cafe_nand.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878
  1. /*
  2. * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3. *
  4. * The data sheet for this device can be found at:
  5. * http://wiki.laptop.org/go/Datasheets
  6. *
  7. * Copyright © 2006 Red Hat, Inc.
  8. * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  9. */
  10. #define DEBUG
  11. #include <linux/device.h>
  12. #undef DEBUG
  13. #include <linux/mtd/mtd.h>
  14. #include <linux/mtd/nand.h>
  15. #include <linux/mtd/partitions.h>
  16. #include <linux/rslib.h>
  17. #include <linux/pci.h>
  18. #include <linux/delay.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/slab.h>
  22. #include <linux/module.h>
  23. #include <asm/io.h>
  24. #define CAFE_NAND_CTRL1 0x00
  25. #define CAFE_NAND_CTRL2 0x04
  26. #define CAFE_NAND_CTRL3 0x08
  27. #define CAFE_NAND_STATUS 0x0c
  28. #define CAFE_NAND_IRQ 0x10
  29. #define CAFE_NAND_IRQ_MASK 0x14
  30. #define CAFE_NAND_DATA_LEN 0x18
  31. #define CAFE_NAND_ADDR1 0x1c
  32. #define CAFE_NAND_ADDR2 0x20
  33. #define CAFE_NAND_TIMING1 0x24
  34. #define CAFE_NAND_TIMING2 0x28
  35. #define CAFE_NAND_TIMING3 0x2c
  36. #define CAFE_NAND_NONMEM 0x30
  37. #define CAFE_NAND_ECC_RESULT 0x3C
  38. #define CAFE_NAND_DMA_CTRL 0x40
  39. #define CAFE_NAND_DMA_ADDR0 0x44
  40. #define CAFE_NAND_DMA_ADDR1 0x48
  41. #define CAFE_NAND_ECC_SYN01 0x50
  42. #define CAFE_NAND_ECC_SYN23 0x54
  43. #define CAFE_NAND_ECC_SYN45 0x58
  44. #define CAFE_NAND_ECC_SYN67 0x5c
  45. #define CAFE_NAND_READ_DATA 0x1000
  46. #define CAFE_NAND_WRITE_DATA 0x2000
  47. #define CAFE_GLOBAL_CTRL 0x3004
  48. #define CAFE_GLOBAL_IRQ 0x3008
  49. #define CAFE_GLOBAL_IRQ_MASK 0x300c
  50. #define CAFE_NAND_RESET 0x3034
  51. /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  52. #define CTRL1_CHIPSELECT (1<<19)
  53. struct cafe_priv {
  54. struct nand_chip nand;
  55. struct pci_dev *pdev;
  56. void __iomem *mmio;
  57. struct rs_control *rs;
  58. uint32_t ctl1;
  59. uint32_t ctl2;
  60. int datalen;
  61. int nr_data;
  62. int data_pos;
  63. int page_addr;
  64. dma_addr_t dmaaddr;
  65. unsigned char *dmabuf;
  66. };
  67. static int usedma = 1;
  68. module_param(usedma, int, 0644);
  69. static int skipbbt = 0;
  70. module_param(skipbbt, int, 0644);
  71. static int debug = 0;
  72. module_param(debug, int, 0644);
  73. static int regdebug = 0;
  74. module_param(regdebug, int, 0644);
  75. static int checkecc = 1;
  76. module_param(checkecc, int, 0644);
  77. static unsigned int numtimings;
  78. static int timing[3];
  79. module_param_array(timing, int, &numtimings, 0644);
  80. static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  81. /* Hrm. Why isn't this already conditional on something in the struct device? */
  82. #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  83. /* Make it easier to switch to PIO if we need to */
  84. #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
  85. #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
  86. static int cafe_device_ready(struct mtd_info *mtd)
  87. {
  88. struct nand_chip *chip = mtd_to_nand(mtd);
  89. struct cafe_priv *cafe = nand_get_controller_data(chip);
  90. int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
  91. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  92. cafe_writel(cafe, irqs, NAND_IRQ);
  93. cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
  94. result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
  95. cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  96. return result;
  97. }
  98. static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
  99. {
  100. struct nand_chip *chip = mtd_to_nand(mtd);
  101. struct cafe_priv *cafe = nand_get_controller_data(chip);
  102. if (usedma)
  103. memcpy(cafe->dmabuf + cafe->datalen, buf, len);
  104. else
  105. memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
  106. cafe->datalen += len;
  107. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
  108. len, cafe->datalen);
  109. }
  110. static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  111. {
  112. struct nand_chip *chip = mtd_to_nand(mtd);
  113. struct cafe_priv *cafe = nand_get_controller_data(chip);
  114. if (usedma)
  115. memcpy(buf, cafe->dmabuf + cafe->datalen, len);
  116. else
  117. memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
  118. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
  119. len, cafe->datalen);
  120. cafe->datalen += len;
  121. }
  122. static uint8_t cafe_read_byte(struct mtd_info *mtd)
  123. {
  124. struct nand_chip *chip = mtd_to_nand(mtd);
  125. struct cafe_priv *cafe = nand_get_controller_data(chip);
  126. uint8_t d;
  127. cafe_read_buf(mtd, &d, 1);
  128. cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
  129. return d;
  130. }
  131. static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
  132. int column, int page_addr)
  133. {
  134. struct nand_chip *chip = mtd_to_nand(mtd);
  135. struct cafe_priv *cafe = nand_get_controller_data(chip);
  136. int adrbytes = 0;
  137. uint32_t ctl1;
  138. uint32_t doneint = 0x80000000;
  139. cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
  140. command, column, page_addr);
  141. if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
  142. /* Second half of a command we already calculated */
  143. cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
  144. ctl1 = cafe->ctl1;
  145. cafe->ctl2 &= ~(1<<30);
  146. cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
  147. cafe->ctl1, cafe->nr_data);
  148. goto do_command;
  149. }
  150. /* Reset ECC engine */
  151. cafe_writel(cafe, 0, NAND_CTRL2);
  152. /* Emulate NAND_CMD_READOOB on large-page chips */
  153. if (mtd->writesize > 512 &&
  154. command == NAND_CMD_READOOB) {
  155. column += mtd->writesize;
  156. command = NAND_CMD_READ0;
  157. }
  158. /* FIXME: Do we need to send read command before sending data
  159. for small-page chips, to position the buffer correctly? */
  160. if (column != -1) {
  161. cafe_writel(cafe, column, NAND_ADDR1);
  162. adrbytes = 2;
  163. if (page_addr != -1)
  164. goto write_adr2;
  165. } else if (page_addr != -1) {
  166. cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
  167. page_addr >>= 16;
  168. write_adr2:
  169. cafe_writel(cafe, page_addr, NAND_ADDR2);
  170. adrbytes += 2;
  171. if (mtd->size > mtd->writesize << 16)
  172. adrbytes++;
  173. }
  174. cafe->data_pos = cafe->datalen = 0;
  175. /* Set command valid bit, mask in the chip select bit */
  176. ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
  177. /* Set RD or WR bits as appropriate */
  178. if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
  179. ctl1 |= (1<<26); /* rd */
  180. /* Always 5 bytes, for now */
  181. cafe->datalen = 4;
  182. /* And one address cycle -- even for STATUS, since the controller doesn't work without */
  183. adrbytes = 1;
  184. } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  185. command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
  186. ctl1 |= 1<<26; /* rd */
  187. /* For now, assume just read to end of page */
  188. cafe->datalen = mtd->writesize + mtd->oobsize - column;
  189. } else if (command == NAND_CMD_SEQIN)
  190. ctl1 |= 1<<25; /* wr */
  191. /* Set number of address bytes */
  192. if (adrbytes)
  193. ctl1 |= ((adrbytes-1)|8) << 27;
  194. if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
  195. /* Ignore the first command of a pair; the hardware
  196. deals with them both at once, later */
  197. cafe->ctl1 = ctl1;
  198. cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
  199. cafe->ctl1, cafe->datalen);
  200. return;
  201. }
  202. /* RNDOUT and READ0 commands need a following byte */
  203. if (command == NAND_CMD_RNDOUT)
  204. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
  205. else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
  206. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
  207. do_command:
  208. cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
  209. cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
  210. /* NB: The datasheet lies -- we really should be subtracting 1 here */
  211. cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
  212. cafe_writel(cafe, 0x90000000, NAND_IRQ);
  213. if (usedma && (ctl1 & (3<<25))) {
  214. uint32_t dmactl = 0xc0000000 + cafe->datalen;
  215. /* If WR or RD bits set, set up DMA */
  216. if (ctl1 & (1<<26)) {
  217. /* It's a read */
  218. dmactl |= (1<<29);
  219. /* ... so it's done when the DMA is done, not just
  220. the command. */
  221. doneint = 0x10000000;
  222. }
  223. cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
  224. }
  225. cafe->datalen = 0;
  226. if (unlikely(regdebug)) {
  227. int i;
  228. printk("About to write command %08x to register 0\n", ctl1);
  229. for (i=4; i< 0x5c; i+=4)
  230. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  231. }
  232. cafe_writel(cafe, ctl1, NAND_CTRL1);
  233. /* Apply this short delay always to ensure that we do wait tWB in
  234. * any case on any machine. */
  235. ndelay(100);
  236. if (1) {
  237. int c;
  238. uint32_t irqs;
  239. for (c = 500000; c != 0; c--) {
  240. irqs = cafe_readl(cafe, NAND_IRQ);
  241. if (irqs & doneint)
  242. break;
  243. udelay(1);
  244. if (!(c % 100000))
  245. cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
  246. cpu_relax();
  247. }
  248. cafe_writel(cafe, doneint, NAND_IRQ);
  249. cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
  250. command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
  251. }
  252. WARN_ON(cafe->ctl2 & (1<<30));
  253. switch (command) {
  254. case NAND_CMD_CACHEDPROG:
  255. case NAND_CMD_PAGEPROG:
  256. case NAND_CMD_ERASE1:
  257. case NAND_CMD_ERASE2:
  258. case NAND_CMD_SEQIN:
  259. case NAND_CMD_RNDIN:
  260. case NAND_CMD_STATUS:
  261. case NAND_CMD_RNDOUT:
  262. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  263. return;
  264. }
  265. nand_wait_ready(mtd);
  266. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  267. }
  268. static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
  269. {
  270. struct nand_chip *chip = mtd_to_nand(mtd);
  271. struct cafe_priv *cafe = nand_get_controller_data(chip);
  272. cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
  273. /* Mask the appropriate bit into the stored value of ctl1
  274. which will be used by cafe_nand_cmdfunc() */
  275. if (chipnr)
  276. cafe->ctl1 |= CTRL1_CHIPSELECT;
  277. else
  278. cafe->ctl1 &= ~CTRL1_CHIPSELECT;
  279. }
  280. static irqreturn_t cafe_nand_interrupt(int irq, void *id)
  281. {
  282. struct mtd_info *mtd = id;
  283. struct nand_chip *chip = mtd_to_nand(mtd);
  284. struct cafe_priv *cafe = nand_get_controller_data(chip);
  285. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  286. cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
  287. if (!irqs)
  288. return IRQ_NONE;
  289. cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
  290. return IRQ_HANDLED;
  291. }
  292. static void cafe_nand_bug(struct mtd_info *mtd)
  293. {
  294. BUG();
  295. }
  296. static int cafe_nand_write_oob(struct mtd_info *mtd,
  297. struct nand_chip *chip, int page)
  298. {
  299. int status = 0;
  300. chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
  301. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  302. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  303. status = chip->waitfunc(mtd, chip);
  304. return status & NAND_STATUS_FAIL ? -EIO : 0;
  305. }
  306. /* Don't use -- use nand_read_oob_std for now */
  307. static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
  308. int page)
  309. {
  310. chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
  311. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  312. return 0;
  313. }
  314. /**
  315. * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
  316. * @mtd: mtd info structure
  317. * @chip: nand chip info structure
  318. * @buf: buffer to store read data
  319. * @oob_required: caller expects OOB data read to chip->oob_poi
  320. *
  321. * The hw generator calculates the error syndrome automatically. Therefore
  322. * we need a special oob layout and handling.
  323. */
  324. static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
  325. uint8_t *buf, int oob_required, int page)
  326. {
  327. struct cafe_priv *cafe = nand_get_controller_data(chip);
  328. unsigned int max_bitflips = 0;
  329. cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
  330. cafe_readl(cafe, NAND_ECC_RESULT),
  331. cafe_readl(cafe, NAND_ECC_SYN01));
  332. chip->read_buf(mtd, buf, mtd->writesize);
  333. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  334. if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
  335. unsigned short syn[8], pat[4];
  336. int pos[4];
  337. u8 *oob = chip->oob_poi;
  338. int i, n;
  339. for (i=0; i<8; i+=2) {
  340. uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
  341. syn[i] = cafe->rs->index_of[tmp & 0xfff];
  342. syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
  343. }
  344. n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
  345. pat);
  346. for (i = 0; i < n; i++) {
  347. int p = pos[i];
  348. /* The 12-bit symbols are mapped to bytes here */
  349. if (p > 1374) {
  350. /* out of range */
  351. n = -1374;
  352. } else if (p == 0) {
  353. /* high four bits do not correspond to data */
  354. if (pat[i] > 0xff)
  355. n = -2048;
  356. else
  357. buf[0] ^= pat[i];
  358. } else if (p == 1365) {
  359. buf[2047] ^= pat[i] >> 4;
  360. oob[0] ^= pat[i] << 4;
  361. } else if (p > 1365) {
  362. if ((p & 1) == 1) {
  363. oob[3*p/2 - 2048] ^= pat[i] >> 4;
  364. oob[3*p/2 - 2047] ^= pat[i] << 4;
  365. } else {
  366. oob[3*p/2 - 2049] ^= pat[i] >> 8;
  367. oob[3*p/2 - 2048] ^= pat[i];
  368. }
  369. } else if ((p & 1) == 1) {
  370. buf[3*p/2] ^= pat[i] >> 4;
  371. buf[3*p/2 + 1] ^= pat[i] << 4;
  372. } else {
  373. buf[3*p/2 - 1] ^= pat[i] >> 8;
  374. buf[3*p/2] ^= pat[i];
  375. }
  376. }
  377. if (n < 0) {
  378. dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
  379. cafe_readl(cafe, NAND_ADDR2) * 2048);
  380. for (i = 0; i < 0x5c; i += 4)
  381. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  382. mtd->ecc_stats.failed++;
  383. } else {
  384. dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
  385. mtd->ecc_stats.corrected += n;
  386. max_bitflips = max_t(unsigned int, max_bitflips, n);
  387. }
  388. }
  389. return max_bitflips;
  390. }
  391. static struct nand_ecclayout cafe_oobinfo_2048 = {
  392. .eccbytes = 14,
  393. .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
  394. .oobfree = {{14, 50}}
  395. };
  396. /* Ick. The BBT code really ought to be able to work this bit out
  397. for itself from the above, at least for the 2KiB case */
  398. static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
  399. static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
  400. static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
  401. static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
  402. static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
  403. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  404. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  405. .offs = 14,
  406. .len = 4,
  407. .veroffs = 18,
  408. .maxblocks = 4,
  409. .pattern = cafe_bbt_pattern_2048
  410. };
  411. static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
  412. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  413. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  414. .offs = 14,
  415. .len = 4,
  416. .veroffs = 18,
  417. .maxblocks = 4,
  418. .pattern = cafe_mirror_pattern_2048
  419. };
  420. static struct nand_ecclayout cafe_oobinfo_512 = {
  421. .eccbytes = 14,
  422. .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
  423. .oobfree = {{14, 2}}
  424. };
  425. static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
  426. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  427. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  428. .offs = 14,
  429. .len = 1,
  430. .veroffs = 15,
  431. .maxblocks = 4,
  432. .pattern = cafe_bbt_pattern_512
  433. };
  434. static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
  435. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  436. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  437. .offs = 14,
  438. .len = 1,
  439. .veroffs = 15,
  440. .maxblocks = 4,
  441. .pattern = cafe_mirror_pattern_512
  442. };
  443. static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
  444. struct nand_chip *chip,
  445. const uint8_t *buf, int oob_required,
  446. int page)
  447. {
  448. struct cafe_priv *cafe = nand_get_controller_data(chip);
  449. chip->write_buf(mtd, buf, mtd->writesize);
  450. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  451. /* Set up ECC autogeneration */
  452. cafe->ctl2 |= (1<<30);
  453. return 0;
  454. }
  455. static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
  456. {
  457. return 0;
  458. }
  459. /* F_2[X]/(X**6+X+1) */
  460. static unsigned short gf64_mul(u8 a, u8 b)
  461. {
  462. u8 c;
  463. unsigned int i;
  464. c = 0;
  465. for (i = 0; i < 6; i++) {
  466. if (a & 1)
  467. c ^= b;
  468. a >>= 1;
  469. b <<= 1;
  470. if ((b & 0x40) != 0)
  471. b ^= 0x43;
  472. }
  473. return c;
  474. }
  475. /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
  476. static u16 gf4096_mul(u16 a, u16 b)
  477. {
  478. u8 ah, al, bh, bl, ch, cl;
  479. ah = a >> 6;
  480. al = a & 0x3f;
  481. bh = b >> 6;
  482. bl = b & 0x3f;
  483. ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
  484. cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
  485. return (ch << 6) ^ cl;
  486. }
  487. static int cafe_mul(int x)
  488. {
  489. if (x == 0)
  490. return 1;
  491. return gf4096_mul(x, 0xe01);
  492. }
  493. static int cafe_nand_probe(struct pci_dev *pdev,
  494. const struct pci_device_id *ent)
  495. {
  496. struct mtd_info *mtd;
  497. struct cafe_priv *cafe;
  498. uint32_t ctrl;
  499. int err = 0;
  500. int old_dma;
  501. struct nand_buffers *nbuf;
  502. /* Very old versions shared the same PCI ident for all three
  503. functions on the chip. Verify the class too... */
  504. if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
  505. return -ENODEV;
  506. err = pci_enable_device(pdev);
  507. if (err)
  508. return err;
  509. pci_set_master(pdev);
  510. cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
  511. if (!cafe)
  512. return -ENOMEM;
  513. mtd = nand_to_mtd(&cafe->nand);
  514. mtd->dev.parent = &pdev->dev;
  515. nand_set_controller_data(&cafe->nand, cafe);
  516. cafe->pdev = pdev;
  517. cafe->mmio = pci_iomap(pdev, 0, 0);
  518. if (!cafe->mmio) {
  519. dev_warn(&pdev->dev, "failed to iomap\n");
  520. err = -ENOMEM;
  521. goto out_free_mtd;
  522. }
  523. cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
  524. if (!cafe->rs) {
  525. err = -ENOMEM;
  526. goto out_ior;
  527. }
  528. cafe->nand.cmdfunc = cafe_nand_cmdfunc;
  529. cafe->nand.dev_ready = cafe_device_ready;
  530. cafe->nand.read_byte = cafe_read_byte;
  531. cafe->nand.read_buf = cafe_read_buf;
  532. cafe->nand.write_buf = cafe_write_buf;
  533. cafe->nand.select_chip = cafe_select_chip;
  534. cafe->nand.chip_delay = 0;
  535. /* Enable the following for a flash based bad block table */
  536. cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
  537. cafe->nand.options = NAND_OWN_BUFFERS;
  538. if (skipbbt) {
  539. cafe->nand.options |= NAND_SKIP_BBTSCAN;
  540. cafe->nand.block_bad = cafe_nand_block_bad;
  541. }
  542. if (numtimings && numtimings != 3) {
  543. dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
  544. }
  545. if (numtimings == 3) {
  546. cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
  547. timing[0], timing[1], timing[2]);
  548. } else {
  549. timing[0] = cafe_readl(cafe, NAND_TIMING1);
  550. timing[1] = cafe_readl(cafe, NAND_TIMING2);
  551. timing[2] = cafe_readl(cafe, NAND_TIMING3);
  552. if (timing[0] | timing[1] | timing[2]) {
  553. cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
  554. timing[0], timing[1], timing[2]);
  555. } else {
  556. dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
  557. timing[0] = timing[1] = timing[2] = 0xffffffff;
  558. }
  559. }
  560. /* Start off by resetting the NAND controller completely */
  561. cafe_writel(cafe, 1, NAND_RESET);
  562. cafe_writel(cafe, 0, NAND_RESET);
  563. cafe_writel(cafe, timing[0], NAND_TIMING1);
  564. cafe_writel(cafe, timing[1], NAND_TIMING2);
  565. cafe_writel(cafe, timing[2], NAND_TIMING3);
  566. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  567. err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
  568. "CAFE NAND", mtd);
  569. if (err) {
  570. dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
  571. goto out_ior;
  572. }
  573. /* Disable master reset, enable NAND clock */
  574. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  575. ctrl &= 0xffffeff0;
  576. ctrl |= 0x00007000;
  577. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  578. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  579. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  580. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  581. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  582. /* Enable NAND IRQ in global IRQ mask register */
  583. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  584. cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
  585. cafe_readl(cafe, GLOBAL_CTRL),
  586. cafe_readl(cafe, GLOBAL_IRQ_MASK));
  587. /* Do not use the DMA for the nand_scan_ident() */
  588. old_dma = usedma;
  589. usedma = 0;
  590. /* Scan to find existence of the device */
  591. if (nand_scan_ident(mtd, 2, NULL)) {
  592. err = -ENXIO;
  593. goto out_irq;
  594. }
  595. cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
  596. 2112 + sizeof(struct nand_buffers) +
  597. mtd->writesize + mtd->oobsize,
  598. &cafe->dmaaddr, GFP_KERNEL);
  599. if (!cafe->dmabuf) {
  600. err = -ENOMEM;
  601. goto out_irq;
  602. }
  603. cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
  604. /* Set up DMA address */
  605. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  606. if (sizeof(cafe->dmaaddr) > 4)
  607. /* Shift in two parts to shut the compiler up */
  608. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  609. else
  610. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  611. cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
  612. cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
  613. /* this driver does not need the @ecccalc and @ecccode */
  614. nbuf->ecccalc = NULL;
  615. nbuf->ecccode = NULL;
  616. nbuf->databuf = (uint8_t *)(nbuf + 1);
  617. /* Restore the DMA flag */
  618. usedma = old_dma;
  619. cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
  620. if (mtd->writesize == 2048)
  621. cafe->ctl2 |= 1<<29; /* 2KiB page size */
  622. /* Set up ECC according to the type of chip we found */
  623. if (mtd->writesize == 2048) {
  624. cafe->nand.ecc.layout = &cafe_oobinfo_2048;
  625. cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
  626. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
  627. } else if (mtd->writesize == 512) {
  628. cafe->nand.ecc.layout = &cafe_oobinfo_512;
  629. cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
  630. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
  631. } else {
  632. printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
  633. mtd->writesize);
  634. goto out_free_dma;
  635. }
  636. cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
  637. cafe->nand.ecc.size = mtd->writesize;
  638. cafe->nand.ecc.bytes = 14;
  639. cafe->nand.ecc.strength = 4;
  640. cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
  641. cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
  642. cafe->nand.ecc.correct = (void *)cafe_nand_bug;
  643. cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
  644. cafe->nand.ecc.write_oob = cafe_nand_write_oob;
  645. cafe->nand.ecc.read_page = cafe_nand_read_page;
  646. cafe->nand.ecc.read_oob = cafe_nand_read_oob;
  647. err = nand_scan_tail(mtd);
  648. if (err)
  649. goto out_free_dma;
  650. pci_set_drvdata(pdev, mtd);
  651. mtd->name = "cafe_nand";
  652. mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
  653. goto out;
  654. out_free_dma:
  655. dma_free_coherent(&cafe->pdev->dev,
  656. 2112 + sizeof(struct nand_buffers) +
  657. mtd->writesize + mtd->oobsize,
  658. cafe->dmabuf, cafe->dmaaddr);
  659. out_irq:
  660. /* Disable NAND IRQ in global IRQ mask register */
  661. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  662. free_irq(pdev->irq, mtd);
  663. out_ior:
  664. pci_iounmap(pdev, cafe->mmio);
  665. out_free_mtd:
  666. kfree(cafe);
  667. out:
  668. return err;
  669. }
  670. static void cafe_nand_remove(struct pci_dev *pdev)
  671. {
  672. struct mtd_info *mtd = pci_get_drvdata(pdev);
  673. struct nand_chip *chip = mtd_to_nand(mtd);
  674. struct cafe_priv *cafe = nand_get_controller_data(chip);
  675. /* Disable NAND IRQ in global IRQ mask register */
  676. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  677. free_irq(pdev->irq, mtd);
  678. nand_release(mtd);
  679. free_rs(cafe->rs);
  680. pci_iounmap(pdev, cafe->mmio);
  681. dma_free_coherent(&cafe->pdev->dev,
  682. 2112 + sizeof(struct nand_buffers) +
  683. mtd->writesize + mtd->oobsize,
  684. cafe->dmabuf, cafe->dmaaddr);
  685. kfree(cafe);
  686. }
  687. static const struct pci_device_id cafe_nand_tbl[] = {
  688. { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
  689. PCI_ANY_ID, PCI_ANY_ID },
  690. { }
  691. };
  692. MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
  693. static int cafe_nand_resume(struct pci_dev *pdev)
  694. {
  695. uint32_t ctrl;
  696. struct mtd_info *mtd = pci_get_drvdata(pdev);
  697. struct nand_chip *chip = mtd_to_nand(mtd);
  698. struct cafe_priv *cafe = nand_get_controller_data(chip);
  699. /* Start off by resetting the NAND controller completely */
  700. cafe_writel(cafe, 1, NAND_RESET);
  701. cafe_writel(cafe, 0, NAND_RESET);
  702. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  703. /* Restore timing configuration */
  704. cafe_writel(cafe, timing[0], NAND_TIMING1);
  705. cafe_writel(cafe, timing[1], NAND_TIMING2);
  706. cafe_writel(cafe, timing[2], NAND_TIMING3);
  707. /* Disable master reset, enable NAND clock */
  708. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  709. ctrl &= 0xffffeff0;
  710. ctrl |= 0x00007000;
  711. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  712. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  713. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  714. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  715. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  716. /* Set up DMA address */
  717. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  718. if (sizeof(cafe->dmaaddr) > 4)
  719. /* Shift in two parts to shut the compiler up */
  720. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  721. else
  722. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  723. /* Enable NAND IRQ in global IRQ mask register */
  724. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  725. return 0;
  726. }
  727. static struct pci_driver cafe_nand_pci_driver = {
  728. .name = "CAFÉ NAND",
  729. .id_table = cafe_nand_tbl,
  730. .probe = cafe_nand_probe,
  731. .remove = cafe_nand_remove,
  732. .resume = cafe_nand_resume,
  733. };
  734. module_pci_driver(cafe_nand_pci_driver);
  735. MODULE_LICENSE("GPL");
  736. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  737. MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");