stm32-hash.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580
  1. /*
  2. * This file is part of STM32 Crypto driver for Linux.
  3. *
  4. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  5. * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
  6. *
  7. * License terms: GPL V2.0.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License version 2 as published by
  11. * the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
  16. * details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include <linux/clk.h>
  23. #include <linux/crypto.h>
  24. #include <linux/delay.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/io.h>
  28. #include <linux/iopoll.h>
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/of_device.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/reset.h>
  34. #include <crypto/engine.h>
  35. #include <crypto/hash.h>
  36. #include <crypto/md5.h>
  37. #include <crypto/scatterwalk.h>
  38. #include <crypto/sha.h>
  39. #include <crypto/internal/hash.h>
  40. #define HASH_CR 0x00
  41. #define HASH_DIN 0x04
  42. #define HASH_STR 0x08
  43. #define HASH_IMR 0x20
  44. #define HASH_SR 0x24
  45. #define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
  46. #define HASH_HREG(x) (0x310 + ((x) * 0x04))
  47. #define HASH_HWCFGR 0x3F0
  48. #define HASH_VER 0x3F4
  49. #define HASH_ID 0x3F8
  50. /* Control Register */
  51. #define HASH_CR_INIT BIT(2)
  52. #define HASH_CR_DMAE BIT(3)
  53. #define HASH_CR_DATATYPE_POS 4
  54. #define HASH_CR_MODE BIT(6)
  55. #define HASH_CR_MDMAT BIT(13)
  56. #define HASH_CR_DMAA BIT(14)
  57. #define HASH_CR_LKEY BIT(16)
  58. #define HASH_CR_ALGO_SHA1 0x0
  59. #define HASH_CR_ALGO_MD5 0x80
  60. #define HASH_CR_ALGO_SHA224 0x40000
  61. #define HASH_CR_ALGO_SHA256 0x40080
  62. /* Interrupt */
  63. #define HASH_DINIE BIT(0)
  64. #define HASH_DCIE BIT(1)
  65. /* Interrupt Mask */
  66. #define HASH_MASK_CALC_COMPLETION BIT(0)
  67. #define HASH_MASK_DATA_INPUT BIT(1)
  68. /* Context swap register */
  69. #define HASH_CSR_REGISTER_NUMBER 53
  70. /* Status Flags */
  71. #define HASH_SR_DATA_INPUT_READY BIT(0)
  72. #define HASH_SR_OUTPUT_READY BIT(1)
  73. #define HASH_SR_DMA_ACTIVE BIT(2)
  74. #define HASH_SR_BUSY BIT(3)
  75. /* STR Register */
  76. #define HASH_STR_NBLW_MASK GENMASK(4, 0)
  77. #define HASH_STR_DCAL BIT(8)
  78. #define HASH_FLAGS_INIT BIT(0)
  79. #define HASH_FLAGS_OUTPUT_READY BIT(1)
  80. #define HASH_FLAGS_CPU BIT(2)
  81. #define HASH_FLAGS_DMA_READY BIT(3)
  82. #define HASH_FLAGS_DMA_ACTIVE BIT(4)
  83. #define HASH_FLAGS_HMAC_INIT BIT(5)
  84. #define HASH_FLAGS_HMAC_FINAL BIT(6)
  85. #define HASH_FLAGS_HMAC_KEY BIT(7)
  86. #define HASH_FLAGS_FINAL BIT(15)
  87. #define HASH_FLAGS_FINUP BIT(16)
  88. #define HASH_FLAGS_ALGO_MASK GENMASK(21, 18)
  89. #define HASH_FLAGS_MD5 BIT(18)
  90. #define HASH_FLAGS_SHA1 BIT(19)
  91. #define HASH_FLAGS_SHA224 BIT(20)
  92. #define HASH_FLAGS_SHA256 BIT(21)
  93. #define HASH_FLAGS_ERRORS BIT(22)
  94. #define HASH_FLAGS_HMAC BIT(23)
  95. #define HASH_OP_UPDATE 1
  96. #define HASH_OP_FINAL 2
  97. enum stm32_hash_data_format {
  98. HASH_DATA_32_BITS = 0x0,
  99. HASH_DATA_16_BITS = 0x1,
  100. HASH_DATA_8_BITS = 0x2,
  101. HASH_DATA_1_BIT = 0x3
  102. };
  103. #define HASH_BUFLEN 256
  104. #define HASH_LONG_KEY 64
  105. #define HASH_MAX_KEY_SIZE (SHA256_BLOCK_SIZE * 8)
  106. #define HASH_QUEUE_LENGTH 16
  107. #define HASH_DMA_THRESHOLD 50
  108. struct stm32_hash_ctx {
  109. struct crypto_engine_ctx enginectx;
  110. struct stm32_hash_dev *hdev;
  111. unsigned long flags;
  112. u8 key[HASH_MAX_KEY_SIZE];
  113. int keylen;
  114. };
  115. struct stm32_hash_request_ctx {
  116. struct stm32_hash_dev *hdev;
  117. unsigned long flags;
  118. unsigned long op;
  119. u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
  120. size_t digcnt;
  121. size_t bufcnt;
  122. size_t buflen;
  123. /* DMA */
  124. struct scatterlist *sg;
  125. unsigned int offset;
  126. unsigned int total;
  127. struct scatterlist sg_key;
  128. dma_addr_t dma_addr;
  129. size_t dma_ct;
  130. int nents;
  131. u8 data_type;
  132. u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
  133. /* Export Context */
  134. u32 *hw_context;
  135. };
  136. struct stm32_hash_algs_info {
  137. struct ahash_alg *algs_list;
  138. size_t size;
  139. };
  140. struct stm32_hash_pdata {
  141. struct stm32_hash_algs_info *algs_info;
  142. size_t algs_info_size;
  143. };
  144. struct stm32_hash_dev {
  145. struct list_head list;
  146. struct device *dev;
  147. struct clk *clk;
  148. struct reset_control *rst;
  149. void __iomem *io_base;
  150. phys_addr_t phys_base;
  151. u32 dma_mode;
  152. u32 dma_maxburst;
  153. spinlock_t lock; /* lock to protect queue */
  154. struct ahash_request *req;
  155. struct crypto_engine *engine;
  156. int err;
  157. unsigned long flags;
  158. struct dma_chan *dma_lch;
  159. struct completion dma_completion;
  160. const struct stm32_hash_pdata *pdata;
  161. };
  162. struct stm32_hash_drv {
  163. struct list_head dev_list;
  164. spinlock_t lock; /* List protection access */
  165. };
  166. static struct stm32_hash_drv stm32_hash = {
  167. .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
  168. .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
  169. };
  170. static void stm32_hash_dma_callback(void *param);
  171. static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
  172. {
  173. return readl_relaxed(hdev->io_base + offset);
  174. }
  175. static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
  176. u32 offset, u32 value)
  177. {
  178. writel_relaxed(value, hdev->io_base + offset);
  179. }
  180. static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
  181. {
  182. u32 status;
  183. return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
  184. !(status & HASH_SR_BUSY), 10, 10000);
  185. }
  186. static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
  187. {
  188. u32 reg;
  189. reg = stm32_hash_read(hdev, HASH_STR);
  190. reg &= ~(HASH_STR_NBLW_MASK);
  191. reg |= (8U * ((length) % 4U));
  192. stm32_hash_write(hdev, HASH_STR, reg);
  193. }
  194. static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
  195. {
  196. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  197. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  198. u32 reg;
  199. int keylen = ctx->keylen;
  200. void *key = ctx->key;
  201. if (keylen) {
  202. stm32_hash_set_nblw(hdev, keylen);
  203. while (keylen > 0) {
  204. stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
  205. keylen -= 4;
  206. key += 4;
  207. }
  208. reg = stm32_hash_read(hdev, HASH_STR);
  209. reg |= HASH_STR_DCAL;
  210. stm32_hash_write(hdev, HASH_STR, reg);
  211. return -EINPROGRESS;
  212. }
  213. return 0;
  214. }
  215. static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
  216. {
  217. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  218. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  219. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  220. u32 reg = HASH_CR_INIT;
  221. if (!(hdev->flags & HASH_FLAGS_INIT)) {
  222. switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
  223. case HASH_FLAGS_MD5:
  224. reg |= HASH_CR_ALGO_MD5;
  225. break;
  226. case HASH_FLAGS_SHA1:
  227. reg |= HASH_CR_ALGO_SHA1;
  228. break;
  229. case HASH_FLAGS_SHA224:
  230. reg |= HASH_CR_ALGO_SHA224;
  231. break;
  232. case HASH_FLAGS_SHA256:
  233. reg |= HASH_CR_ALGO_SHA256;
  234. break;
  235. default:
  236. reg |= HASH_CR_ALGO_MD5;
  237. }
  238. reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
  239. if (rctx->flags & HASH_FLAGS_HMAC) {
  240. hdev->flags |= HASH_FLAGS_HMAC;
  241. reg |= HASH_CR_MODE;
  242. if (ctx->keylen > HASH_LONG_KEY)
  243. reg |= HASH_CR_LKEY;
  244. }
  245. stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
  246. stm32_hash_write(hdev, HASH_CR, reg);
  247. hdev->flags |= HASH_FLAGS_INIT;
  248. dev_dbg(hdev->dev, "Write Control %x\n", reg);
  249. }
  250. }
  251. static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
  252. {
  253. size_t count;
  254. while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
  255. count = min(rctx->sg->length - rctx->offset, rctx->total);
  256. count = min(count, rctx->buflen - rctx->bufcnt);
  257. if (count <= 0) {
  258. if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
  259. rctx->sg = sg_next(rctx->sg);
  260. continue;
  261. } else {
  262. break;
  263. }
  264. }
  265. scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
  266. rctx->offset, count, 0);
  267. rctx->bufcnt += count;
  268. rctx->offset += count;
  269. rctx->total -= count;
  270. if (rctx->offset == rctx->sg->length) {
  271. rctx->sg = sg_next(rctx->sg);
  272. if (rctx->sg)
  273. rctx->offset = 0;
  274. else
  275. rctx->total = 0;
  276. }
  277. }
  278. }
  279. static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
  280. const u8 *buf, size_t length, int final)
  281. {
  282. unsigned int count, len32;
  283. const u32 *buffer = (const u32 *)buf;
  284. u32 reg;
  285. if (final)
  286. hdev->flags |= HASH_FLAGS_FINAL;
  287. len32 = DIV_ROUND_UP(length, sizeof(u32));
  288. dev_dbg(hdev->dev, "%s: length: %d, final: %x len32 %i\n",
  289. __func__, length, final, len32);
  290. hdev->flags |= HASH_FLAGS_CPU;
  291. stm32_hash_write_ctrl(hdev);
  292. if (stm32_hash_wait_busy(hdev))
  293. return -ETIMEDOUT;
  294. if ((hdev->flags & HASH_FLAGS_HMAC) &&
  295. (hdev->flags & ~HASH_FLAGS_HMAC_KEY)) {
  296. hdev->flags |= HASH_FLAGS_HMAC_KEY;
  297. stm32_hash_write_key(hdev);
  298. if (stm32_hash_wait_busy(hdev))
  299. return -ETIMEDOUT;
  300. }
  301. for (count = 0; count < len32; count++)
  302. stm32_hash_write(hdev, HASH_DIN, buffer[count]);
  303. if (final) {
  304. stm32_hash_set_nblw(hdev, length);
  305. reg = stm32_hash_read(hdev, HASH_STR);
  306. reg |= HASH_STR_DCAL;
  307. stm32_hash_write(hdev, HASH_STR, reg);
  308. if (hdev->flags & HASH_FLAGS_HMAC) {
  309. if (stm32_hash_wait_busy(hdev))
  310. return -ETIMEDOUT;
  311. stm32_hash_write_key(hdev);
  312. }
  313. return -EINPROGRESS;
  314. }
  315. return 0;
  316. }
  317. static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
  318. {
  319. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  320. int bufcnt, err = 0, final;
  321. dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
  322. final = (rctx->flags & HASH_FLAGS_FINUP);
  323. while ((rctx->total >= rctx->buflen) ||
  324. (rctx->bufcnt + rctx->total >= rctx->buflen)) {
  325. stm32_hash_append_sg(rctx);
  326. bufcnt = rctx->bufcnt;
  327. rctx->bufcnt = 0;
  328. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
  329. }
  330. stm32_hash_append_sg(rctx);
  331. if (final) {
  332. bufcnt = rctx->bufcnt;
  333. rctx->bufcnt = 0;
  334. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
  335. (rctx->flags & HASH_FLAGS_FINUP));
  336. }
  337. return err;
  338. }
  339. static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
  340. struct scatterlist *sg, int length, int mdma)
  341. {
  342. struct dma_async_tx_descriptor *in_desc;
  343. dma_cookie_t cookie;
  344. u32 reg;
  345. int err;
  346. in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
  347. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
  348. DMA_CTRL_ACK);
  349. if (!in_desc) {
  350. dev_err(hdev->dev, "dmaengine_prep_slave error\n");
  351. return -ENOMEM;
  352. }
  353. reinit_completion(&hdev->dma_completion);
  354. in_desc->callback = stm32_hash_dma_callback;
  355. in_desc->callback_param = hdev;
  356. hdev->flags |= HASH_FLAGS_FINAL;
  357. hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
  358. reg = stm32_hash_read(hdev, HASH_CR);
  359. if (mdma)
  360. reg |= HASH_CR_MDMAT;
  361. else
  362. reg &= ~HASH_CR_MDMAT;
  363. reg |= HASH_CR_DMAE;
  364. stm32_hash_write(hdev, HASH_CR, reg);
  365. stm32_hash_set_nblw(hdev, length);
  366. cookie = dmaengine_submit(in_desc);
  367. err = dma_submit_error(cookie);
  368. if (err)
  369. return -ENOMEM;
  370. dma_async_issue_pending(hdev->dma_lch);
  371. if (!wait_for_completion_interruptible_timeout(&hdev->dma_completion,
  372. msecs_to_jiffies(100)))
  373. err = -ETIMEDOUT;
  374. if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
  375. NULL, NULL) != DMA_COMPLETE)
  376. err = -ETIMEDOUT;
  377. if (err) {
  378. dev_err(hdev->dev, "DMA Error %i\n", err);
  379. dmaengine_terminate_all(hdev->dma_lch);
  380. return err;
  381. }
  382. return -EINPROGRESS;
  383. }
  384. static void stm32_hash_dma_callback(void *param)
  385. {
  386. struct stm32_hash_dev *hdev = param;
  387. complete(&hdev->dma_completion);
  388. hdev->flags |= HASH_FLAGS_DMA_READY;
  389. }
  390. static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
  391. {
  392. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  393. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  394. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  395. int err;
  396. if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
  397. err = stm32_hash_write_key(hdev);
  398. if (stm32_hash_wait_busy(hdev))
  399. return -ETIMEDOUT;
  400. } else {
  401. if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
  402. sg_init_one(&rctx->sg_key, ctx->key,
  403. ALIGN(ctx->keylen, sizeof(u32)));
  404. rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
  405. DMA_TO_DEVICE);
  406. if (rctx->dma_ct == 0) {
  407. dev_err(hdev->dev, "dma_map_sg error\n");
  408. return -ENOMEM;
  409. }
  410. err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
  411. dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
  412. }
  413. return err;
  414. }
  415. static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
  416. {
  417. struct dma_slave_config dma_conf;
  418. int err;
  419. memset(&dma_conf, 0, sizeof(dma_conf));
  420. dma_conf.direction = DMA_MEM_TO_DEV;
  421. dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
  422. dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  423. dma_conf.src_maxburst = hdev->dma_maxburst;
  424. dma_conf.dst_maxburst = hdev->dma_maxburst;
  425. dma_conf.device_fc = false;
  426. hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
  427. if (!hdev->dma_lch) {
  428. dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
  429. return -EBUSY;
  430. }
  431. err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
  432. if (err) {
  433. dma_release_channel(hdev->dma_lch);
  434. hdev->dma_lch = NULL;
  435. dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
  436. return err;
  437. }
  438. init_completion(&hdev->dma_completion);
  439. return 0;
  440. }
  441. static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
  442. {
  443. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  444. struct scatterlist sg[1], *tsg;
  445. int err = 0, len = 0, reg, ncp = 0;
  446. unsigned int i;
  447. u32 *buffer = (void *)rctx->buffer;
  448. rctx->sg = hdev->req->src;
  449. rctx->total = hdev->req->nbytes;
  450. rctx->nents = sg_nents(rctx->sg);
  451. if (rctx->nents < 0)
  452. return -EINVAL;
  453. stm32_hash_write_ctrl(hdev);
  454. if (hdev->flags & HASH_FLAGS_HMAC) {
  455. err = stm32_hash_hmac_dma_send(hdev);
  456. if (err != -EINPROGRESS)
  457. return err;
  458. }
  459. for_each_sg(rctx->sg, tsg, rctx->nents, i) {
  460. len = sg->length;
  461. sg[0] = *tsg;
  462. if (sg_is_last(sg)) {
  463. if (hdev->dma_mode == 1) {
  464. len = (ALIGN(sg->length, 16) - 16);
  465. ncp = sg_pcopy_to_buffer(
  466. rctx->sg, rctx->nents,
  467. rctx->buffer, sg->length - len,
  468. rctx->total - sg->length + len);
  469. sg->length = len;
  470. } else {
  471. if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
  472. len = sg->length;
  473. sg->length = ALIGN(sg->length,
  474. sizeof(u32));
  475. }
  476. }
  477. }
  478. rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
  479. DMA_TO_DEVICE);
  480. if (rctx->dma_ct == 0) {
  481. dev_err(hdev->dev, "dma_map_sg error\n");
  482. return -ENOMEM;
  483. }
  484. err = stm32_hash_xmit_dma(hdev, sg, len,
  485. !sg_is_last(sg));
  486. dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
  487. if (err == -ENOMEM)
  488. return err;
  489. }
  490. if (hdev->dma_mode == 1) {
  491. if (stm32_hash_wait_busy(hdev))
  492. return -ETIMEDOUT;
  493. reg = stm32_hash_read(hdev, HASH_CR);
  494. reg &= ~HASH_CR_DMAE;
  495. reg |= HASH_CR_DMAA;
  496. stm32_hash_write(hdev, HASH_CR, reg);
  497. if (ncp) {
  498. memset(buffer + ncp, 0,
  499. DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
  500. writesl(hdev->io_base + HASH_DIN, buffer,
  501. DIV_ROUND_UP(ncp, sizeof(u32)));
  502. }
  503. stm32_hash_set_nblw(hdev, ncp);
  504. reg = stm32_hash_read(hdev, HASH_STR);
  505. reg |= HASH_STR_DCAL;
  506. stm32_hash_write(hdev, HASH_STR, reg);
  507. err = -EINPROGRESS;
  508. }
  509. if (hdev->flags & HASH_FLAGS_HMAC) {
  510. if (stm32_hash_wait_busy(hdev))
  511. return -ETIMEDOUT;
  512. err = stm32_hash_hmac_dma_send(hdev);
  513. }
  514. return err;
  515. }
  516. static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
  517. {
  518. struct stm32_hash_dev *hdev = NULL, *tmp;
  519. spin_lock_bh(&stm32_hash.lock);
  520. if (!ctx->hdev) {
  521. list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
  522. hdev = tmp;
  523. break;
  524. }
  525. ctx->hdev = hdev;
  526. } else {
  527. hdev = ctx->hdev;
  528. }
  529. spin_unlock_bh(&stm32_hash.lock);
  530. return hdev;
  531. }
  532. static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
  533. {
  534. struct scatterlist *sg;
  535. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  536. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  537. int i;
  538. if (req->nbytes <= HASH_DMA_THRESHOLD)
  539. return false;
  540. if (sg_nents(req->src) > 1) {
  541. if (hdev->dma_mode == 1)
  542. return false;
  543. for_each_sg(req->src, sg, sg_nents(req->src), i) {
  544. if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
  545. (!sg_is_last(sg)))
  546. return false;
  547. }
  548. }
  549. if (req->src->offset % 4)
  550. return false;
  551. return true;
  552. }
  553. static int stm32_hash_init(struct ahash_request *req)
  554. {
  555. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  556. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  557. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  558. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  559. rctx->hdev = hdev;
  560. rctx->flags = HASH_FLAGS_CPU;
  561. rctx->digcnt = crypto_ahash_digestsize(tfm);
  562. switch (rctx->digcnt) {
  563. case MD5_DIGEST_SIZE:
  564. rctx->flags |= HASH_FLAGS_MD5;
  565. break;
  566. case SHA1_DIGEST_SIZE:
  567. rctx->flags |= HASH_FLAGS_SHA1;
  568. break;
  569. case SHA224_DIGEST_SIZE:
  570. rctx->flags |= HASH_FLAGS_SHA224;
  571. break;
  572. case SHA256_DIGEST_SIZE:
  573. rctx->flags |= HASH_FLAGS_SHA256;
  574. break;
  575. default:
  576. return -EINVAL;
  577. }
  578. rctx->bufcnt = 0;
  579. rctx->buflen = HASH_BUFLEN;
  580. rctx->total = 0;
  581. rctx->offset = 0;
  582. rctx->data_type = HASH_DATA_8_BITS;
  583. memset(rctx->buffer, 0, HASH_BUFLEN);
  584. if (ctx->flags & HASH_FLAGS_HMAC)
  585. rctx->flags |= HASH_FLAGS_HMAC;
  586. dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
  587. return 0;
  588. }
  589. static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
  590. {
  591. return stm32_hash_update_cpu(hdev);
  592. }
  593. static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
  594. {
  595. struct ahash_request *req = hdev->req;
  596. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  597. int err;
  598. int buflen = rctx->bufcnt;
  599. rctx->bufcnt = 0;
  600. if (!(rctx->flags & HASH_FLAGS_CPU))
  601. err = stm32_hash_dma_send(hdev);
  602. else
  603. err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
  604. return err;
  605. }
  606. static void stm32_hash_copy_hash(struct ahash_request *req)
  607. {
  608. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  609. u32 *hash = (u32 *)rctx->digest;
  610. unsigned int i, hashsize;
  611. switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
  612. case HASH_FLAGS_MD5:
  613. hashsize = MD5_DIGEST_SIZE;
  614. break;
  615. case HASH_FLAGS_SHA1:
  616. hashsize = SHA1_DIGEST_SIZE;
  617. break;
  618. case HASH_FLAGS_SHA224:
  619. hashsize = SHA224_DIGEST_SIZE;
  620. break;
  621. case HASH_FLAGS_SHA256:
  622. hashsize = SHA256_DIGEST_SIZE;
  623. break;
  624. default:
  625. return;
  626. }
  627. for (i = 0; i < hashsize / sizeof(u32); i++)
  628. hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
  629. HASH_HREG(i)));
  630. }
  631. static int stm32_hash_finish(struct ahash_request *req)
  632. {
  633. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  634. if (!req->result)
  635. return -EINVAL;
  636. memcpy(req->result, rctx->digest, rctx->digcnt);
  637. return 0;
  638. }
  639. static void stm32_hash_finish_req(struct ahash_request *req, int err)
  640. {
  641. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  642. struct stm32_hash_dev *hdev = rctx->hdev;
  643. if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
  644. stm32_hash_copy_hash(req);
  645. err = stm32_hash_finish(req);
  646. hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
  647. HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
  648. HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
  649. HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
  650. HASH_FLAGS_HMAC_KEY);
  651. } else {
  652. rctx->flags |= HASH_FLAGS_ERRORS;
  653. }
  654. crypto_finalize_hash_request(hdev->engine, req, err);
  655. }
  656. static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
  657. struct stm32_hash_request_ctx *rctx)
  658. {
  659. if (!(HASH_FLAGS_INIT & hdev->flags)) {
  660. stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
  661. stm32_hash_write(hdev, HASH_STR, 0);
  662. stm32_hash_write(hdev, HASH_DIN, 0);
  663. stm32_hash_write(hdev, HASH_IMR, 0);
  664. hdev->err = 0;
  665. }
  666. return 0;
  667. }
  668. static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
  669. static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
  670. static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
  671. struct ahash_request *req)
  672. {
  673. return crypto_transfer_hash_request_to_engine(hdev->engine, req);
  674. }
  675. static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
  676. {
  677. struct ahash_request *req = container_of(areq, struct ahash_request,
  678. base);
  679. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  680. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  681. struct stm32_hash_request_ctx *rctx;
  682. if (!hdev)
  683. return -ENODEV;
  684. hdev->req = req;
  685. rctx = ahash_request_ctx(req);
  686. dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
  687. rctx->op, req->nbytes);
  688. return stm32_hash_hw_init(hdev, rctx);
  689. }
  690. static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
  691. {
  692. struct ahash_request *req = container_of(areq, struct ahash_request,
  693. base);
  694. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  695. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  696. struct stm32_hash_request_ctx *rctx;
  697. int err = 0;
  698. if (!hdev)
  699. return -ENODEV;
  700. hdev->req = req;
  701. rctx = ahash_request_ctx(req);
  702. if (rctx->op == HASH_OP_UPDATE)
  703. err = stm32_hash_update_req(hdev);
  704. else if (rctx->op == HASH_OP_FINAL)
  705. err = stm32_hash_final_req(hdev);
  706. if (err != -EINPROGRESS)
  707. /* done task will not finish it, so do it here */
  708. stm32_hash_finish_req(req, err);
  709. return 0;
  710. }
  711. static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
  712. {
  713. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  714. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  715. struct stm32_hash_dev *hdev = ctx->hdev;
  716. rctx->op = op;
  717. return stm32_hash_handle_queue(hdev, req);
  718. }
  719. static int stm32_hash_update(struct ahash_request *req)
  720. {
  721. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  722. if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
  723. return 0;
  724. rctx->total = req->nbytes;
  725. rctx->sg = req->src;
  726. rctx->offset = 0;
  727. if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
  728. stm32_hash_append_sg(rctx);
  729. return 0;
  730. }
  731. return stm32_hash_enqueue(req, HASH_OP_UPDATE);
  732. }
  733. static int stm32_hash_final(struct ahash_request *req)
  734. {
  735. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  736. rctx->flags |= HASH_FLAGS_FINUP;
  737. return stm32_hash_enqueue(req, HASH_OP_FINAL);
  738. }
  739. static int stm32_hash_finup(struct ahash_request *req)
  740. {
  741. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  742. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  743. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  744. int err1, err2;
  745. rctx->flags |= HASH_FLAGS_FINUP;
  746. if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
  747. rctx->flags &= ~HASH_FLAGS_CPU;
  748. err1 = stm32_hash_update(req);
  749. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  750. return err1;
  751. /*
  752. * final() has to be always called to cleanup resources
  753. * even if update() failed, except EINPROGRESS
  754. */
  755. err2 = stm32_hash_final(req);
  756. return err1 ?: err2;
  757. }
  758. static int stm32_hash_digest(struct ahash_request *req)
  759. {
  760. return stm32_hash_init(req) ?: stm32_hash_finup(req);
  761. }
  762. static int stm32_hash_export(struct ahash_request *req, void *out)
  763. {
  764. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  765. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  766. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  767. u32 *preg;
  768. unsigned int i;
  769. while (!(stm32_hash_read(hdev, HASH_SR) & HASH_SR_DATA_INPUT_READY))
  770. cpu_relax();
  771. rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
  772. sizeof(u32),
  773. GFP_KERNEL);
  774. preg = rctx->hw_context;
  775. *preg++ = stm32_hash_read(hdev, HASH_IMR);
  776. *preg++ = stm32_hash_read(hdev, HASH_STR);
  777. *preg++ = stm32_hash_read(hdev, HASH_CR);
  778. for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
  779. *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
  780. memcpy(out, rctx, sizeof(*rctx));
  781. return 0;
  782. }
  783. static int stm32_hash_import(struct ahash_request *req, const void *in)
  784. {
  785. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  786. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  787. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  788. const u32 *preg = in;
  789. u32 reg;
  790. unsigned int i;
  791. memcpy(rctx, in, sizeof(*rctx));
  792. preg = rctx->hw_context;
  793. stm32_hash_write(hdev, HASH_IMR, *preg++);
  794. stm32_hash_write(hdev, HASH_STR, *preg++);
  795. stm32_hash_write(hdev, HASH_CR, *preg);
  796. reg = *preg++ | HASH_CR_INIT;
  797. stm32_hash_write(hdev, HASH_CR, reg);
  798. for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
  799. stm32_hash_write(hdev, HASH_CSR(i), *preg++);
  800. kfree(rctx->hw_context);
  801. return 0;
  802. }
  803. static int stm32_hash_setkey(struct crypto_ahash *tfm,
  804. const u8 *key, unsigned int keylen)
  805. {
  806. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  807. if (keylen <= HASH_MAX_KEY_SIZE) {
  808. memcpy(ctx->key, key, keylen);
  809. ctx->keylen = keylen;
  810. } else {
  811. return -ENOMEM;
  812. }
  813. return 0;
  814. }
  815. static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
  816. const char *algs_hmac_name)
  817. {
  818. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  819. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  820. sizeof(struct stm32_hash_request_ctx));
  821. ctx->keylen = 0;
  822. if (algs_hmac_name)
  823. ctx->flags |= HASH_FLAGS_HMAC;
  824. ctx->enginectx.op.do_one_request = stm32_hash_one_request;
  825. ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
  826. ctx->enginectx.op.unprepare_request = NULL;
  827. return 0;
  828. }
  829. static int stm32_hash_cra_init(struct crypto_tfm *tfm)
  830. {
  831. return stm32_hash_cra_init_algs(tfm, NULL);
  832. }
  833. static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
  834. {
  835. return stm32_hash_cra_init_algs(tfm, "md5");
  836. }
  837. static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
  838. {
  839. return stm32_hash_cra_init_algs(tfm, "sha1");
  840. }
  841. static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
  842. {
  843. return stm32_hash_cra_init_algs(tfm, "sha224");
  844. }
  845. static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
  846. {
  847. return stm32_hash_cra_init_algs(tfm, "sha256");
  848. }
  849. static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
  850. {
  851. struct stm32_hash_dev *hdev = dev_id;
  852. if (HASH_FLAGS_CPU & hdev->flags) {
  853. if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
  854. hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
  855. goto finish;
  856. }
  857. } else if (HASH_FLAGS_DMA_READY & hdev->flags) {
  858. if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
  859. hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
  860. goto finish;
  861. }
  862. }
  863. return IRQ_HANDLED;
  864. finish:
  865. /* Finish current request */
  866. stm32_hash_finish_req(hdev->req, 0);
  867. return IRQ_HANDLED;
  868. }
  869. static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
  870. {
  871. struct stm32_hash_dev *hdev = dev_id;
  872. u32 reg;
  873. reg = stm32_hash_read(hdev, HASH_SR);
  874. if (reg & HASH_SR_OUTPUT_READY) {
  875. reg &= ~HASH_SR_OUTPUT_READY;
  876. stm32_hash_write(hdev, HASH_SR, reg);
  877. hdev->flags |= HASH_FLAGS_OUTPUT_READY;
  878. /* Disable IT*/
  879. stm32_hash_write(hdev, HASH_IMR, 0);
  880. return IRQ_WAKE_THREAD;
  881. }
  882. return IRQ_NONE;
  883. }
  884. static struct ahash_alg algs_md5_sha1[] = {
  885. {
  886. .init = stm32_hash_init,
  887. .update = stm32_hash_update,
  888. .final = stm32_hash_final,
  889. .finup = stm32_hash_finup,
  890. .digest = stm32_hash_digest,
  891. .export = stm32_hash_export,
  892. .import = stm32_hash_import,
  893. .halg = {
  894. .digestsize = MD5_DIGEST_SIZE,
  895. .statesize = sizeof(struct stm32_hash_request_ctx),
  896. .base = {
  897. .cra_name = "md5",
  898. .cra_driver_name = "stm32-md5",
  899. .cra_priority = 200,
  900. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  901. CRYPTO_ALG_ASYNC |
  902. CRYPTO_ALG_KERN_DRIVER_ONLY,
  903. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  904. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  905. .cra_alignmask = 3,
  906. .cra_init = stm32_hash_cra_init,
  907. .cra_module = THIS_MODULE,
  908. }
  909. }
  910. },
  911. {
  912. .init = stm32_hash_init,
  913. .update = stm32_hash_update,
  914. .final = stm32_hash_final,
  915. .finup = stm32_hash_finup,
  916. .digest = stm32_hash_digest,
  917. .export = stm32_hash_export,
  918. .import = stm32_hash_import,
  919. .setkey = stm32_hash_setkey,
  920. .halg = {
  921. .digestsize = MD5_DIGEST_SIZE,
  922. .statesize = sizeof(struct stm32_hash_request_ctx),
  923. .base = {
  924. .cra_name = "hmac(md5)",
  925. .cra_driver_name = "stm32-hmac-md5",
  926. .cra_priority = 200,
  927. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  928. CRYPTO_ALG_ASYNC |
  929. CRYPTO_ALG_KERN_DRIVER_ONLY,
  930. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  931. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  932. .cra_alignmask = 3,
  933. .cra_init = stm32_hash_cra_md5_init,
  934. .cra_module = THIS_MODULE,
  935. }
  936. }
  937. },
  938. {
  939. .init = stm32_hash_init,
  940. .update = stm32_hash_update,
  941. .final = stm32_hash_final,
  942. .finup = stm32_hash_finup,
  943. .digest = stm32_hash_digest,
  944. .export = stm32_hash_export,
  945. .import = stm32_hash_import,
  946. .halg = {
  947. .digestsize = SHA1_DIGEST_SIZE,
  948. .statesize = sizeof(struct stm32_hash_request_ctx),
  949. .base = {
  950. .cra_name = "sha1",
  951. .cra_driver_name = "stm32-sha1",
  952. .cra_priority = 200,
  953. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  954. CRYPTO_ALG_ASYNC |
  955. CRYPTO_ALG_KERN_DRIVER_ONLY,
  956. .cra_blocksize = SHA1_BLOCK_SIZE,
  957. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  958. .cra_alignmask = 3,
  959. .cra_init = stm32_hash_cra_init,
  960. .cra_module = THIS_MODULE,
  961. }
  962. }
  963. },
  964. {
  965. .init = stm32_hash_init,
  966. .update = stm32_hash_update,
  967. .final = stm32_hash_final,
  968. .finup = stm32_hash_finup,
  969. .digest = stm32_hash_digest,
  970. .export = stm32_hash_export,
  971. .import = stm32_hash_import,
  972. .setkey = stm32_hash_setkey,
  973. .halg = {
  974. .digestsize = SHA1_DIGEST_SIZE,
  975. .statesize = sizeof(struct stm32_hash_request_ctx),
  976. .base = {
  977. .cra_name = "hmac(sha1)",
  978. .cra_driver_name = "stm32-hmac-sha1",
  979. .cra_priority = 200,
  980. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  981. CRYPTO_ALG_ASYNC |
  982. CRYPTO_ALG_KERN_DRIVER_ONLY,
  983. .cra_blocksize = SHA1_BLOCK_SIZE,
  984. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  985. .cra_alignmask = 3,
  986. .cra_init = stm32_hash_cra_sha1_init,
  987. .cra_module = THIS_MODULE,
  988. }
  989. }
  990. },
  991. };
  992. static struct ahash_alg algs_sha224_sha256[] = {
  993. {
  994. .init = stm32_hash_init,
  995. .update = stm32_hash_update,
  996. .final = stm32_hash_final,
  997. .finup = stm32_hash_finup,
  998. .digest = stm32_hash_digest,
  999. .export = stm32_hash_export,
  1000. .import = stm32_hash_import,
  1001. .halg = {
  1002. .digestsize = SHA224_DIGEST_SIZE,
  1003. .statesize = sizeof(struct stm32_hash_request_ctx),
  1004. .base = {
  1005. .cra_name = "sha224",
  1006. .cra_driver_name = "stm32-sha224",
  1007. .cra_priority = 200,
  1008. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1009. CRYPTO_ALG_ASYNC |
  1010. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1011. .cra_blocksize = SHA224_BLOCK_SIZE,
  1012. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1013. .cra_alignmask = 3,
  1014. .cra_init = stm32_hash_cra_init,
  1015. .cra_module = THIS_MODULE,
  1016. }
  1017. }
  1018. },
  1019. {
  1020. .init = stm32_hash_init,
  1021. .update = stm32_hash_update,
  1022. .final = stm32_hash_final,
  1023. .finup = stm32_hash_finup,
  1024. .digest = stm32_hash_digest,
  1025. .setkey = stm32_hash_setkey,
  1026. .export = stm32_hash_export,
  1027. .import = stm32_hash_import,
  1028. .halg = {
  1029. .digestsize = SHA224_DIGEST_SIZE,
  1030. .statesize = sizeof(struct stm32_hash_request_ctx),
  1031. .base = {
  1032. .cra_name = "hmac(sha224)",
  1033. .cra_driver_name = "stm32-hmac-sha224",
  1034. .cra_priority = 200,
  1035. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1036. CRYPTO_ALG_ASYNC |
  1037. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1038. .cra_blocksize = SHA224_BLOCK_SIZE,
  1039. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1040. .cra_alignmask = 3,
  1041. .cra_init = stm32_hash_cra_sha224_init,
  1042. .cra_module = THIS_MODULE,
  1043. }
  1044. }
  1045. },
  1046. {
  1047. .init = stm32_hash_init,
  1048. .update = stm32_hash_update,
  1049. .final = stm32_hash_final,
  1050. .finup = stm32_hash_finup,
  1051. .digest = stm32_hash_digest,
  1052. .export = stm32_hash_export,
  1053. .import = stm32_hash_import,
  1054. .halg = {
  1055. .digestsize = SHA256_DIGEST_SIZE,
  1056. .statesize = sizeof(struct stm32_hash_request_ctx),
  1057. .base = {
  1058. .cra_name = "sha256",
  1059. .cra_driver_name = "stm32-sha256",
  1060. .cra_priority = 200,
  1061. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1062. CRYPTO_ALG_ASYNC |
  1063. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1064. .cra_blocksize = SHA256_BLOCK_SIZE,
  1065. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1066. .cra_alignmask = 3,
  1067. .cra_init = stm32_hash_cra_init,
  1068. .cra_module = THIS_MODULE,
  1069. }
  1070. }
  1071. },
  1072. {
  1073. .init = stm32_hash_init,
  1074. .update = stm32_hash_update,
  1075. .final = stm32_hash_final,
  1076. .finup = stm32_hash_finup,
  1077. .digest = stm32_hash_digest,
  1078. .export = stm32_hash_export,
  1079. .import = stm32_hash_import,
  1080. .setkey = stm32_hash_setkey,
  1081. .halg = {
  1082. .digestsize = SHA256_DIGEST_SIZE,
  1083. .statesize = sizeof(struct stm32_hash_request_ctx),
  1084. .base = {
  1085. .cra_name = "hmac(sha256)",
  1086. .cra_driver_name = "stm32-hmac-sha256",
  1087. .cra_priority = 200,
  1088. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  1089. CRYPTO_ALG_ASYNC |
  1090. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1091. .cra_blocksize = SHA256_BLOCK_SIZE,
  1092. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1093. .cra_alignmask = 3,
  1094. .cra_init = stm32_hash_cra_sha256_init,
  1095. .cra_module = THIS_MODULE,
  1096. }
  1097. }
  1098. },
  1099. };
  1100. static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
  1101. {
  1102. unsigned int i, j;
  1103. int err;
  1104. for (i = 0; i < hdev->pdata->algs_info_size; i++) {
  1105. for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
  1106. err = crypto_register_ahash(
  1107. &hdev->pdata->algs_info[i].algs_list[j]);
  1108. if (err)
  1109. goto err_algs;
  1110. }
  1111. }
  1112. return 0;
  1113. err_algs:
  1114. dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
  1115. for (; i--; ) {
  1116. for (; j--;)
  1117. crypto_unregister_ahash(
  1118. &hdev->pdata->algs_info[i].algs_list[j]);
  1119. }
  1120. return err;
  1121. }
  1122. static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
  1123. {
  1124. unsigned int i, j;
  1125. for (i = 0; i < hdev->pdata->algs_info_size; i++) {
  1126. for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
  1127. crypto_unregister_ahash(
  1128. &hdev->pdata->algs_info[i].algs_list[j]);
  1129. }
  1130. return 0;
  1131. }
  1132. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
  1133. {
  1134. .algs_list = algs_md5_sha1,
  1135. .size = ARRAY_SIZE(algs_md5_sha1),
  1136. },
  1137. };
  1138. static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
  1139. .algs_info = stm32_hash_algs_info_stm32f4,
  1140. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
  1141. };
  1142. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
  1143. {
  1144. .algs_list = algs_md5_sha1,
  1145. .size = ARRAY_SIZE(algs_md5_sha1),
  1146. },
  1147. {
  1148. .algs_list = algs_sha224_sha256,
  1149. .size = ARRAY_SIZE(algs_sha224_sha256),
  1150. },
  1151. };
  1152. static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
  1153. .algs_info = stm32_hash_algs_info_stm32f7,
  1154. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
  1155. };
  1156. static const struct of_device_id stm32_hash_of_match[] = {
  1157. {
  1158. .compatible = "st,stm32f456-hash",
  1159. .data = &stm32_hash_pdata_stm32f4,
  1160. },
  1161. {
  1162. .compatible = "st,stm32f756-hash",
  1163. .data = &stm32_hash_pdata_stm32f7,
  1164. },
  1165. {},
  1166. };
  1167. MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
  1168. static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
  1169. struct device *dev)
  1170. {
  1171. hdev->pdata = of_device_get_match_data(dev);
  1172. if (!hdev->pdata) {
  1173. dev_err(dev, "no compatible OF match\n");
  1174. return -EINVAL;
  1175. }
  1176. if (of_property_read_u32(dev->of_node, "dma-maxburst",
  1177. &hdev->dma_maxburst)) {
  1178. dev_info(dev, "dma-maxburst not specified, using 0\n");
  1179. hdev->dma_maxburst = 0;
  1180. }
  1181. return 0;
  1182. }
  1183. static int stm32_hash_probe(struct platform_device *pdev)
  1184. {
  1185. struct stm32_hash_dev *hdev;
  1186. struct device *dev = &pdev->dev;
  1187. struct resource *res;
  1188. int ret, irq;
  1189. hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
  1190. if (!hdev)
  1191. return -ENOMEM;
  1192. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1193. hdev->io_base = devm_ioremap_resource(dev, res);
  1194. if (IS_ERR(hdev->io_base))
  1195. return PTR_ERR(hdev->io_base);
  1196. hdev->phys_base = res->start;
  1197. ret = stm32_hash_get_of_match(hdev, dev);
  1198. if (ret)
  1199. return ret;
  1200. irq = platform_get_irq(pdev, 0);
  1201. if (irq < 0) {
  1202. dev_err(dev, "Cannot get IRQ resource\n");
  1203. return irq;
  1204. }
  1205. ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
  1206. stm32_hash_irq_thread, IRQF_ONESHOT,
  1207. dev_name(dev), hdev);
  1208. if (ret) {
  1209. dev_err(dev, "Cannot grab IRQ\n");
  1210. return ret;
  1211. }
  1212. hdev->clk = devm_clk_get(&pdev->dev, NULL);
  1213. if (IS_ERR(hdev->clk)) {
  1214. dev_err(dev, "failed to get clock for hash (%lu)\n",
  1215. PTR_ERR(hdev->clk));
  1216. return PTR_ERR(hdev->clk);
  1217. }
  1218. ret = clk_prepare_enable(hdev->clk);
  1219. if (ret) {
  1220. dev_err(dev, "failed to enable hash clock (%d)\n", ret);
  1221. return ret;
  1222. }
  1223. hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
  1224. if (!IS_ERR(hdev->rst)) {
  1225. reset_control_assert(hdev->rst);
  1226. udelay(2);
  1227. reset_control_deassert(hdev->rst);
  1228. }
  1229. hdev->dev = dev;
  1230. platform_set_drvdata(pdev, hdev);
  1231. ret = stm32_hash_dma_init(hdev);
  1232. if (ret)
  1233. dev_dbg(dev, "DMA mode not available\n");
  1234. spin_lock(&stm32_hash.lock);
  1235. list_add_tail(&hdev->list, &stm32_hash.dev_list);
  1236. spin_unlock(&stm32_hash.lock);
  1237. /* Initialize crypto engine */
  1238. hdev->engine = crypto_engine_alloc_init(dev, 1);
  1239. if (!hdev->engine) {
  1240. ret = -ENOMEM;
  1241. goto err_engine;
  1242. }
  1243. ret = crypto_engine_start(hdev->engine);
  1244. if (ret)
  1245. goto err_engine_start;
  1246. hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
  1247. /* Register algos */
  1248. ret = stm32_hash_register_algs(hdev);
  1249. if (ret)
  1250. goto err_algs;
  1251. dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
  1252. stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
  1253. return 0;
  1254. err_algs:
  1255. err_engine_start:
  1256. crypto_engine_exit(hdev->engine);
  1257. err_engine:
  1258. spin_lock(&stm32_hash.lock);
  1259. list_del(&hdev->list);
  1260. spin_unlock(&stm32_hash.lock);
  1261. if (hdev->dma_lch)
  1262. dma_release_channel(hdev->dma_lch);
  1263. clk_disable_unprepare(hdev->clk);
  1264. return ret;
  1265. }
  1266. static int stm32_hash_remove(struct platform_device *pdev)
  1267. {
  1268. static struct stm32_hash_dev *hdev;
  1269. hdev = platform_get_drvdata(pdev);
  1270. if (!hdev)
  1271. return -ENODEV;
  1272. stm32_hash_unregister_algs(hdev);
  1273. crypto_engine_exit(hdev->engine);
  1274. spin_lock(&stm32_hash.lock);
  1275. list_del(&hdev->list);
  1276. spin_unlock(&stm32_hash.lock);
  1277. if (hdev->dma_lch)
  1278. dma_release_channel(hdev->dma_lch);
  1279. clk_disable_unprepare(hdev->clk);
  1280. return 0;
  1281. }
  1282. static struct platform_driver stm32_hash_driver = {
  1283. .probe = stm32_hash_probe,
  1284. .remove = stm32_hash_remove,
  1285. .driver = {
  1286. .name = "stm32-hash",
  1287. .of_match_table = stm32_hash_of_match,
  1288. }
  1289. };
  1290. module_platform_driver(stm32_hash_driver);
  1291. MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
  1292. MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
  1293. MODULE_LICENSE("GPL v2");