rtc-ds1307.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741
  1. /*
  2. * rtc-ds1307.c - RTC driver for some mostly-compatible I2C chips.
  3. *
  4. * Copyright (C) 2005 James Chapman (ds1337 core)
  5. * Copyright (C) 2006 David Brownell
  6. * Copyright (C) 2009 Matthias Fuchs (rx8025 support)
  7. * Copyright (C) 2012 Bertrand Achard (nvram access fixes)
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/acpi.h>
  14. #include <linux/bcd.h>
  15. #include <linux/i2c.h>
  16. #include <linux/init.h>
  17. #include <linux/module.h>
  18. #include <linux/of_device.h>
  19. #include <linux/rtc/ds1307.h>
  20. #include <linux/rtc.h>
  21. #include <linux/slab.h>
  22. #include <linux/string.h>
  23. #include <linux/hwmon.h>
  24. #include <linux/hwmon-sysfs.h>
  25. #include <linux/clk-provider.h>
  26. #include <linux/regmap.h>
  27. /*
  28. * We can't determine type by probing, but if we expect pre-Linux code
  29. * to have set the chip up as a clock (turning on the oscillator and
  30. * setting the date and time), Linux can ignore the non-clock features.
  31. * That's a natural job for a factory or repair bench.
  32. */
  33. enum ds_type {
  34. ds_1307,
  35. ds_1308,
  36. ds_1337,
  37. ds_1338,
  38. ds_1339,
  39. ds_1340,
  40. ds_1341,
  41. ds_1388,
  42. ds_3231,
  43. m41t0,
  44. m41t00,
  45. mcp794xx,
  46. rx_8025,
  47. rx_8130,
  48. last_ds_type /* always last */
  49. /* rs5c372 too? different address... */
  50. };
  51. /* RTC registers don't differ much, except for the century flag */
  52. #define DS1307_REG_SECS 0x00 /* 00-59 */
  53. # define DS1307_BIT_CH 0x80
  54. # define DS1340_BIT_nEOSC 0x80
  55. # define MCP794XX_BIT_ST 0x80
  56. #define DS1307_REG_MIN 0x01 /* 00-59 */
  57. # define M41T0_BIT_OF 0x80
  58. #define DS1307_REG_HOUR 0x02 /* 00-23, or 1-12{am,pm} */
  59. # define DS1307_BIT_12HR 0x40 /* in REG_HOUR */
  60. # define DS1307_BIT_PM 0x20 /* in REG_HOUR */
  61. # define DS1340_BIT_CENTURY_EN 0x80 /* in REG_HOUR */
  62. # define DS1340_BIT_CENTURY 0x40 /* in REG_HOUR */
  63. #define DS1307_REG_WDAY 0x03 /* 01-07 */
  64. # define MCP794XX_BIT_VBATEN 0x08
  65. #define DS1307_REG_MDAY 0x04 /* 01-31 */
  66. #define DS1307_REG_MONTH 0x05 /* 01-12 */
  67. # define DS1337_BIT_CENTURY 0x80 /* in REG_MONTH */
  68. #define DS1307_REG_YEAR 0x06 /* 00-99 */
  69. /*
  70. * Other registers (control, status, alarms, trickle charge, NVRAM, etc)
  71. * start at 7, and they differ a LOT. Only control and status matter for
  72. * basic RTC date and time functionality; be careful using them.
  73. */
  74. #define DS1307_REG_CONTROL 0x07 /* or ds1338 */
  75. # define DS1307_BIT_OUT 0x80
  76. # define DS1338_BIT_OSF 0x20
  77. # define DS1307_BIT_SQWE 0x10
  78. # define DS1307_BIT_RS1 0x02
  79. # define DS1307_BIT_RS0 0x01
  80. #define DS1337_REG_CONTROL 0x0e
  81. # define DS1337_BIT_nEOSC 0x80
  82. # define DS1339_BIT_BBSQI 0x20
  83. # define DS3231_BIT_BBSQW 0x40 /* same as BBSQI */
  84. # define DS1337_BIT_RS2 0x10
  85. # define DS1337_BIT_RS1 0x08
  86. # define DS1337_BIT_INTCN 0x04
  87. # define DS1337_BIT_A2IE 0x02
  88. # define DS1337_BIT_A1IE 0x01
  89. #define DS1340_REG_CONTROL 0x07
  90. # define DS1340_BIT_OUT 0x80
  91. # define DS1340_BIT_FT 0x40
  92. # define DS1340_BIT_CALIB_SIGN 0x20
  93. # define DS1340_M_CALIBRATION 0x1f
  94. #define DS1340_REG_FLAG 0x09
  95. # define DS1340_BIT_OSF 0x80
  96. #define DS1337_REG_STATUS 0x0f
  97. # define DS1337_BIT_OSF 0x80
  98. # define DS3231_BIT_EN32KHZ 0x08
  99. # define DS1337_BIT_A2I 0x02
  100. # define DS1337_BIT_A1I 0x01
  101. #define DS1339_REG_ALARM1_SECS 0x07
  102. #define DS13XX_TRICKLE_CHARGER_MAGIC 0xa0
  103. #define RX8025_REG_CTRL1 0x0e
  104. # define RX8025_BIT_2412 0x20
  105. #define RX8025_REG_CTRL2 0x0f
  106. # define RX8025_BIT_PON 0x10
  107. # define RX8025_BIT_VDET 0x40
  108. # define RX8025_BIT_XST 0x20
  109. struct ds1307 {
  110. enum ds_type type;
  111. unsigned long flags;
  112. #define HAS_NVRAM 0 /* bit 0 == sysfs file active */
  113. #define HAS_ALARM 1 /* bit 1 == irq claimed */
  114. struct device *dev;
  115. struct regmap *regmap;
  116. const char *name;
  117. struct rtc_device *rtc;
  118. #ifdef CONFIG_COMMON_CLK
  119. struct clk_hw clks[2];
  120. #endif
  121. };
  122. struct chip_desc {
  123. unsigned alarm:1;
  124. u16 nvram_offset;
  125. u16 nvram_size;
  126. u8 offset; /* register's offset */
  127. u8 century_reg;
  128. u8 century_enable_bit;
  129. u8 century_bit;
  130. u8 bbsqi_bit;
  131. irq_handler_t irq_handler;
  132. const struct rtc_class_ops *rtc_ops;
  133. u16 trickle_charger_reg;
  134. u8 (*do_trickle_setup)(struct ds1307 *, u32,
  135. bool);
  136. };
  137. static int ds1307_get_time(struct device *dev, struct rtc_time *t);
  138. static int ds1307_set_time(struct device *dev, struct rtc_time *t);
  139. static u8 do_trickle_setup_ds1339(struct ds1307 *, u32 ohms, bool diode);
  140. static irqreturn_t rx8130_irq(int irq, void *dev_id);
  141. static int rx8130_read_alarm(struct device *dev, struct rtc_wkalrm *t);
  142. static int rx8130_set_alarm(struct device *dev, struct rtc_wkalrm *t);
  143. static int rx8130_alarm_irq_enable(struct device *dev, unsigned int enabled);
  144. static irqreturn_t mcp794xx_irq(int irq, void *dev_id);
  145. static int mcp794xx_read_alarm(struct device *dev, struct rtc_wkalrm *t);
  146. static int mcp794xx_set_alarm(struct device *dev, struct rtc_wkalrm *t);
  147. static int mcp794xx_alarm_irq_enable(struct device *dev, unsigned int enabled);
  148. static const struct rtc_class_ops rx8130_rtc_ops = {
  149. .read_time = ds1307_get_time,
  150. .set_time = ds1307_set_time,
  151. .read_alarm = rx8130_read_alarm,
  152. .set_alarm = rx8130_set_alarm,
  153. .alarm_irq_enable = rx8130_alarm_irq_enable,
  154. };
  155. static const struct rtc_class_ops mcp794xx_rtc_ops = {
  156. .read_time = ds1307_get_time,
  157. .set_time = ds1307_set_time,
  158. .read_alarm = mcp794xx_read_alarm,
  159. .set_alarm = mcp794xx_set_alarm,
  160. .alarm_irq_enable = mcp794xx_alarm_irq_enable,
  161. };
  162. static const struct chip_desc chips[last_ds_type] = {
  163. [ds_1307] = {
  164. .nvram_offset = 8,
  165. .nvram_size = 56,
  166. },
  167. [ds_1308] = {
  168. .nvram_offset = 8,
  169. .nvram_size = 56,
  170. },
  171. [ds_1337] = {
  172. .alarm = 1,
  173. .century_reg = DS1307_REG_MONTH,
  174. .century_bit = DS1337_BIT_CENTURY,
  175. },
  176. [ds_1338] = {
  177. .nvram_offset = 8,
  178. .nvram_size = 56,
  179. },
  180. [ds_1339] = {
  181. .alarm = 1,
  182. .century_reg = DS1307_REG_MONTH,
  183. .century_bit = DS1337_BIT_CENTURY,
  184. .bbsqi_bit = DS1339_BIT_BBSQI,
  185. .trickle_charger_reg = 0x10,
  186. .do_trickle_setup = &do_trickle_setup_ds1339,
  187. },
  188. [ds_1340] = {
  189. .century_reg = DS1307_REG_HOUR,
  190. .century_enable_bit = DS1340_BIT_CENTURY_EN,
  191. .century_bit = DS1340_BIT_CENTURY,
  192. .do_trickle_setup = &do_trickle_setup_ds1339,
  193. .trickle_charger_reg = 0x08,
  194. },
  195. [ds_1341] = {
  196. .century_reg = DS1307_REG_MONTH,
  197. .century_bit = DS1337_BIT_CENTURY,
  198. },
  199. [ds_1388] = {
  200. .offset = 1,
  201. .trickle_charger_reg = 0x0a,
  202. },
  203. [ds_3231] = {
  204. .alarm = 1,
  205. .century_reg = DS1307_REG_MONTH,
  206. .century_bit = DS1337_BIT_CENTURY,
  207. .bbsqi_bit = DS3231_BIT_BBSQW,
  208. },
  209. [rx_8130] = {
  210. .alarm = 1,
  211. /* this is battery backed SRAM */
  212. .nvram_offset = 0x20,
  213. .nvram_size = 4, /* 32bit (4 word x 8 bit) */
  214. .offset = 0x10,
  215. .irq_handler = rx8130_irq,
  216. .rtc_ops = &rx8130_rtc_ops,
  217. },
  218. [mcp794xx] = {
  219. .alarm = 1,
  220. /* this is battery backed SRAM */
  221. .nvram_offset = 0x20,
  222. .nvram_size = 0x40,
  223. .irq_handler = mcp794xx_irq,
  224. .rtc_ops = &mcp794xx_rtc_ops,
  225. },
  226. };
  227. static const struct i2c_device_id ds1307_id[] = {
  228. { "ds1307", ds_1307 },
  229. { "ds1308", ds_1308 },
  230. { "ds1337", ds_1337 },
  231. { "ds1338", ds_1338 },
  232. { "ds1339", ds_1339 },
  233. { "ds1388", ds_1388 },
  234. { "ds1340", ds_1340 },
  235. { "ds1341", ds_1341 },
  236. { "ds3231", ds_3231 },
  237. { "m41t0", m41t0 },
  238. { "m41t00", m41t00 },
  239. { "mcp7940x", mcp794xx },
  240. { "mcp7941x", mcp794xx },
  241. { "pt7c4338", ds_1307 },
  242. { "rx8025", rx_8025 },
  243. { "isl12057", ds_1337 },
  244. { "rx8130", rx_8130 },
  245. { }
  246. };
  247. MODULE_DEVICE_TABLE(i2c, ds1307_id);
  248. #ifdef CONFIG_OF
  249. static const struct of_device_id ds1307_of_match[] = {
  250. {
  251. .compatible = "dallas,ds1307",
  252. .data = (void *)ds_1307
  253. },
  254. {
  255. .compatible = "dallas,ds1308",
  256. .data = (void *)ds_1308
  257. },
  258. {
  259. .compatible = "dallas,ds1337",
  260. .data = (void *)ds_1337
  261. },
  262. {
  263. .compatible = "dallas,ds1338",
  264. .data = (void *)ds_1338
  265. },
  266. {
  267. .compatible = "dallas,ds1339",
  268. .data = (void *)ds_1339
  269. },
  270. {
  271. .compatible = "dallas,ds1388",
  272. .data = (void *)ds_1388
  273. },
  274. {
  275. .compatible = "dallas,ds1340",
  276. .data = (void *)ds_1340
  277. },
  278. {
  279. .compatible = "dallas,ds1341",
  280. .data = (void *)ds_1341
  281. },
  282. {
  283. .compatible = "maxim,ds3231",
  284. .data = (void *)ds_3231
  285. },
  286. {
  287. .compatible = "st,m41t0",
  288. .data = (void *)m41t00
  289. },
  290. {
  291. .compatible = "st,m41t00",
  292. .data = (void *)m41t00
  293. },
  294. {
  295. .compatible = "microchip,mcp7940x",
  296. .data = (void *)mcp794xx
  297. },
  298. {
  299. .compatible = "microchip,mcp7941x",
  300. .data = (void *)mcp794xx
  301. },
  302. {
  303. .compatible = "pericom,pt7c4338",
  304. .data = (void *)ds_1307
  305. },
  306. {
  307. .compatible = "epson,rx8025",
  308. .data = (void *)rx_8025
  309. },
  310. {
  311. .compatible = "isil,isl12057",
  312. .data = (void *)ds_1337
  313. },
  314. {
  315. .compatible = "epson,rx8130",
  316. .data = (void *)rx_8130
  317. },
  318. { }
  319. };
  320. MODULE_DEVICE_TABLE(of, ds1307_of_match);
  321. #endif
  322. #ifdef CONFIG_ACPI
  323. static const struct acpi_device_id ds1307_acpi_ids[] = {
  324. { .id = "DS1307", .driver_data = ds_1307 },
  325. { .id = "DS1308", .driver_data = ds_1308 },
  326. { .id = "DS1337", .driver_data = ds_1337 },
  327. { .id = "DS1338", .driver_data = ds_1338 },
  328. { .id = "DS1339", .driver_data = ds_1339 },
  329. { .id = "DS1388", .driver_data = ds_1388 },
  330. { .id = "DS1340", .driver_data = ds_1340 },
  331. { .id = "DS1341", .driver_data = ds_1341 },
  332. { .id = "DS3231", .driver_data = ds_3231 },
  333. { .id = "M41T0", .driver_data = m41t0 },
  334. { .id = "M41T00", .driver_data = m41t00 },
  335. { .id = "MCP7940X", .driver_data = mcp794xx },
  336. { .id = "MCP7941X", .driver_data = mcp794xx },
  337. { .id = "PT7C4338", .driver_data = ds_1307 },
  338. { .id = "RX8025", .driver_data = rx_8025 },
  339. { .id = "ISL12057", .driver_data = ds_1337 },
  340. { .id = "RX8130", .driver_data = rx_8130 },
  341. { }
  342. };
  343. MODULE_DEVICE_TABLE(acpi, ds1307_acpi_ids);
  344. #endif
  345. /*
  346. * The ds1337 and ds1339 both have two alarms, but we only use the first
  347. * one (with a "seconds" field). For ds1337 we expect nINTA is our alarm
  348. * signal; ds1339 chips have only one alarm signal.
  349. */
  350. static irqreturn_t ds1307_irq(int irq, void *dev_id)
  351. {
  352. struct ds1307 *ds1307 = dev_id;
  353. struct mutex *lock = &ds1307->rtc->ops_lock;
  354. int stat, ret;
  355. mutex_lock(lock);
  356. ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &stat);
  357. if (ret)
  358. goto out;
  359. if (stat & DS1337_BIT_A1I) {
  360. stat &= ~DS1337_BIT_A1I;
  361. regmap_write(ds1307->regmap, DS1337_REG_STATUS, stat);
  362. ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
  363. DS1337_BIT_A1IE, 0);
  364. if (ret)
  365. goto out;
  366. rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
  367. }
  368. out:
  369. mutex_unlock(lock);
  370. return IRQ_HANDLED;
  371. }
  372. /*----------------------------------------------------------------------*/
  373. static int ds1307_get_time(struct device *dev, struct rtc_time *t)
  374. {
  375. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  376. int tmp, ret;
  377. const struct chip_desc *chip = &chips[ds1307->type];
  378. u8 regs[7];
  379. /* read the RTC date and time registers all at once */
  380. ret = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
  381. sizeof(regs));
  382. if (ret) {
  383. dev_err(dev, "%s error %d\n", "read", ret);
  384. return ret;
  385. }
  386. dev_dbg(dev, "%s: %7ph\n", "read", regs);
  387. /* if oscillator fail bit is set, no data can be trusted */
  388. if (ds1307->type == m41t0 &&
  389. regs[DS1307_REG_MIN] & M41T0_BIT_OF) {
  390. dev_warn_once(dev, "oscillator failed, set time!\n");
  391. return -EINVAL;
  392. }
  393. t->tm_sec = bcd2bin(regs[DS1307_REG_SECS] & 0x7f);
  394. t->tm_min = bcd2bin(regs[DS1307_REG_MIN] & 0x7f);
  395. tmp = regs[DS1307_REG_HOUR] & 0x3f;
  396. t->tm_hour = bcd2bin(tmp);
  397. t->tm_wday = bcd2bin(regs[DS1307_REG_WDAY] & 0x07) - 1;
  398. t->tm_mday = bcd2bin(regs[DS1307_REG_MDAY] & 0x3f);
  399. tmp = regs[DS1307_REG_MONTH] & 0x1f;
  400. t->tm_mon = bcd2bin(tmp) - 1;
  401. t->tm_year = bcd2bin(regs[DS1307_REG_YEAR]) + 100;
  402. if (regs[chip->century_reg] & chip->century_bit &&
  403. IS_ENABLED(CONFIG_RTC_DRV_DS1307_CENTURY))
  404. t->tm_year += 100;
  405. dev_dbg(dev, "%s secs=%d, mins=%d, "
  406. "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
  407. "read", t->tm_sec, t->tm_min,
  408. t->tm_hour, t->tm_mday,
  409. t->tm_mon, t->tm_year, t->tm_wday);
  410. return 0;
  411. }
  412. static int ds1307_set_time(struct device *dev, struct rtc_time *t)
  413. {
  414. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  415. const struct chip_desc *chip = &chips[ds1307->type];
  416. int result;
  417. int tmp;
  418. u8 regs[7];
  419. dev_dbg(dev, "%s secs=%d, mins=%d, "
  420. "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
  421. "write", t->tm_sec, t->tm_min,
  422. t->tm_hour, t->tm_mday,
  423. t->tm_mon, t->tm_year, t->tm_wday);
  424. if (t->tm_year < 100)
  425. return -EINVAL;
  426. #ifdef CONFIG_RTC_DRV_DS1307_CENTURY
  427. if (t->tm_year > (chip->century_bit ? 299 : 199))
  428. return -EINVAL;
  429. #else
  430. if (t->tm_year > 199)
  431. return -EINVAL;
  432. #endif
  433. regs[DS1307_REG_SECS] = bin2bcd(t->tm_sec);
  434. regs[DS1307_REG_MIN] = bin2bcd(t->tm_min);
  435. regs[DS1307_REG_HOUR] = bin2bcd(t->tm_hour);
  436. regs[DS1307_REG_WDAY] = bin2bcd(t->tm_wday + 1);
  437. regs[DS1307_REG_MDAY] = bin2bcd(t->tm_mday);
  438. regs[DS1307_REG_MONTH] = bin2bcd(t->tm_mon + 1);
  439. /* assume 20YY not 19YY */
  440. tmp = t->tm_year - 100;
  441. regs[DS1307_REG_YEAR] = bin2bcd(tmp);
  442. if (chip->century_enable_bit)
  443. regs[chip->century_reg] |= chip->century_enable_bit;
  444. if (t->tm_year > 199 && chip->century_bit)
  445. regs[chip->century_reg] |= chip->century_bit;
  446. if (ds1307->type == mcp794xx) {
  447. /*
  448. * these bits were cleared when preparing the date/time
  449. * values and need to be set again before writing the
  450. * regsfer out to the device.
  451. */
  452. regs[DS1307_REG_SECS] |= MCP794XX_BIT_ST;
  453. regs[DS1307_REG_WDAY] |= MCP794XX_BIT_VBATEN;
  454. }
  455. dev_dbg(dev, "%s: %7ph\n", "write", regs);
  456. result = regmap_bulk_write(ds1307->regmap, chip->offset, regs,
  457. sizeof(regs));
  458. if (result) {
  459. dev_err(dev, "%s error %d\n", "write", result);
  460. return result;
  461. }
  462. return 0;
  463. }
  464. static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  465. {
  466. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  467. int ret;
  468. u8 regs[9];
  469. if (!test_bit(HAS_ALARM, &ds1307->flags))
  470. return -EINVAL;
  471. /* read all ALARM1, ALARM2, and status registers at once */
  472. ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS,
  473. regs, sizeof(regs));
  474. if (ret) {
  475. dev_err(dev, "%s error %d\n", "alarm read", ret);
  476. return ret;
  477. }
  478. dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
  479. &regs[0], &regs[4], &regs[7]);
  480. /*
  481. * report alarm time (ALARM1); assume 24 hour and day-of-month modes,
  482. * and that all four fields are checked matches
  483. */
  484. t->time.tm_sec = bcd2bin(regs[0] & 0x7f);
  485. t->time.tm_min = bcd2bin(regs[1] & 0x7f);
  486. t->time.tm_hour = bcd2bin(regs[2] & 0x3f);
  487. t->time.tm_mday = bcd2bin(regs[3] & 0x3f);
  488. /* ... and status */
  489. t->enabled = !!(regs[7] & DS1337_BIT_A1IE);
  490. t->pending = !!(regs[8] & DS1337_BIT_A1I);
  491. dev_dbg(dev, "%s secs=%d, mins=%d, "
  492. "hours=%d, mday=%d, enabled=%d, pending=%d\n",
  493. "alarm read", t->time.tm_sec, t->time.tm_min,
  494. t->time.tm_hour, t->time.tm_mday,
  495. t->enabled, t->pending);
  496. return 0;
  497. }
  498. static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  499. {
  500. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  501. unsigned char regs[9];
  502. u8 control, status;
  503. int ret;
  504. if (!test_bit(HAS_ALARM, &ds1307->flags))
  505. return -EINVAL;
  506. dev_dbg(dev, "%s secs=%d, mins=%d, "
  507. "hours=%d, mday=%d, enabled=%d, pending=%d\n",
  508. "alarm set", t->time.tm_sec, t->time.tm_min,
  509. t->time.tm_hour, t->time.tm_mday,
  510. t->enabled, t->pending);
  511. /* read current status of both alarms and the chip */
  512. ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
  513. sizeof(regs));
  514. if (ret) {
  515. dev_err(dev, "%s error %d\n", "alarm write", ret);
  516. return ret;
  517. }
  518. control = regs[7];
  519. status = regs[8];
  520. dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
  521. &regs[0], &regs[4], control, status);
  522. /* set ALARM1, using 24 hour and day-of-month modes */
  523. regs[0] = bin2bcd(t->time.tm_sec);
  524. regs[1] = bin2bcd(t->time.tm_min);
  525. regs[2] = bin2bcd(t->time.tm_hour);
  526. regs[3] = bin2bcd(t->time.tm_mday);
  527. /* set ALARM2 to non-garbage */
  528. regs[4] = 0;
  529. regs[5] = 0;
  530. regs[6] = 0;
  531. /* disable alarms */
  532. regs[7] = control & ~(DS1337_BIT_A1IE | DS1337_BIT_A2IE);
  533. regs[8] = status & ~(DS1337_BIT_A1I | DS1337_BIT_A2I);
  534. ret = regmap_bulk_write(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
  535. sizeof(regs));
  536. if (ret) {
  537. dev_err(dev, "can't set alarm time\n");
  538. return ret;
  539. }
  540. /* optionally enable ALARM1 */
  541. if (t->enabled) {
  542. dev_dbg(dev, "alarm IRQ armed\n");
  543. regs[7] |= DS1337_BIT_A1IE; /* only ALARM1 is used */
  544. regmap_write(ds1307->regmap, DS1337_REG_CONTROL, regs[7]);
  545. }
  546. return 0;
  547. }
  548. static int ds1307_alarm_irq_enable(struct device *dev, unsigned int enabled)
  549. {
  550. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  551. if (!test_bit(HAS_ALARM, &ds1307->flags))
  552. return -ENOTTY;
  553. return regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
  554. DS1337_BIT_A1IE,
  555. enabled ? DS1337_BIT_A1IE : 0);
  556. }
  557. static const struct rtc_class_ops ds13xx_rtc_ops = {
  558. .read_time = ds1307_get_time,
  559. .set_time = ds1307_set_time,
  560. .read_alarm = ds1337_read_alarm,
  561. .set_alarm = ds1337_set_alarm,
  562. .alarm_irq_enable = ds1307_alarm_irq_enable,
  563. };
  564. /*----------------------------------------------------------------------*/
  565. /*
  566. * Alarm support for rx8130 devices.
  567. */
  568. #define RX8130_REG_ALARM_MIN 0x07
  569. #define RX8130_REG_ALARM_HOUR 0x08
  570. #define RX8130_REG_ALARM_WEEK_OR_DAY 0x09
  571. #define RX8130_REG_EXTENSION 0x0c
  572. #define RX8130_REG_EXTENSION_WADA BIT(3)
  573. #define RX8130_REG_FLAG 0x0d
  574. #define RX8130_REG_FLAG_AF BIT(3)
  575. #define RX8130_REG_CONTROL0 0x0e
  576. #define RX8130_REG_CONTROL0_AIE BIT(3)
  577. static irqreturn_t rx8130_irq(int irq, void *dev_id)
  578. {
  579. struct ds1307 *ds1307 = dev_id;
  580. struct mutex *lock = &ds1307->rtc->ops_lock;
  581. u8 ctl[3];
  582. int ret;
  583. mutex_lock(lock);
  584. /* Read control registers. */
  585. ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
  586. sizeof(ctl));
  587. if (ret < 0)
  588. goto out;
  589. if (!(ctl[1] & RX8130_REG_FLAG_AF))
  590. goto out;
  591. ctl[1] &= ~RX8130_REG_FLAG_AF;
  592. ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
  593. ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
  594. sizeof(ctl));
  595. if (ret < 0)
  596. goto out;
  597. rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
  598. out:
  599. mutex_unlock(lock);
  600. return IRQ_HANDLED;
  601. }
  602. static int rx8130_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  603. {
  604. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  605. u8 ald[3], ctl[3];
  606. int ret;
  607. if (!test_bit(HAS_ALARM, &ds1307->flags))
  608. return -EINVAL;
  609. /* Read alarm registers. */
  610. ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
  611. sizeof(ald));
  612. if (ret < 0)
  613. return ret;
  614. /* Read control registers. */
  615. ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
  616. sizeof(ctl));
  617. if (ret < 0)
  618. return ret;
  619. t->enabled = !!(ctl[2] & RX8130_REG_CONTROL0_AIE);
  620. t->pending = !!(ctl[1] & RX8130_REG_FLAG_AF);
  621. /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
  622. t->time.tm_sec = -1;
  623. t->time.tm_min = bcd2bin(ald[0] & 0x7f);
  624. t->time.tm_hour = bcd2bin(ald[1] & 0x7f);
  625. t->time.tm_wday = -1;
  626. t->time.tm_mday = bcd2bin(ald[2] & 0x7f);
  627. t->time.tm_mon = -1;
  628. t->time.tm_year = -1;
  629. t->time.tm_yday = -1;
  630. t->time.tm_isdst = -1;
  631. dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d enabled=%d\n",
  632. __func__, t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
  633. t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled);
  634. return 0;
  635. }
  636. static int rx8130_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  637. {
  638. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  639. u8 ald[3], ctl[3];
  640. int ret;
  641. if (!test_bit(HAS_ALARM, &ds1307->flags))
  642. return -EINVAL;
  643. dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
  644. "enabled=%d pending=%d\n", __func__,
  645. t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
  646. t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
  647. t->enabled, t->pending);
  648. /* Read control registers. */
  649. ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
  650. sizeof(ctl));
  651. if (ret < 0)
  652. return ret;
  653. ctl[0] &= ~RX8130_REG_EXTENSION_WADA;
  654. ctl[1] |= RX8130_REG_FLAG_AF;
  655. ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
  656. ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
  657. sizeof(ctl));
  658. if (ret < 0)
  659. return ret;
  660. /* Hardware alarm precision is 1 minute! */
  661. ald[0] = bin2bcd(t->time.tm_min);
  662. ald[1] = bin2bcd(t->time.tm_hour);
  663. ald[2] = bin2bcd(t->time.tm_mday);
  664. ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
  665. sizeof(ald));
  666. if (ret < 0)
  667. return ret;
  668. if (!t->enabled)
  669. return 0;
  670. ctl[2] |= RX8130_REG_CONTROL0_AIE;
  671. return regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
  672. sizeof(ctl));
  673. }
  674. static int rx8130_alarm_irq_enable(struct device *dev, unsigned int enabled)
  675. {
  676. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  677. int ret, reg;
  678. if (!test_bit(HAS_ALARM, &ds1307->flags))
  679. return -EINVAL;
  680. ret = regmap_read(ds1307->regmap, RX8130_REG_CONTROL0, &reg);
  681. if (ret < 0)
  682. return ret;
  683. if (enabled)
  684. reg |= RX8130_REG_CONTROL0_AIE;
  685. else
  686. reg &= ~RX8130_REG_CONTROL0_AIE;
  687. return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, reg);
  688. }
  689. /*----------------------------------------------------------------------*/
  690. /*
  691. * Alarm support for mcp794xx devices.
  692. */
  693. #define MCP794XX_REG_CONTROL 0x07
  694. # define MCP794XX_BIT_ALM0_EN 0x10
  695. # define MCP794XX_BIT_ALM1_EN 0x20
  696. #define MCP794XX_REG_ALARM0_BASE 0x0a
  697. #define MCP794XX_REG_ALARM0_CTRL 0x0d
  698. #define MCP794XX_REG_ALARM1_BASE 0x11
  699. #define MCP794XX_REG_ALARM1_CTRL 0x14
  700. # define MCP794XX_BIT_ALMX_IF BIT(3)
  701. # define MCP794XX_BIT_ALMX_C0 BIT(4)
  702. # define MCP794XX_BIT_ALMX_C1 BIT(5)
  703. # define MCP794XX_BIT_ALMX_C2 BIT(6)
  704. # define MCP794XX_BIT_ALMX_POL BIT(7)
  705. # define MCP794XX_MSK_ALMX_MATCH (MCP794XX_BIT_ALMX_C0 | \
  706. MCP794XX_BIT_ALMX_C1 | \
  707. MCP794XX_BIT_ALMX_C2)
  708. static irqreturn_t mcp794xx_irq(int irq, void *dev_id)
  709. {
  710. struct ds1307 *ds1307 = dev_id;
  711. struct mutex *lock = &ds1307->rtc->ops_lock;
  712. int reg, ret;
  713. mutex_lock(lock);
  714. /* Check and clear alarm 0 interrupt flag. */
  715. ret = regmap_read(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, &reg);
  716. if (ret)
  717. goto out;
  718. if (!(reg & MCP794XX_BIT_ALMX_IF))
  719. goto out;
  720. reg &= ~MCP794XX_BIT_ALMX_IF;
  721. ret = regmap_write(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, reg);
  722. if (ret)
  723. goto out;
  724. /* Disable alarm 0. */
  725. ret = regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
  726. MCP794XX_BIT_ALM0_EN, 0);
  727. if (ret)
  728. goto out;
  729. rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
  730. out:
  731. mutex_unlock(lock);
  732. return IRQ_HANDLED;
  733. }
  734. static int mcp794xx_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  735. {
  736. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  737. u8 regs[10];
  738. int ret;
  739. if (!test_bit(HAS_ALARM, &ds1307->flags))
  740. return -EINVAL;
  741. /* Read control and alarm 0 registers. */
  742. ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
  743. sizeof(regs));
  744. if (ret)
  745. return ret;
  746. t->enabled = !!(regs[0] & MCP794XX_BIT_ALM0_EN);
  747. /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
  748. t->time.tm_sec = bcd2bin(regs[3] & 0x7f);
  749. t->time.tm_min = bcd2bin(regs[4] & 0x7f);
  750. t->time.tm_hour = bcd2bin(regs[5] & 0x3f);
  751. t->time.tm_wday = bcd2bin(regs[6] & 0x7) - 1;
  752. t->time.tm_mday = bcd2bin(regs[7] & 0x3f);
  753. t->time.tm_mon = bcd2bin(regs[8] & 0x1f) - 1;
  754. t->time.tm_year = -1;
  755. t->time.tm_yday = -1;
  756. t->time.tm_isdst = -1;
  757. dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
  758. "enabled=%d polarity=%d irq=%d match=%lu\n", __func__,
  759. t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
  760. t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled,
  761. !!(regs[6] & MCP794XX_BIT_ALMX_POL),
  762. !!(regs[6] & MCP794XX_BIT_ALMX_IF),
  763. (regs[6] & MCP794XX_MSK_ALMX_MATCH) >> 4);
  764. return 0;
  765. }
  766. /*
  767. * We may have a random RTC weekday, therefore calculate alarm weekday based
  768. * on current weekday we read from the RTC timekeeping regs
  769. */
  770. static int mcp794xx_alm_weekday(struct device *dev, struct rtc_time *tm_alarm)
  771. {
  772. struct rtc_time tm_now;
  773. int days_now, days_alarm, ret;
  774. ret = ds1307_get_time(dev, &tm_now);
  775. if (ret)
  776. return ret;
  777. days_now = div_s64(rtc_tm_to_time64(&tm_now), 24 * 60 * 60);
  778. days_alarm = div_s64(rtc_tm_to_time64(tm_alarm), 24 * 60 * 60);
  779. return (tm_now.tm_wday + days_alarm - days_now) % 7 + 1;
  780. }
  781. static int mcp794xx_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  782. {
  783. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  784. unsigned char regs[10];
  785. int wday, ret;
  786. if (!test_bit(HAS_ALARM, &ds1307->flags))
  787. return -EINVAL;
  788. wday = mcp794xx_alm_weekday(dev, &t->time);
  789. if (wday < 0)
  790. return wday;
  791. dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
  792. "enabled=%d pending=%d\n", __func__,
  793. t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
  794. t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
  795. t->enabled, t->pending);
  796. /* Read control and alarm 0 registers. */
  797. ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
  798. sizeof(regs));
  799. if (ret)
  800. return ret;
  801. /* Set alarm 0, using 24-hour and day-of-month modes. */
  802. regs[3] = bin2bcd(t->time.tm_sec);
  803. regs[4] = bin2bcd(t->time.tm_min);
  804. regs[5] = bin2bcd(t->time.tm_hour);
  805. regs[6] = wday;
  806. regs[7] = bin2bcd(t->time.tm_mday);
  807. regs[8] = bin2bcd(t->time.tm_mon + 1);
  808. /* Clear the alarm 0 interrupt flag. */
  809. regs[6] &= ~MCP794XX_BIT_ALMX_IF;
  810. /* Set alarm match: second, minute, hour, day, date, month. */
  811. regs[6] |= MCP794XX_MSK_ALMX_MATCH;
  812. /* Disable interrupt. We will not enable until completely programmed */
  813. regs[0] &= ~MCP794XX_BIT_ALM0_EN;
  814. ret = regmap_bulk_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
  815. sizeof(regs));
  816. if (ret)
  817. return ret;
  818. if (!t->enabled)
  819. return 0;
  820. regs[0] |= MCP794XX_BIT_ALM0_EN;
  821. return regmap_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs[0]);
  822. }
  823. static int mcp794xx_alarm_irq_enable(struct device *dev, unsigned int enabled)
  824. {
  825. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  826. if (!test_bit(HAS_ALARM, &ds1307->flags))
  827. return -EINVAL;
  828. return regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
  829. MCP794XX_BIT_ALM0_EN,
  830. enabled ? MCP794XX_BIT_ALM0_EN : 0);
  831. }
  832. /*----------------------------------------------------------------------*/
  833. static int ds1307_nvram_read(void *priv, unsigned int offset, void *val,
  834. size_t bytes)
  835. {
  836. struct ds1307 *ds1307 = priv;
  837. const struct chip_desc *chip = &chips[ds1307->type];
  838. return regmap_bulk_read(ds1307->regmap, chip->nvram_offset + offset,
  839. val, bytes);
  840. }
  841. static int ds1307_nvram_write(void *priv, unsigned int offset, void *val,
  842. size_t bytes)
  843. {
  844. struct ds1307 *ds1307 = priv;
  845. const struct chip_desc *chip = &chips[ds1307->type];
  846. return regmap_bulk_write(ds1307->regmap, chip->nvram_offset + offset,
  847. val, bytes);
  848. }
  849. /*----------------------------------------------------------------------*/
  850. static u8 do_trickle_setup_ds1339(struct ds1307 *ds1307,
  851. u32 ohms, bool diode)
  852. {
  853. u8 setup = (diode) ? DS1307_TRICKLE_CHARGER_DIODE :
  854. DS1307_TRICKLE_CHARGER_NO_DIODE;
  855. switch (ohms) {
  856. case 250:
  857. setup |= DS1307_TRICKLE_CHARGER_250_OHM;
  858. break;
  859. case 2000:
  860. setup |= DS1307_TRICKLE_CHARGER_2K_OHM;
  861. break;
  862. case 4000:
  863. setup |= DS1307_TRICKLE_CHARGER_4K_OHM;
  864. break;
  865. default:
  866. dev_warn(ds1307->dev,
  867. "Unsupported ohm value %u in dt\n", ohms);
  868. return 0;
  869. }
  870. return setup;
  871. }
  872. static u8 ds1307_trickle_init(struct ds1307 *ds1307,
  873. const struct chip_desc *chip)
  874. {
  875. u32 ohms;
  876. bool diode = true;
  877. if (!chip->do_trickle_setup)
  878. return 0;
  879. if (device_property_read_u32(ds1307->dev, "trickle-resistor-ohms",
  880. &ohms))
  881. return 0;
  882. if (device_property_read_bool(ds1307->dev, "trickle-diode-disable"))
  883. diode = false;
  884. return chip->do_trickle_setup(ds1307, ohms, diode);
  885. }
  886. /*----------------------------------------------------------------------*/
  887. #ifdef CONFIG_RTC_DRV_DS1307_HWMON
  888. /*
  889. * Temperature sensor support for ds3231 devices.
  890. */
  891. #define DS3231_REG_TEMPERATURE 0x11
  892. /*
  893. * A user-initiated temperature conversion is not started by this function,
  894. * so the temperature is updated once every 64 seconds.
  895. */
  896. static int ds3231_hwmon_read_temp(struct device *dev, s32 *mC)
  897. {
  898. struct ds1307 *ds1307 = dev_get_drvdata(dev);
  899. u8 temp_buf[2];
  900. s16 temp;
  901. int ret;
  902. ret = regmap_bulk_read(ds1307->regmap, DS3231_REG_TEMPERATURE,
  903. temp_buf, sizeof(temp_buf));
  904. if (ret)
  905. return ret;
  906. /*
  907. * Temperature is represented as a 10-bit code with a resolution of
  908. * 0.25 degree celsius and encoded in two's complement format.
  909. */
  910. temp = (temp_buf[0] << 8) | temp_buf[1];
  911. temp >>= 6;
  912. *mC = temp * 250;
  913. return 0;
  914. }
  915. static ssize_t ds3231_hwmon_show_temp(struct device *dev,
  916. struct device_attribute *attr, char *buf)
  917. {
  918. int ret;
  919. s32 temp;
  920. ret = ds3231_hwmon_read_temp(dev, &temp);
  921. if (ret)
  922. return ret;
  923. return sprintf(buf, "%d\n", temp);
  924. }
  925. static SENSOR_DEVICE_ATTR(temp1_input, 0444, ds3231_hwmon_show_temp,
  926. NULL, 0);
  927. static struct attribute *ds3231_hwmon_attrs[] = {
  928. &sensor_dev_attr_temp1_input.dev_attr.attr,
  929. NULL,
  930. };
  931. ATTRIBUTE_GROUPS(ds3231_hwmon);
  932. static void ds1307_hwmon_register(struct ds1307 *ds1307)
  933. {
  934. struct device *dev;
  935. if (ds1307->type != ds_3231)
  936. return;
  937. dev = devm_hwmon_device_register_with_groups(ds1307->dev, ds1307->name,
  938. ds1307,
  939. ds3231_hwmon_groups);
  940. if (IS_ERR(dev)) {
  941. dev_warn(ds1307->dev, "unable to register hwmon device %ld\n",
  942. PTR_ERR(dev));
  943. }
  944. }
  945. #else
  946. static void ds1307_hwmon_register(struct ds1307 *ds1307)
  947. {
  948. }
  949. #endif /* CONFIG_RTC_DRV_DS1307_HWMON */
  950. /*----------------------------------------------------------------------*/
  951. /*
  952. * Square-wave output support for DS3231
  953. * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
  954. */
  955. #ifdef CONFIG_COMMON_CLK
  956. enum {
  957. DS3231_CLK_SQW = 0,
  958. DS3231_CLK_32KHZ,
  959. };
  960. #define clk_sqw_to_ds1307(clk) \
  961. container_of(clk, struct ds1307, clks[DS3231_CLK_SQW])
  962. #define clk_32khz_to_ds1307(clk) \
  963. container_of(clk, struct ds1307, clks[DS3231_CLK_32KHZ])
  964. static int ds3231_clk_sqw_rates[] = {
  965. 1,
  966. 1024,
  967. 4096,
  968. 8192,
  969. };
  970. static int ds1337_write_control(struct ds1307 *ds1307, u8 mask, u8 value)
  971. {
  972. struct mutex *lock = &ds1307->rtc->ops_lock;
  973. int ret;
  974. mutex_lock(lock);
  975. ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
  976. mask, value);
  977. mutex_unlock(lock);
  978. return ret;
  979. }
  980. static unsigned long ds3231_clk_sqw_recalc_rate(struct clk_hw *hw,
  981. unsigned long parent_rate)
  982. {
  983. struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
  984. int control, ret;
  985. int rate_sel = 0;
  986. ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
  987. if (ret)
  988. return ret;
  989. if (control & DS1337_BIT_RS1)
  990. rate_sel += 1;
  991. if (control & DS1337_BIT_RS2)
  992. rate_sel += 2;
  993. return ds3231_clk_sqw_rates[rate_sel];
  994. }
  995. static long ds3231_clk_sqw_round_rate(struct clk_hw *hw, unsigned long rate,
  996. unsigned long *prate)
  997. {
  998. int i;
  999. for (i = ARRAY_SIZE(ds3231_clk_sqw_rates) - 1; i >= 0; i--) {
  1000. if (ds3231_clk_sqw_rates[i] <= rate)
  1001. return ds3231_clk_sqw_rates[i];
  1002. }
  1003. return 0;
  1004. }
  1005. static int ds3231_clk_sqw_set_rate(struct clk_hw *hw, unsigned long rate,
  1006. unsigned long parent_rate)
  1007. {
  1008. struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
  1009. int control = 0;
  1010. int rate_sel;
  1011. for (rate_sel = 0; rate_sel < ARRAY_SIZE(ds3231_clk_sqw_rates);
  1012. rate_sel++) {
  1013. if (ds3231_clk_sqw_rates[rate_sel] == rate)
  1014. break;
  1015. }
  1016. if (rate_sel == ARRAY_SIZE(ds3231_clk_sqw_rates))
  1017. return -EINVAL;
  1018. if (rate_sel & 1)
  1019. control |= DS1337_BIT_RS1;
  1020. if (rate_sel & 2)
  1021. control |= DS1337_BIT_RS2;
  1022. return ds1337_write_control(ds1307, DS1337_BIT_RS1 | DS1337_BIT_RS2,
  1023. control);
  1024. }
  1025. static int ds3231_clk_sqw_prepare(struct clk_hw *hw)
  1026. {
  1027. struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
  1028. return ds1337_write_control(ds1307, DS1337_BIT_INTCN, 0);
  1029. }
  1030. static void ds3231_clk_sqw_unprepare(struct clk_hw *hw)
  1031. {
  1032. struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
  1033. ds1337_write_control(ds1307, DS1337_BIT_INTCN, DS1337_BIT_INTCN);
  1034. }
  1035. static int ds3231_clk_sqw_is_prepared(struct clk_hw *hw)
  1036. {
  1037. struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
  1038. int control, ret;
  1039. ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
  1040. if (ret)
  1041. return ret;
  1042. return !(control & DS1337_BIT_INTCN);
  1043. }
  1044. static const struct clk_ops ds3231_clk_sqw_ops = {
  1045. .prepare = ds3231_clk_sqw_prepare,
  1046. .unprepare = ds3231_clk_sqw_unprepare,
  1047. .is_prepared = ds3231_clk_sqw_is_prepared,
  1048. .recalc_rate = ds3231_clk_sqw_recalc_rate,
  1049. .round_rate = ds3231_clk_sqw_round_rate,
  1050. .set_rate = ds3231_clk_sqw_set_rate,
  1051. };
  1052. static unsigned long ds3231_clk_32khz_recalc_rate(struct clk_hw *hw,
  1053. unsigned long parent_rate)
  1054. {
  1055. return 32768;
  1056. }
  1057. static int ds3231_clk_32khz_control(struct ds1307 *ds1307, bool enable)
  1058. {
  1059. struct mutex *lock = &ds1307->rtc->ops_lock;
  1060. int ret;
  1061. mutex_lock(lock);
  1062. ret = regmap_update_bits(ds1307->regmap, DS1337_REG_STATUS,
  1063. DS3231_BIT_EN32KHZ,
  1064. enable ? DS3231_BIT_EN32KHZ : 0);
  1065. mutex_unlock(lock);
  1066. return ret;
  1067. }
  1068. static int ds3231_clk_32khz_prepare(struct clk_hw *hw)
  1069. {
  1070. struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
  1071. return ds3231_clk_32khz_control(ds1307, true);
  1072. }
  1073. static void ds3231_clk_32khz_unprepare(struct clk_hw *hw)
  1074. {
  1075. struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
  1076. ds3231_clk_32khz_control(ds1307, false);
  1077. }
  1078. static int ds3231_clk_32khz_is_prepared(struct clk_hw *hw)
  1079. {
  1080. struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
  1081. int status, ret;
  1082. ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &status);
  1083. if (ret)
  1084. return ret;
  1085. return !!(status & DS3231_BIT_EN32KHZ);
  1086. }
  1087. static const struct clk_ops ds3231_clk_32khz_ops = {
  1088. .prepare = ds3231_clk_32khz_prepare,
  1089. .unprepare = ds3231_clk_32khz_unprepare,
  1090. .is_prepared = ds3231_clk_32khz_is_prepared,
  1091. .recalc_rate = ds3231_clk_32khz_recalc_rate,
  1092. };
  1093. static struct clk_init_data ds3231_clks_init[] = {
  1094. [DS3231_CLK_SQW] = {
  1095. .name = "ds3231_clk_sqw",
  1096. .ops = &ds3231_clk_sqw_ops,
  1097. },
  1098. [DS3231_CLK_32KHZ] = {
  1099. .name = "ds3231_clk_32khz",
  1100. .ops = &ds3231_clk_32khz_ops,
  1101. },
  1102. };
  1103. static int ds3231_clks_register(struct ds1307 *ds1307)
  1104. {
  1105. struct device_node *node = ds1307->dev->of_node;
  1106. struct clk_onecell_data *onecell;
  1107. int i;
  1108. onecell = devm_kzalloc(ds1307->dev, sizeof(*onecell), GFP_KERNEL);
  1109. if (!onecell)
  1110. return -ENOMEM;
  1111. onecell->clk_num = ARRAY_SIZE(ds3231_clks_init);
  1112. onecell->clks = devm_kcalloc(ds1307->dev, onecell->clk_num,
  1113. sizeof(onecell->clks[0]), GFP_KERNEL);
  1114. if (!onecell->clks)
  1115. return -ENOMEM;
  1116. for (i = 0; i < ARRAY_SIZE(ds3231_clks_init); i++) {
  1117. struct clk_init_data init = ds3231_clks_init[i];
  1118. /*
  1119. * Interrupt signal due to alarm conditions and square-wave
  1120. * output share same pin, so don't initialize both.
  1121. */
  1122. if (i == DS3231_CLK_SQW && test_bit(HAS_ALARM, &ds1307->flags))
  1123. continue;
  1124. /* optional override of the clockname */
  1125. of_property_read_string_index(node, "clock-output-names", i,
  1126. &init.name);
  1127. ds1307->clks[i].init = &init;
  1128. onecell->clks[i] = devm_clk_register(ds1307->dev,
  1129. &ds1307->clks[i]);
  1130. if (IS_ERR(onecell->clks[i]))
  1131. return PTR_ERR(onecell->clks[i]);
  1132. }
  1133. if (!node)
  1134. return 0;
  1135. of_clk_add_provider(node, of_clk_src_onecell_get, onecell);
  1136. return 0;
  1137. }
  1138. static void ds1307_clks_register(struct ds1307 *ds1307)
  1139. {
  1140. int ret;
  1141. if (ds1307->type != ds_3231)
  1142. return;
  1143. ret = ds3231_clks_register(ds1307);
  1144. if (ret) {
  1145. dev_warn(ds1307->dev, "unable to register clock device %d\n",
  1146. ret);
  1147. }
  1148. }
  1149. #else
  1150. static void ds1307_clks_register(struct ds1307 *ds1307)
  1151. {
  1152. }
  1153. #endif /* CONFIG_COMMON_CLK */
  1154. static const struct regmap_config regmap_config = {
  1155. .reg_bits = 8,
  1156. .val_bits = 8,
  1157. .max_register = 0x9,
  1158. };
  1159. static int ds1307_probe(struct i2c_client *client,
  1160. const struct i2c_device_id *id)
  1161. {
  1162. struct ds1307 *ds1307;
  1163. int err = -ENODEV;
  1164. int tmp;
  1165. const struct chip_desc *chip;
  1166. bool want_irq;
  1167. bool ds1307_can_wakeup_device = false;
  1168. unsigned char regs[8];
  1169. struct ds1307_platform_data *pdata = dev_get_platdata(&client->dev);
  1170. u8 trickle_charger_setup = 0;
  1171. ds1307 = devm_kzalloc(&client->dev, sizeof(struct ds1307), GFP_KERNEL);
  1172. if (!ds1307)
  1173. return -ENOMEM;
  1174. dev_set_drvdata(&client->dev, ds1307);
  1175. ds1307->dev = &client->dev;
  1176. ds1307->name = client->name;
  1177. ds1307->regmap = devm_regmap_init_i2c(client, &regmap_config);
  1178. if (IS_ERR(ds1307->regmap)) {
  1179. dev_err(ds1307->dev, "regmap allocation failed\n");
  1180. return PTR_ERR(ds1307->regmap);
  1181. }
  1182. i2c_set_clientdata(client, ds1307);
  1183. if (client->dev.of_node) {
  1184. ds1307->type = (enum ds_type)
  1185. of_device_get_match_data(&client->dev);
  1186. chip = &chips[ds1307->type];
  1187. } else if (id) {
  1188. chip = &chips[id->driver_data];
  1189. ds1307->type = id->driver_data;
  1190. } else {
  1191. const struct acpi_device_id *acpi_id;
  1192. acpi_id = acpi_match_device(ACPI_PTR(ds1307_acpi_ids),
  1193. ds1307->dev);
  1194. if (!acpi_id)
  1195. return -ENODEV;
  1196. chip = &chips[acpi_id->driver_data];
  1197. ds1307->type = acpi_id->driver_data;
  1198. }
  1199. want_irq = client->irq > 0 && chip->alarm;
  1200. if (!pdata)
  1201. trickle_charger_setup = ds1307_trickle_init(ds1307, chip);
  1202. else if (pdata->trickle_charger_setup)
  1203. trickle_charger_setup = pdata->trickle_charger_setup;
  1204. if (trickle_charger_setup && chip->trickle_charger_reg) {
  1205. trickle_charger_setup |= DS13XX_TRICKLE_CHARGER_MAGIC;
  1206. dev_dbg(ds1307->dev,
  1207. "writing trickle charger info 0x%x to 0x%x\n",
  1208. trickle_charger_setup, chip->trickle_charger_reg);
  1209. regmap_write(ds1307->regmap, chip->trickle_charger_reg,
  1210. trickle_charger_setup);
  1211. }
  1212. #ifdef CONFIG_OF
  1213. /*
  1214. * For devices with no IRQ directly connected to the SoC, the RTC chip
  1215. * can be forced as a wakeup source by stating that explicitly in
  1216. * the device's .dts file using the "wakeup-source" boolean property.
  1217. * If the "wakeup-source" property is set, don't request an IRQ.
  1218. * This will guarantee the 'wakealarm' sysfs entry is available on the device,
  1219. * if supported by the RTC.
  1220. */
  1221. if (chip->alarm && of_property_read_bool(client->dev.of_node,
  1222. "wakeup-source"))
  1223. ds1307_can_wakeup_device = true;
  1224. #endif
  1225. switch (ds1307->type) {
  1226. case ds_1337:
  1227. case ds_1339:
  1228. case ds_1341:
  1229. case ds_3231:
  1230. /* get registers that the "rtc" read below won't read... */
  1231. err = regmap_bulk_read(ds1307->regmap, DS1337_REG_CONTROL,
  1232. regs, 2);
  1233. if (err) {
  1234. dev_dbg(ds1307->dev, "read error %d\n", err);
  1235. goto exit;
  1236. }
  1237. /* oscillator off? turn it on, so clock can tick. */
  1238. if (regs[0] & DS1337_BIT_nEOSC)
  1239. regs[0] &= ~DS1337_BIT_nEOSC;
  1240. /*
  1241. * Using IRQ or defined as wakeup-source?
  1242. * Disable the square wave and both alarms.
  1243. * For some variants, be sure alarms can trigger when we're
  1244. * running on Vbackup (BBSQI/BBSQW)
  1245. */
  1246. if (want_irq || ds1307_can_wakeup_device) {
  1247. regs[0] |= DS1337_BIT_INTCN | chip->bbsqi_bit;
  1248. regs[0] &= ~(DS1337_BIT_A2IE | DS1337_BIT_A1IE);
  1249. }
  1250. regmap_write(ds1307->regmap, DS1337_REG_CONTROL,
  1251. regs[0]);
  1252. /* oscillator fault? clear flag, and warn */
  1253. if (regs[1] & DS1337_BIT_OSF) {
  1254. regmap_write(ds1307->regmap, DS1337_REG_STATUS,
  1255. regs[1] & ~DS1337_BIT_OSF);
  1256. dev_warn(ds1307->dev, "SET TIME!\n");
  1257. }
  1258. break;
  1259. case rx_8025:
  1260. err = regmap_bulk_read(ds1307->regmap,
  1261. RX8025_REG_CTRL1 << 4 | 0x08, regs, 2);
  1262. if (err) {
  1263. dev_dbg(ds1307->dev, "read error %d\n", err);
  1264. goto exit;
  1265. }
  1266. /* oscillator off? turn it on, so clock can tick. */
  1267. if (!(regs[1] & RX8025_BIT_XST)) {
  1268. regs[1] |= RX8025_BIT_XST;
  1269. regmap_write(ds1307->regmap,
  1270. RX8025_REG_CTRL2 << 4 | 0x08,
  1271. regs[1]);
  1272. dev_warn(ds1307->dev,
  1273. "oscillator stop detected - SET TIME!\n");
  1274. }
  1275. if (regs[1] & RX8025_BIT_PON) {
  1276. regs[1] &= ~RX8025_BIT_PON;
  1277. regmap_write(ds1307->regmap,
  1278. RX8025_REG_CTRL2 << 4 | 0x08,
  1279. regs[1]);
  1280. dev_warn(ds1307->dev, "power-on detected\n");
  1281. }
  1282. if (regs[1] & RX8025_BIT_VDET) {
  1283. regs[1] &= ~RX8025_BIT_VDET;
  1284. regmap_write(ds1307->regmap,
  1285. RX8025_REG_CTRL2 << 4 | 0x08,
  1286. regs[1]);
  1287. dev_warn(ds1307->dev, "voltage drop detected\n");
  1288. }
  1289. /* make sure we are running in 24hour mode */
  1290. if (!(regs[0] & RX8025_BIT_2412)) {
  1291. u8 hour;
  1292. /* switch to 24 hour mode */
  1293. regmap_write(ds1307->regmap,
  1294. RX8025_REG_CTRL1 << 4 | 0x08,
  1295. regs[0] | RX8025_BIT_2412);
  1296. err = regmap_bulk_read(ds1307->regmap,
  1297. RX8025_REG_CTRL1 << 4 | 0x08,
  1298. regs, 2);
  1299. if (err) {
  1300. dev_dbg(ds1307->dev, "read error %d\n", err);
  1301. goto exit;
  1302. }
  1303. /* correct hour */
  1304. hour = bcd2bin(regs[DS1307_REG_HOUR]);
  1305. if (hour == 12)
  1306. hour = 0;
  1307. if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
  1308. hour += 12;
  1309. regmap_write(ds1307->regmap,
  1310. DS1307_REG_HOUR << 4 | 0x08, hour);
  1311. }
  1312. break;
  1313. default:
  1314. break;
  1315. }
  1316. read_rtc:
  1317. /* read RTC registers */
  1318. err = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
  1319. sizeof(regs));
  1320. if (err) {
  1321. dev_dbg(ds1307->dev, "read error %d\n", err);
  1322. goto exit;
  1323. }
  1324. /*
  1325. * minimal sanity checking; some chips (like DS1340) don't
  1326. * specify the extra bits as must-be-zero, but there are
  1327. * still a few values that are clearly out-of-range.
  1328. */
  1329. tmp = regs[DS1307_REG_SECS];
  1330. switch (ds1307->type) {
  1331. case ds_1307:
  1332. case m41t0:
  1333. case m41t00:
  1334. /* clock halted? turn it on, so clock can tick. */
  1335. if (tmp & DS1307_BIT_CH) {
  1336. regmap_write(ds1307->regmap, DS1307_REG_SECS, 0);
  1337. dev_warn(ds1307->dev, "SET TIME!\n");
  1338. goto read_rtc;
  1339. }
  1340. break;
  1341. case ds_1308:
  1342. case ds_1338:
  1343. /* clock halted? turn it on, so clock can tick. */
  1344. if (tmp & DS1307_BIT_CH)
  1345. regmap_write(ds1307->regmap, DS1307_REG_SECS, 0);
  1346. /* oscillator fault? clear flag, and warn */
  1347. if (regs[DS1307_REG_CONTROL] & DS1338_BIT_OSF) {
  1348. regmap_write(ds1307->regmap, DS1307_REG_CONTROL,
  1349. regs[DS1307_REG_CONTROL] &
  1350. ~DS1338_BIT_OSF);
  1351. dev_warn(ds1307->dev, "SET TIME!\n");
  1352. goto read_rtc;
  1353. }
  1354. break;
  1355. case ds_1340:
  1356. /* clock halted? turn it on, so clock can tick. */
  1357. if (tmp & DS1340_BIT_nEOSC)
  1358. regmap_write(ds1307->regmap, DS1307_REG_SECS, 0);
  1359. err = regmap_read(ds1307->regmap, DS1340_REG_FLAG, &tmp);
  1360. if (err) {
  1361. dev_dbg(ds1307->dev, "read error %d\n", err);
  1362. goto exit;
  1363. }
  1364. /* oscillator fault? clear flag, and warn */
  1365. if (tmp & DS1340_BIT_OSF) {
  1366. regmap_write(ds1307->regmap, DS1340_REG_FLAG, 0);
  1367. dev_warn(ds1307->dev, "SET TIME!\n");
  1368. }
  1369. break;
  1370. case mcp794xx:
  1371. /* make sure that the backup battery is enabled */
  1372. if (!(regs[DS1307_REG_WDAY] & MCP794XX_BIT_VBATEN)) {
  1373. regmap_write(ds1307->regmap, DS1307_REG_WDAY,
  1374. regs[DS1307_REG_WDAY] |
  1375. MCP794XX_BIT_VBATEN);
  1376. }
  1377. /* clock halted? turn it on, so clock can tick. */
  1378. if (!(tmp & MCP794XX_BIT_ST)) {
  1379. regmap_write(ds1307->regmap, DS1307_REG_SECS,
  1380. MCP794XX_BIT_ST);
  1381. dev_warn(ds1307->dev, "SET TIME!\n");
  1382. goto read_rtc;
  1383. }
  1384. break;
  1385. default:
  1386. break;
  1387. }
  1388. tmp = regs[DS1307_REG_HOUR];
  1389. switch (ds1307->type) {
  1390. case ds_1340:
  1391. case m41t0:
  1392. case m41t00:
  1393. /*
  1394. * NOTE: ignores century bits; fix before deploying
  1395. * systems that will run through year 2100.
  1396. */
  1397. break;
  1398. case rx_8025:
  1399. break;
  1400. default:
  1401. if (!(tmp & DS1307_BIT_12HR))
  1402. break;
  1403. /*
  1404. * Be sure we're in 24 hour mode. Multi-master systems
  1405. * take note...
  1406. */
  1407. tmp = bcd2bin(tmp & 0x1f);
  1408. if (tmp == 12)
  1409. tmp = 0;
  1410. if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
  1411. tmp += 12;
  1412. regmap_write(ds1307->regmap, chip->offset + DS1307_REG_HOUR,
  1413. bin2bcd(tmp));
  1414. }
  1415. if (want_irq || ds1307_can_wakeup_device) {
  1416. device_set_wakeup_capable(ds1307->dev, true);
  1417. set_bit(HAS_ALARM, &ds1307->flags);
  1418. }
  1419. ds1307->rtc = devm_rtc_allocate_device(ds1307->dev);
  1420. if (IS_ERR(ds1307->rtc))
  1421. return PTR_ERR(ds1307->rtc);
  1422. if (ds1307_can_wakeup_device && !want_irq) {
  1423. dev_info(ds1307->dev,
  1424. "'wakeup-source' is set, request for an IRQ is disabled!\n");
  1425. /* We cannot support UIE mode if we do not have an IRQ line */
  1426. ds1307->rtc->uie_unsupported = 1;
  1427. }
  1428. if (want_irq) {
  1429. err = devm_request_threaded_irq(ds1307->dev, client->irq, NULL,
  1430. chip->irq_handler ?: ds1307_irq,
  1431. IRQF_SHARED | IRQF_ONESHOT,
  1432. ds1307->name, ds1307);
  1433. if (err) {
  1434. client->irq = 0;
  1435. device_set_wakeup_capable(ds1307->dev, false);
  1436. clear_bit(HAS_ALARM, &ds1307->flags);
  1437. dev_err(ds1307->dev, "unable to request IRQ!\n");
  1438. } else {
  1439. dev_dbg(ds1307->dev, "got IRQ %d\n", client->irq);
  1440. }
  1441. }
  1442. ds1307->rtc->ops = chip->rtc_ops ?: &ds13xx_rtc_ops;
  1443. err = rtc_register_device(ds1307->rtc);
  1444. if (err)
  1445. return err;
  1446. if (chip->nvram_size) {
  1447. struct nvmem_config nvmem_cfg = {
  1448. .name = "ds1307_nvram",
  1449. .word_size = 1,
  1450. .stride = 1,
  1451. .size = chip->nvram_size,
  1452. .reg_read = ds1307_nvram_read,
  1453. .reg_write = ds1307_nvram_write,
  1454. .priv = ds1307,
  1455. };
  1456. ds1307->rtc->nvram_old_abi = true;
  1457. rtc_nvmem_register(ds1307->rtc, &nvmem_cfg);
  1458. }
  1459. ds1307_hwmon_register(ds1307);
  1460. ds1307_clks_register(ds1307);
  1461. return 0;
  1462. exit:
  1463. return err;
  1464. }
  1465. static struct i2c_driver ds1307_driver = {
  1466. .driver = {
  1467. .name = "rtc-ds1307",
  1468. .of_match_table = of_match_ptr(ds1307_of_match),
  1469. .acpi_match_table = ACPI_PTR(ds1307_acpi_ids),
  1470. },
  1471. .probe = ds1307_probe,
  1472. .id_table = ds1307_id,
  1473. };
  1474. module_i2c_driver(ds1307_driver);
  1475. MODULE_DESCRIPTION("RTC driver for DS1307 and similar chips");
  1476. MODULE_LICENSE("GPL");