  1468. intel_ring_emit(engine, MI_FLUSH);
  1469. intel_ring_emit(engine, MI_NOOP);
  1470. intel_ring_advance(engine);
  1471. return 0;
  1472. }
  1473. static int
  1474. i9xx_add_request(struct drm_i915_gem_request *req)
  1475. {
  1476. struct intel_engine_cs *engine = req->engine;
  1477. int ret;
  1478. ret = intel_ring_begin(req, 4);
  1479. if (ret)
  1480. return ret;
  1481. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1482. intel_ring_emit(engine,
  1483. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1484. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1485. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1486. __intel_ring_advance(engine);
  1487. return 0;
  1488. }
  1489. static bool
  1490. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1491. {
  1492. struct drm_i915_private *dev_priv = engine->i915;
  1493. unsigned long flags;
  1494. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1495. return false;
  1496. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1497. if (engine->irq_refcount++ == 0) {
  1498. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1499. I915_WRITE_IMR(engine,
  1500. ~(engine->irq_enable_mask |
  1501. GT_PARITY_ERROR(dev_priv)));
  1502. else
  1503. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1504. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1505. }
  1506. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1507. return true;
  1508. }
  1509. static void
  1510. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1511. {
  1512. struct drm_i915_private *dev_priv = engine->i915;
  1513. unsigned long flags;
  1514. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1515. if (--engine->irq_refcount == 0) {
  1516. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1517. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1518. else
  1519. I915_WRITE_IMR(engine, ~0);
  1520. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1521. }
  1522. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1523. }
  1524. static bool
  1525. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1526. {
  1527. struct drm_i915_private *dev_priv = engine->i915;
  1528. unsigned long flags;
  1529. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1530. return false;
  1531. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1532. if (engine->irq_refcount++ == 0) {
  1533. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1534. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1535. }
  1536. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1537. return true;
  1538. }
  1539. static void
  1540. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1541. {
  1542. struct drm_i915_private *dev_priv = engine->i915;
  1543. unsigned long flags;
  1544. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1545. if (--engine->irq_refcount == 0) {
  1546. I915_WRITE_IMR(engine, ~0);
  1547. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1548. }
  1549. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1550. }
  1551. static bool
  1552. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1553. {
  1554. struct drm_i915_private *dev_priv = engine->i915;
  1555. unsigned long flags;
  1556. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1557. return false;
  1558. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1559. if (engine->irq_refcount++ == 0) {
  1560. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1561. I915_WRITE_IMR(engine,
  1562. ~(engine->irq_enable_mask |
  1563. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1564. } else {
  1565. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1566. }
  1567. POSTING_READ(RING_IMR(engine->mmio_base));
  1568. }
  1569. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1570. return true;
  1571. }
  1572. static void
  1573. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1574. {
  1575. struct drm_i915_private *dev_priv = engine->i915;
  1576. unsigned long flags;
  1577. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1578. if (--engine->irq_refcount == 0) {
  1579. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1580. I915_WRITE_IMR(engine,
  1581. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1582. } else {
  1583. I915_WRITE_IMR(engine, ~0);
  1584. }
  1585. POSTING_READ(RING_IMR(engine->mmio_base));
  1586. }
  1587. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1588. }
  1589. static int
  1590. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1591. u64 offset, u32 length,
  1592. unsigned dispatch_flags)
  1593. {
  1594. struct intel_engine_cs *engine = req->engine;
  1595. int ret;
  1596. ret = intel_ring_begin(req, 2);
  1597. if (ret)
  1598. return ret;
  1599. intel_ring_emit(engine,
  1600. MI_BATCH_BUFFER_START |
  1601. MI_BATCH_GTT |
  1602. (dispatch_flags & I915_DISPATCH_SECURE ?
  1603. 0 : MI_BATCH_NON_SECURE_I965));
  1604. intel_ring_emit(engine, offset);
  1605. intel_ring_advance(engine);
  1606. return 0;
  1607. }
  1608. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1609. #define I830_BATCH_LIMIT (256*1024)
  1610. #define I830_TLB_ENTRIES (2)
  1611. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1612. static int
  1613. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1614. u64 offset, u32 len,
  1615. unsigned dispatch_flags)
  1616. {
  1617. struct intel_engine_cs *engine = req->engine;
  1618. u32 cs_offset = engine->scratch.gtt_offset;
  1619. int ret;
  1620. ret = intel_ring_begin(req, 6);
  1621. if (ret)
  1622. return ret;
  1623. /* Evict the invalid PTE TLBs */
  1624. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1625. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1626. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1627. intel_ring_emit(engine, cs_offset);
  1628. intel_ring_emit(engine, 0xdeadbeef);
  1629. intel_ring_emit(engine, MI_NOOP);
  1630. intel_ring_advance(engine);
  1631. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1632. if (len > I830_BATCH_LIMIT)
  1633. return -ENOSPC;
  1634. ret = intel_ring_begin(req, 6 + 2);
  1635. if (ret)
  1636. return ret;
  1637. /* Blit the batch (which has now all relocs applied) to the
  1638. * stable batch scratch bo area (so that the CS never
  1639. * stumbles over its tlb invalidation bug) ...
  1640. */
  1641. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1642. intel_ring_emit(engine,
  1643. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1644. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1645. intel_ring_emit(engine, cs_offset);
  1646. intel_ring_emit(engine, 4096);
  1647. intel_ring_emit(engine, offset);
  1648. intel_ring_emit(engine, MI_FLUSH);
  1649. intel_ring_emit(engine, MI_NOOP);
  1650. intel_ring_advance(engine);
  1651. /* ... and execute it. */
  1652. offset = cs_offset;
  1653. }
  1654. ret = intel_ring_begin(req, 2);
  1655. if (ret)
  1656. return ret;
  1657. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1658. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1659. 0 : MI_BATCH_NON_SECURE));
  1660. intel_ring_advance(engine);
  1661. return 0;
  1662. }
  1663. static int
  1664. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1665. u64 offset, u32 len,
  1666. unsigned dispatch_flags)
  1667. {
  1668. struct intel_engine_cs *engine = req->engine;
  1669. int ret;
  1670. ret = intel_ring_begin(req, 2);
  1671. if (ret)
  1672. return ret;
  1673. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1674. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1675. 0 : MI_BATCH_NON_SECURE));
  1676. intel_ring_advance(engine);
  1677. return 0;
  1678. }
  1679. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1680. {
  1681. struct drm_i915_private *dev_priv = engine->i915;
  1682. if (!dev_priv->status_page_dmah)
  1683. return;
  1684. drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
  1685. engine->status_page.page_addr = NULL;
  1686. }
  1687. static void cleanup_status_page(struct intel_engine_cs *engine)
  1688. {
  1689. struct drm_i915_gem_object *obj;
  1690. obj = engine->status_page.obj;
  1691. if (obj == NULL)
  1692. return;
  1693. kunmap(sg_page(obj->pages->sgl));
  1694. i915_gem_object_ggtt_unpin(obj);
  1695. drm_gem_object_unreference(&obj->base);
  1696. engine->status_page.obj = NULL;
  1697. }
  1698. static int init_status_page(struct intel_engine_cs *engine)
  1699. {
  1700. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1701. if (obj == NULL) {
  1702. unsigned flags;
  1703. int ret;
  1704. obj = i915_gem_object_create(engine->i915->dev, 4096);
  1705. if (IS_ERR(obj)) {
  1706. DRM_ERROR("Failed to allocate status page\n");
  1707. return PTR_ERR(obj);
  1708. }
  1709. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1710. if (ret)
  1711. goto err_unref;
  1712. flags = 0;
  1713. if (!HAS_LLC(engine->i915))
  1714. /* On g33, we cannot place HWS above 256MiB, so
  1715. * restrict its pinning to the low mappable arena.
  1716. * Though this restriction is not documented for
  1717. * gen4, gen5, or byt, they also behave similarly
  1718. * and hang if the HWS is placed at the top of the
  1719. * GTT. To generalise, it appears that all !llc
  1720. * platforms have issues with us placing the HWS
  1721. * above the mappable region (even though we never
  1722. * actualy map it).
  1723. */
  1724. flags |= PIN_MAPPABLE;
  1725. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1726. if (ret) {
  1727. err_unref:
  1728. drm_gem_object_unreference(&obj->base);
  1729. return ret;
  1730. }
  1731. engine->status_page.obj = obj;
  1732. }
  1733. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1734. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1735. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1736. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1737. engine->name, engine->status_page.gfx_addr);
  1738. return 0;
  1739. }
  1740. static int init_phys_status_page(struct intel_engine_cs *engine)
  1741. {
  1742. struct drm_i915_private *dev_priv = engine->i915;
  1743. if (!dev_priv->status_page_dmah) {
  1744. dev_priv->status_page_dmah =
  1745. drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
  1746. if (!dev_priv->status_page_dmah)
  1747. return -ENOMEM;
  1748. }
  1749. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1750. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1751. return 0;
  1752. }
  1753. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1754. {
  1755. GEM_BUG_ON(ringbuf->vma == NULL);
  1756. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1757. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1758. i915_gem_object_unpin_map(ringbuf->obj);
  1759. else
  1760. i915_vma_unpin_iomap(ringbuf->vma);
  1761. ringbuf->virtual_start = NULL;
  1762. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1763. ringbuf->vma = NULL;
  1764. }
  1765. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  1766. struct intel_ringbuffer *ringbuf)
  1767. {
  1768. struct drm_i915_gem_object *obj = ringbuf->obj;
  1769. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1770. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1771. void *addr;
  1772. int ret;
  1773. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1774. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1775. if (ret)
  1776. return ret;
  1777. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1778. if (ret)
  1779. goto err_unpin;
  1780. addr = i915_gem_object_pin_map(obj);
  1781. if (IS_ERR(addr)) {
  1782. ret = PTR_ERR(addr);
  1783. goto err_unpin;
  1784. }
  1785. } else {
  1786. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1787. flags | PIN_MAPPABLE);
  1788. if (ret)
  1789. return ret;
  1790. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1791. if (ret)
  1792. goto err_unpin;
  1793. /* Access through the GTT requires the device to be awake. */
  1794. assert_rpm_wakelock_held(dev_priv);
  1795. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1796. if (IS_ERR(addr)) {
  1797. ret = PTR_ERR(addr);
  1798. goto err_unpin;
  1799. }
  1800. }
  1801. ringbuf->virtual_start = addr;
  1802. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1803. return 0;
  1804. err_unpin:
  1805. i915_gem_object_ggtt_unpin(obj);
  1806. return ret;
  1807. }
  1808. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1809. {
  1810. drm_gem_object_unreference(&ringbuf->obj->base);
  1811. ringbuf->obj = NULL;
  1812. }
  1813. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1814. struct intel_ringbuffer *ringbuf)
  1815. {
  1816. struct drm_i915_gem_object *obj;
  1817. obj = NULL;
  1818. if (!HAS_LLC(dev))
  1819. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1820. if (obj == NULL)
  1821. obj = i915_gem_object_create(dev, ringbuf->size);
  1822. if (IS_ERR(obj))
  1823. return PTR_ERR(obj);
  1824. /* mark ring buffers as read-only from GPU side by default */
  1825. obj->gt_ro = 1;
  1826. ringbuf->obj = obj;
  1827. return 0;
  1828. }
  1829. struct intel_ringbuffer *
  1830. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1831. {
  1832. struct intel_ringbuffer *ring;
  1833. int ret;
  1834. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1835. if (ring == NULL) {
  1836. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1837. engine->name);
  1838. return ERR_PTR(-ENOMEM);
  1839. }
  1840. ring->engine = engine;
  1841. list_add(&ring->link, &engine->buffers);
  1842. ring->size = size;
  1843. /* Workaround an erratum on the i830 which causes a hang if
  1844. * the TAIL pointer points to within the last 2 cachelines
  1845. * of the buffer.
  1846. */
  1847. ring->effective_size = size;
  1848. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1849. ring->effective_size -= 2 * CACHELINE_BYTES;
  1850. ring->last_retired_head = -1;
  1851. intel_ring_update_space(ring);
  1852. ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
  1853. if (ret) {
  1854. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1855. engine->name, ret);
  1856. list_del(&ring->link);
  1857. kfree(ring);
  1858. return ERR_PTR(ret);
  1859. }
  1860. return ring;
  1861. }
  1862. void
  1863. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1864. {
  1865. intel_destroy_ringbuffer_obj(ring);
  1866. list_del(&ring->link);
  1867. kfree(ring);
  1868. }
  1869. static int intel_init_ring_buffer(struct drm_device *dev,
  1870. struct intel_engine_cs *engine)
  1871. {
  1872. struct drm_i915_private *dev_priv = to_i915(dev);
  1873. struct intel_ringbuffer *ringbuf;
  1874. int ret;
  1875. WARN_ON(engine->buffer);
  1876. engine->i915 = dev_priv;
  1877. INIT_LIST_HEAD(&engine->active_list);
  1878. INIT_LIST_HEAD(&engine->request_list);
  1879. INIT_LIST_HEAD(&engine->execlist_queue);
  1880. INIT_LIST_HEAD(&engine->buffers);
  1881. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1882. memset(engine->semaphore.sync_seqno, 0,
  1883. sizeof(engine->semaphore.sync_seqno));
  1884. init_waitqueue_head(&engine->irq_queue);
  1885. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1886. if (IS_ERR(ringbuf)) {
  1887. ret = PTR_ERR(ringbuf);
  1888. goto error;
  1889. }
  1890. engine->buffer = ringbuf;
  1891. if (I915_NEED_GFX_HWS(dev_priv)) {
  1892. ret = init_status_page(engine);
  1893. if (ret)
  1894. goto error;
  1895. } else {
  1896. WARN_ON(engine->id != RCS);
  1897. ret = init_phys_status_page(engine);
  1898. if (ret)
  1899. goto error;
  1900. }
  1901. ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
  1902. if (ret) {
  1903. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1904. engine->name, ret);
  1905. intel_destroy_ringbuffer_obj(ringbuf);
  1906. goto error;
  1907. }
  1908. ret = i915_cmd_parser_init_ring(engine);
  1909. if (ret)
  1910. goto error;
  1911. return 0;
  1912. error:
  1913. intel_cleanup_engine(engine);
  1914. return ret;
  1915. }
  1916. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1917. {
  1918. struct drm_i915_private *dev_priv;
  1919. if (!intel_engine_initialized(engine))
  1920. return;
  1921. dev_priv = engine->i915;
  1922. if (engine->buffer) {
  1923. intel_stop_engine(engine);
  1924. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1925. intel_unpin_ringbuffer_obj(engine->buffer);
  1926. intel_ringbuffer_free(engine->buffer);
  1927. engine->buffer = NULL;
  1928. }
  1929. if (engine->cleanup)
  1930. engine->cleanup(engine);
  1931. if (I915_NEED_GFX_HWS(dev_priv)) {
  1932. cleanup_status_page(engine);
  1933. } else {
  1934. WARN_ON(engine->id != RCS);
  1935. cleanup_phys_status_page(engine);
  1936. }
  1937. i915_cmd_parser_fini_ring(engine);
  1938. i915_gem_batch_pool_fini(&engine->batch_pool);
  1939. engine->i915 = NULL;
  1940. }
  1941. int intel_engine_idle(struct intel_engine_cs *engine)
  1942. {
  1943. struct drm_i915_gem_request *req;
  1944. /* Wait upon the last request to be completed */
  1945. if (list_empty(&engine->request_list))
  1946. return 0;
  1947. req = list_entry(engine->request_list.prev,
  1948. struct drm_i915_gem_request,
  1949. list);
  1950. /* Make sure we do not trigger any retires */
  1951. return __i915_wait_request(req,
  1952. req->i915->mm.interruptible,
  1953. NULL, NULL);
  1954. }
  1955. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1956. {
  1957. int ret;
  1958. /* Flush enough space to reduce the likelihood of waiting after
  1959. * we start building the request - in which case we will just
  1960. * have to repeat work.
  1961. */
  1962. request->reserved_space += LEGACY_REQUEST_SIZE;
  1963. request->ringbuf = request->engine->buffer;
  1964. ret = intel_ring_begin(request, 0);
  1965. if (ret)
  1966. return ret;
  1967. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1968. return 0;
  1969. }
  1970. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1971. {
  1972. struct intel_ringbuffer *ringbuf = req->ringbuf;
  1973. struct intel_engine_cs *engine = req->engine;
  1974. struct drm_i915_gem_request *target;
  1975. intel_ring_update_space(ringbuf);
  1976. if (ringbuf->space >= bytes)
  1977. return 0;
  1978. /*
  1979. * Space is reserved in the ringbuffer for finalising the request,
  1980. * as that cannot be allowed to fail. During request finalisation,
  1981. * reserved_space is set to 0 to stop the overallocation and the
  1982. * assumption is that then we never need to wait (which has the
  1983. * risk of failing with EINTR).
  1984. *
  1985. * See also i915_gem_request_alloc() and i915_add_request().
  1986. */
  1987. GEM_BUG_ON(!req->reserved_space);
  1988. list_for_each_entry(target, &engine->request_list, list) {
  1989. unsigned space;
  1990. /*
  1991. * The request queue is per-engine, so can contain requests
  1992. * from multiple ringbuffers. Here, we must ignore any that
  1993. * aren't from the ringbuffer we're considering.
  1994. */
  1995. if (target->ringbuf != ringbuf)
  1996. continue;
  1997. /* Would completion of this request free enough space? */
  1998. space = __intel_ring_space(target->postfix, ringbuf->tail,
  1999. ringbuf->size);
  2000. if (space >= bytes)
  2001. break;
  2002. }
  2003. if (WARN_ON(&target->list == &engine->request_list))
  2004. return -ENOSPC;
  2005. return i915_wait_request(target);
  2006. }
  2007. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  2008. {
  2009. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2010. int remain_actual = ringbuf->size - ringbuf->tail;
  2011. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2012. int bytes = num_dwords * sizeof(u32);
  2013. int total_bytes, wait_bytes;
  2014. bool need_wrap = false;
  2015. total_bytes = bytes + req->reserved_space;
  2016. if (unlikely(bytes > remain_usable)) {
  2017. /*
  2018. * Not enough space for the basic request. So need to flush
  2019. * out the remainder and then wait for base + reserved.
  2020. */
  2021. wait_bytes = remain_actual + total_bytes;
  2022. need_wrap = true;
  2023. } else if (unlikely(total_bytes > remain_usable)) {
  2024. /*
  2025. * The base request will fit but the reserved space
  2026. * falls off the end. So we don't need an immediate wrap
  2027. * and only need to effectively wait for the reserved
  2028. * size space from the start of ringbuffer.
  2029. */
  2030. wait_bytes = remain_actual + req->reserved_space;
  2031. } else {
  2032. /* No wrapping required, just waiting. */
  2033. wait_bytes = total_bytes;
  2034. }
  2035. if (wait_bytes > ringbuf->space) {
  2036. int ret = wait_for_space(req, wait_bytes);
  2037. if (unlikely(ret))
  2038. return ret;
  2039. intel_ring_update_space(ringbuf);
  2040. }
  2041. if (unlikely(need_wrap)) {
  2042. GEM_BUG_ON(remain_actual > ringbuf->space);
  2043. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2044. /* Fill the tail with MI_NOOP */
  2045. memset(ringbuf->virtual_start + ringbuf->tail,
  2046. 0, remain_actual);
  2047. ringbuf->tail = 0;
  2048. ringbuf->space -= remain_actual;
  2049. }
  2050. ringbuf->space -= bytes;
  2051. GEM_BUG_ON(ringbuf->space < 0);
  2052. return 0;
  2053. }
  2054. /* Align the ring tail to a cacheline boundary */
  2055. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2056. {
  2057. struct intel_engine_cs *engine = req->engine;
  2058. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2059. int ret;
  2060. if (num_dwords == 0)
  2061. return 0;
  2062. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2063. ret = intel_ring_begin(req, num_dwords);
  2064. if (ret)
  2065. return ret;
  2066. while (num_dwords--)
  2067. intel_ring_emit(engine, MI_NOOP);
  2068. intel_ring_advance(engine);
  2069. return 0;
  2070. }
  2071. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2072. {
  2073. struct drm_i915_private *dev_priv = engine->i915;
  2074. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2075. * so long as the semaphore value in the register/page is greater
  2076. * than the sync value), so whenever we reset the seqno,
  2077. * so long as we reset the tracking semaphore value to 0, it will
  2078. * always be before the next request's seqno. If we don't reset
  2079. * the semaphore value, then when the seqno moves backwards all
  2080. * future waits will complete instantly (causing rendering corruption).
  2081. */
  2082. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2083. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2084. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2085. if (HAS_VEBOX(dev_priv))
  2086. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2087. }
  2088. if (dev_priv->semaphore_obj) {
  2089. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2090. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2091. void *semaphores = kmap(page);
  2092. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2093. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2094. kunmap(page);
  2095. }
  2096. memset(engine->semaphore.sync_seqno, 0,
  2097. sizeof(engine->semaphore.sync_seqno));
  2098. engine->set_seqno(engine, seqno);
  2099. engine->last_submitted_seqno = seqno;
  2100. engine->hangcheck.seqno = seqno;
  2101. }
  2102. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2103. u32 value)
  2104. {
  2105. struct drm_i915_private *dev_priv = engine->i915;
  2106. /* Every tail move must follow the sequence below */
  2107. /* Disable notification that the ring is IDLE. The GT
  2108. * will then assume that it is busy and bring it out of rc6.
  2109. */
  2110. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2111. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2112. /* Clear the context id. Here be magic! */
  2113. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2114. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2115. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2116. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2117. 50))
  2118. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2119. /* Now that the ring is fully powered up, update the tail */
  2120. I915_WRITE_TAIL(engine, value);
  2121. POSTING_READ(RING_TAIL(engine->mmio_base));
  2122. /* Let the ring send IDLE messages to the GT again,
  2123. * and so let it sleep to conserve power when idle.
  2124. */
  2125. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2126. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2127. }
  2128. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2129. u32 invalidate, u32 flush)
  2130. {
  2131. struct intel_engine_cs *engine = req->engine;
  2132. uint32_t cmd;
  2133. int ret;
  2134. ret = intel_ring_begin(req, 4);
  2135. if (ret)
  2136. return ret;
  2137. cmd = MI_FLUSH_DW;
  2138. if (INTEL_GEN(req->i915) >= 8)
  2139. cmd += 1;
  2140. /* We always require a command barrier so that subsequent
  2141. * commands, such as breadcrumb interrupts, are strictly ordered
  2142. * wrt the contents of the write cache being flushed to memory
  2143. * (and thus being coherent from the CPU).
  2144. */
  2145. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2146. /*
  2147. * Bspec vol 1c.5 - video engine command streamer:
  2148. * "If ENABLED, all TLBs will be invalidated once the flush
  2149. * operation is complete. This bit is only valid when the
  2150. * Post-Sync Operation field is a value of 1h or 3h."
  2151. */
  2152. if (invalidate & I915_GEM_GPU_DOMAINS)
  2153. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2154. intel_ring_emit(engine, cmd);
  2155. intel_ring_emit(engine,
  2156. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2157. if (INTEL_GEN(req->i915) >= 8) {
  2158. intel_ring_emit(engine, 0); /* upper addr */
  2159. intel_ring_emit(engine, 0); /* value */
  2160. } else {
  2161. intel_ring_emit(engine, 0);
  2162. intel_ring_emit(engine, MI_NOOP);
  2163. }
  2164. intel_ring_advance(engine);
  2165. return 0;
  2166. }
  2167. static int
  2168. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2169. u64 offset, u32 len,
  2170. unsigned dispatch_flags)
  2171. {
  2172. struct intel_engine_cs *engine = req->engine;
  2173. bool ppgtt = USES_PPGTT(engine->dev) &&
  2174. !(dispatch_flags & I915_DISPATCH_SECURE);
  2175. int ret;
  2176. ret = intel_ring_begin(req, 4);
  2177. if (ret)
  2178. return ret;
  2179. /* FIXME(BDW): Address space and security selectors. */
  2180. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2181. (dispatch_flags & I915_DISPATCH_RS ?
  2182. MI_BATCH_RESOURCE_STREAMER : 0));
  2183. intel_ring_emit(engine, lower_32_bits(offset));
  2184. intel_ring_emit(engine, upper_32_bits(offset));
  2185. intel_ring_emit(engine, MI_NOOP);
  2186. intel_ring_advance(engine);
  2187. return 0;
  2188. }
  2189. static int
  2190. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2191. u64 offset, u32 len,
  2192. unsigned dispatch_flags)
  2193. {
  2194. struct intel_engine_cs *engine = req->engine;
  2195. int ret;
  2196. ret = intel_ring_begin(req, 2);
  2197. if (ret)
  2198. return ret;
  2199. intel_ring_emit(engine,
  2200. MI_BATCH_BUFFER_START |
  2201. (dispatch_flags & I915_DISPATCH_SECURE ?
  2202. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2203. (dispatch_flags & I915_DISPATCH_RS ?
  2204. MI_BATCH_RESOURCE_STREAMER : 0));
  2205. /* bit0-7 is the length on GEN6+ */
  2206. intel_ring_emit(engine, offset);
  2207. intel_ring_advance(engine);
  2208. return 0;
  2209. }
  2210. static int
  2211. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2212. u64 offset, u32 len,
  2213. unsigned dispatch_flags)
  2214. {
  2215. struct intel_engine_cs *engine = req->engine;
  2216. int ret;
  2217. ret = intel_ring_begin(req, 2);
  2218. if (ret)
  2219. return ret;
  2220. intel_ring_emit(engine,
  2221. MI_BATCH_BUFFER_START |
  2222. (dispatch_flags & I915_DISPATCH_SECURE ?
  2223. 0 : MI_BATCH_NON_SECURE_I965));
  2224. /* bit0-7 is the length on GEN6+ */
  2225. intel_ring_emit(engine, offset);
  2226. intel_ring_advance(engine);
  2227. return 0;
  2228. }
  2229. /* Blitter support (SandyBridge+) */
  2230. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2231. u32 invalidate, u32 flush)
  2232. {
  2233. struct intel_engine_cs *engine = req->engine;
  2234. uint32_t cmd;
  2235. int ret;
  2236. ret = intel_ring_begin(req, 4);
  2237. if (ret)
  2238. return ret;
  2239. cmd = MI_FLUSH_DW;
  2240. if (INTEL_GEN(req->i915) >= 8)
  2241. cmd += 1;
  2242. /* We always require a command barrier so that subsequent
  2243. * commands, such as breadcrumb interrupts, are strictly ordered
  2244. * wrt the contents of the write cache being flushed to memory
  2245. * (and thus being coherent from the CPU).
  2246. */
  2247. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2248. /*
  2249. * Bspec vol 1c.3 - blitter engine command streamer:
  2250. * "If ENABLED, all TLBs will be invalidated once the flush
  2251. * operation is complete. This bit is only valid when the
  2252. * Post-Sync Operation field is a value of 1h or 3h."
  2253. */
  2254. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2255. cmd |= MI_INVALIDATE_TLB;
  2256. intel_ring_emit(engine, cmd);
  2257. intel_ring_emit(engine,
  2258. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2259. if (INTEL_GEN(req->i915) >= 8) {
  2260. intel_ring_emit(engine, 0); /* upper addr */
  2261. intel_ring_emit(engine, 0); /* value */
  2262. } else {
  2263. intel_ring_emit(engine, 0);
  2264. intel_ring_emit(engine, MI_NOOP);
  2265. }
  2266. intel_ring_advance(engine);
  2267. return 0;
  2268. }
  2269. int intel_init_render_ring_buffer(struct drm_device *dev)
  2270. {
  2271. struct drm_i915_private *dev_priv = dev->dev_private;
  2272. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2273. struct drm_i915_gem_object *obj;
  2274. int ret;
  2275. engine->name = "render ring";
  2276. engine->id = RCS;
  2277. engine->exec_id = I915_EXEC_RENDER;
  2278. engine->hw_id = 0;
  2279. engine->mmio_base = RENDER_RING_BASE;
  2280. if (INTEL_GEN(dev_priv) >= 8) {
  2281. if (i915_semaphore_is_enabled(dev_priv)) {
  2282. obj = i915_gem_object_create(dev, 4096);
  2283. if (IS_ERR(obj)) {
  2284. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2285. i915.semaphores = 0;
  2286. } else {
  2287. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2288. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2289. if (ret != 0) {
  2290. drm_gem_object_unreference(&obj->base);
  2291. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2292. i915.semaphores = 0;
  2293. } else
  2294. dev_priv->semaphore_obj = obj;
  2295. }
  2296. }
  2297. engine->init_context = intel_rcs_ctx_init;
  2298. engine->add_request = gen8_render_add_request;
  2299. engine->flush = gen8_render_ring_flush;
  2300. engine->irq_get = gen8_ring_get_irq;
  2301. engine->irq_put = gen8_ring_put_irq;
  2302. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2303. engine->get_seqno = ring_get_seqno;
  2304. engine->set_seqno = ring_set_seqno;
  2305. if (i915_semaphore_is_enabled(dev_priv)) {
  2306. WARN_ON(!dev_priv->semaphore_obj);
  2307. engine->semaphore.sync_to = gen8_ring_sync;
  2308. engine->semaphore.signal = gen8_rcs_signal;
  2309. GEN8_RING_SEMAPHORE_INIT(engine);
  2310. }
  2311. } else if (INTEL_GEN(dev_priv) >= 6) {
  2312. engine->init_context = intel_rcs_ctx_init;
  2313. engine->add_request = gen6_add_request;
  2314. engine->flush = gen7_render_ring_flush;
  2315. if (IS_GEN6(dev_priv))
  2316. engine->flush = gen6_render_ring_flush;
  2317. engine->irq_get = gen6_ring_get_irq;
  2318. engine->irq_put = gen6_ring_put_irq;
  2319. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2320. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2321. engine->get_seqno = ring_get_seqno;
  2322. engine->set_seqno = ring_set_seqno;
  2323. if (i915_semaphore_is_enabled(dev_priv)) {
  2324. engine->semaphore.sync_to = gen6_ring_sync;
  2325. engine->semaphore.signal = gen6_signal;
  2326. /*
  2327. * The current semaphore is only applied on pre-gen8
  2328. * platform. And there is no VCS2 ring on the pre-gen8
  2329. * platform. So the semaphore between RCS and VCS2 is
  2330. * initialized as INVALID. Gen8 will initialize the
  2331. * sema between VCS2 and RCS later.
  2332. */
  2333. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2334. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2335. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2336. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2337. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2338. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2339. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2340. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2341. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2342. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2343. }
  2344. } else if (IS_GEN5(dev_priv)) {
  2345. engine->add_request = pc_render_add_request;
  2346. engine->flush = gen4_render_ring_flush;
  2347. engine->get_seqno = pc_render_get_seqno;
  2348. engine->set_seqno = pc_render_set_seqno;
  2349. engine->irq_get = gen5_ring_get_irq;
  2350. engine->irq_put = gen5_ring_put_irq;
  2351. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2352. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2353. } else {
  2354. engine->add_request = i9xx_add_request;
  2355. if (INTEL_GEN(dev_priv) < 4)
  2356. engine->flush = gen2_render_ring_flush;
  2357. else
  2358. engine->flush = gen4_render_ring_flush;
  2359. engine->get_seqno = ring_get_seqno;
  2360. engine->set_seqno = ring_set_seqno;
  2361. if (IS_GEN2(dev_priv)) {
  2362. engine->irq_get = i8xx_ring_get_irq;
  2363. engine->irq_put = i8xx_ring_put_irq;
  2364. } else {
  2365. engine->irq_get = i9xx_ring_get_irq;
  2366. engine->irq_put = i9xx_ring_put_irq;
  2367. }
  2368. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2369. }
  2370. engine->write_tail = ring_write_tail;
  2371. if (IS_HASWELL(dev_priv))
  2372. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2373. else if (IS_GEN8(dev_priv))
  2374. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2375. else if (INTEL_GEN(dev_priv) >= 6)
  2376. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2377. else if (INTEL_GEN(dev_priv) >= 4)
  2378. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2379. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2380. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2381. else
  2382. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2383. engine->init_hw = init_render_ring;
  2384. engine->cleanup = render_ring_cleanup;
  2385. /* Workaround batchbuffer to combat CS tlb bug. */
  2386. if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2387. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2388. if (IS_ERR(obj)) {
  2389. DRM_ERROR("Failed to allocate batch bo\n");
  2390. return PTR_ERR(obj);
  2391. }
  2392. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2393. if (ret != 0) {
  2394. drm_gem_object_unreference(&obj->base);
  2395. DRM_ERROR("Failed to ping batch bo\n");
  2396. return ret;
  2397. }
  2398. engine->scratch.obj = obj;
  2399. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2400. }
  2401. ret = intel_init_ring_buffer(dev, engine);
  2402. if (ret)
  2403. return ret;
  2404. if (INTEL_GEN(dev_priv) >= 5) {
  2405. ret = intel_init_pipe_control(engine);
  2406. if (ret)
  2407. return ret;
  2408. }
  2409. return 0;
  2410. }
  2411. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2412. {
  2413. struct drm_i915_private *dev_priv = dev->dev_private;
  2414. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2415. engine->name = "bsd ring";
  2416. engine->id = VCS;
  2417. engine->exec_id = I915_EXEC_BSD;
  2418. engine->hw_id = 1;
  2419. engine->write_tail = ring_write_tail;
  2420. if (INTEL_GEN(dev_priv) >= 6) {
  2421. engine->mmio_base = GEN6_BSD_RING_BASE;
  2422. /* gen6 bsd needs a special wa for tail updates */
  2423. if (IS_GEN6(dev_priv))
  2424. engine->write_tail = gen6_bsd_ring_write_tail;
  2425. engine->flush = gen6_bsd_ring_flush;
  2426. engine->add_request = gen6_add_request;
  2427. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2428. engine->get_seqno = ring_get_seqno;
  2429. engine->set_seqno = ring_set_seqno;
  2430. if (INTEL_GEN(dev_priv) >= 8) {
  2431. engine->irq_enable_mask =
  2432. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2433. engine->irq_get = gen8_ring_get_irq;
  2434. engine->irq_put = gen8_ring_put_irq;
  2435. engine->dispatch_execbuffer =
  2436. gen8_ring_dispatch_execbuffer;
  2437. if (i915_semaphore_is_enabled(dev_priv)) {
  2438. engine->semaphore.sync_to = gen8_ring_sync;
  2439. engine->semaphore.signal = gen8_xcs_signal;
  2440. GEN8_RING_SEMAPHORE_INIT(engine);
  2441. }
  2442. } else {
  2443. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2444. engine->irq_get = gen6_ring_get_irq;
  2445. engine->irq_put = gen6_ring_put_irq;
  2446. engine->dispatch_execbuffer =
  2447. gen6_ring_dispatch_execbuffer;
  2448. if (i915_semaphore_is_enabled(dev_priv)) {
  2449. engine->semaphore.sync_to = gen6_ring_sync;
  2450. engine->semaphore.signal = gen6_signal;
  2451. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2452. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2453. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2454. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2455. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2456. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2457. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2458. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2459. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2460. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2461. }
  2462. }
  2463. } else {
  2464. engine->mmio_base = BSD_RING_BASE;
  2465. engine->flush = bsd_ring_flush;
  2466. engine->add_request = i9xx_add_request;
  2467. engine->get_seqno = ring_get_seqno;
  2468. engine->set_seqno = ring_set_seqno;
  2469. if (IS_GEN5(dev_priv)) {
  2470. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2471. engine->irq_get = gen5_ring_get_irq;
  2472. engine->irq_put = gen5_ring_put_irq;
  2473. } else {
  2474. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2475. engine->irq_get = i9xx_ring_get_irq;
  2476. engine->irq_put = i9xx_ring_put_irq;
  2477. }
  2478. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2479. }
  2480. engine->init_hw = init_ring_common;
  2481. return intel_init_ring_buffer(dev, engine);
  2482. }
  2483. /**
  2484. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2485. */
  2486. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2487. {
  2488. struct drm_i915_private *dev_priv = dev->dev_private;
  2489. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2490. engine->name = "bsd2 ring";
  2491. engine->id = VCS2;
  2492. engine->exec_id = I915_EXEC_BSD;
  2493. engine->hw_id = 4;
  2494. engine->write_tail = ring_write_tail;
  2495. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2496. engine->flush = gen6_bsd_ring_flush;
  2497. engine->add_request = gen6_add_request;
  2498. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2499. engine->get_seqno = ring_get_seqno;
  2500. engine->set_seqno = ring_set_seqno;
  2501. engine->irq_enable_mask =
  2502. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2503. engine->irq_get = gen8_ring_get_irq;
  2504. engine->irq_put = gen8_ring_put_irq;
  2505. engine->dispatch_execbuffer =
  2506. gen8_ring_dispatch_execbuffer;
  2507. if (i915_semaphore_is_enabled(dev_priv)) {
  2508. engine->semaphore.sync_to = gen8_ring_sync;
  2509. engine->semaphore.signal = gen8_xcs_signal;
  2510. GEN8_RING_SEMAPHORE_INIT(engine);
  2511. }
  2512. engine->init_hw = init_ring_common;
  2513. return intel_init_ring_buffer(dev, engine);
  2514. }
  2515. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2516. {
  2517. struct drm_i915_private *dev_priv = dev->dev_private;
  2518. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2519. engine->name = "blitter ring";
  2520. engine->id = BCS;
  2521. engine->exec_id = I915_EXEC_BLT;
  2522. engine->hw_id = 2;
  2523. engine->mmio_base = BLT_RING_BASE;
  2524. engine->write_tail = ring_write_tail;
  2525. engine->flush = gen6_ring_flush;
  2526. engine->add_request = gen6_add_request;
  2527. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2528. engine->get_seqno = ring_get_seqno;
  2529. engine->set_seqno = ring_set_seqno;
  2530. if (INTEL_GEN(dev_priv) >= 8) {
  2531. engine->irq_enable_mask =
  2532. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2533. engine->irq_get = gen8_ring_get_irq;
  2534. engine->irq_put = gen8_ring_put_irq;
  2535. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2536. if (i915_semaphore_is_enabled(dev_priv)) {
  2537. engine->semaphore.sync_to = gen8_ring_sync;
  2538. engine->semaphore.signal = gen8_xcs_signal;
  2539. GEN8_RING_SEMAPHORE_INIT(engine);
  2540. }
  2541. } else {
  2542. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2543. engine->irq_get = gen6_ring_get_irq;
  2544. engine->irq_put = gen6_ring_put_irq;
  2545. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2546. if (i915_semaphore_is_enabled(dev_priv)) {
  2547. engine->semaphore.signal = gen6_signal;
  2548. engine->semaphore.sync_to = gen6_ring_sync;
  2549. /*
  2550. * The current semaphore is only applied on pre-gen8
  2551. * platform. And there is no VCS2 ring on the pre-gen8
  2552. * platform. So the semaphore between BCS and VCS2 is
  2553. * initialized as INVALID. Gen8 will initialize the
  2554. * sema between BCS and VCS2 later.
  2555. */
  2556. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2557. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2558. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2559. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2560. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2561. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2562. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2563. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2564. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2565. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2566. }
  2567. }
  2568. engine->init_hw = init_ring_common;
  2569. return intel_init_ring_buffer(dev, engine);
  2570. }
  2571. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2572. {
  2573. struct drm_i915_private *dev_priv = dev->dev_private;
  2574. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2575. engine->name = "video enhancement ring";
  2576. engine->id = VECS;
  2577. engine->exec_id = I915_EXEC_VEBOX;
  2578. engine->hw_id = 3;
  2579. engine->mmio_base = VEBOX_RING_BASE;
  2580. engine->write_tail = ring_write_tail;
  2581. engine->flush = gen6_ring_flush;
  2582. engine->add_request = gen6_add_request;
  2583. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2584. engine->get_seqno = ring_get_seqno;
  2585. engine->set_seqno = ring_set_seqno;
  2586. if (INTEL_GEN(dev_priv) >= 8) {
  2587. engine->irq_enable_mask =
  2588. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2589. engine->irq_get = gen8_ring_get_irq;
  2590. engine->irq_put = gen8_ring_put_irq;
  2591. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2592. if (i915_semaphore_is_enabled(dev_priv)) {
  2593. engine->semaphore.sync_to = gen8_ring_sync;
  2594. engine->semaphore.signal = gen8_xcs_signal;
  2595. GEN8_RING_SEMAPHORE_INIT(engine);
  2596. }
  2597. } else {
  2598. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2599. engine->irq_get = hsw_vebox_get_irq;
  2600. engine->irq_put = hsw_vebox_put_irq;
  2601. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2602. if (i915_semaphore_is_enabled(dev_priv)) {
  2603. engine->semaphore.sync_to = gen6_ring_sync;
  2604. engine->semaphore.signal = gen6_signal;
  2605. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2606. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2607. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2608. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2609. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2610. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2611. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2612. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2613. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2614. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2615. }
  2616. }
  2617. engine->init_hw = init_ring_common;
  2618. return intel_init_ring_buffer(dev, engine);
  2619. }
  2620. int
  2621. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2622. {
  2623. struct intel_engine_cs *engine = req->engine;
  2624. int ret;
  2625. if (!engine->gpu_caches_dirty)
  2626. return 0;
  2627. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2628. if (ret)
  2629. return ret;
  2630. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2631. engine->gpu_caches_dirty = false;
  2632. return 0;
  2633. }
  2634. int
  2635. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2636. {
  2637. struct intel_engine_cs *engine = req->engine;
  2638. uint32_t flush_domains;
  2639. int ret;
  2640. flush_domains = 0;
  2641. if (engine->gpu_caches_dirty)
  2642. flush_domains = I915_GEM_GPU_DOMAINS;
  2643. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2644. if (ret)
  2645. return ret;
  2646. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2647. engine->gpu_caches_dirty = false;
  2648. return 0;
  2649. }
  2650. void
  2651. intel_stop_engine(struct intel_engine_cs *engine)
  2652. {
  2653. int ret;
  2654. if (!intel_engine_initialized(engine))
  2655. return;
  2656. ret = intel_engine_idle(engine);
  2657. if (ret)
  2658. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2659. engine->name, ret);
  2660. stop_ring(engine);
  2661. }