atmel-aes.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL AES HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-aes.c driver.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <crypto/scatterwalk.h>
  34. #include <crypto/algapi.h>
  35. #include <crypto/aes.h>
  36. #include <crypto/gcm.h>
  37. #include <crypto/xts.h>
  38. #include <crypto/internal/aead.h>
  39. #include <linux/platform_data/crypto-atmel.h>
  40. #include <dt-bindings/dma/at91.h>
  41. #include "atmel-aes-regs.h"
  42. #include "atmel-authenc.h"
  43. #define ATMEL_AES_PRIORITY 300
  44. #define ATMEL_AES_BUFFER_ORDER 2
  45. #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  46. #define CFB8_BLOCK_SIZE 1
  47. #define CFB16_BLOCK_SIZE 2
  48. #define CFB32_BLOCK_SIZE 4
  49. #define CFB64_BLOCK_SIZE 8
  50. #define SIZE_IN_WORDS(x) ((x) >> 2)
  51. /* AES flags */
  52. /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  53. #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
  54. #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
  55. #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  56. #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
  57. #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
  58. #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
  59. #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  60. #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  61. #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  62. #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  63. #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  64. #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
  65. #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
  66. #define AES_FLAGS_XTS AES_MR_OPMOD_XTS
  67. #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
  68. AES_FLAGS_ENCRYPT | \
  69. AES_FLAGS_GTAGEN)
  70. #define AES_FLAGS_BUSY BIT(3)
  71. #define AES_FLAGS_DUMP_REG BIT(4)
  72. #define AES_FLAGS_OWN_SHA BIT(5)
  73. #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY
  74. #define ATMEL_AES_QUEUE_LENGTH 50
  75. #define ATMEL_AES_DMA_THRESHOLD 256
  76. struct atmel_aes_caps {
  77. bool has_dualbuff;
  78. bool has_cfb64;
  79. bool has_ctr32;
  80. bool has_gcm;
  81. bool has_xts;
  82. bool has_authenc;
  83. u32 max_burst_size;
  84. };
  85. struct atmel_aes_dev;
  86. typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  87. struct atmel_aes_base_ctx {
  88. struct atmel_aes_dev *dd;
  89. atmel_aes_fn_t start;
  90. int keylen;
  91. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  92. u16 block_size;
  93. bool is_aead;
  94. };
  95. struct atmel_aes_ctx {
  96. struct atmel_aes_base_ctx base;
  97. };
  98. struct atmel_aes_ctr_ctx {
  99. struct atmel_aes_base_ctx base;
  100. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  101. size_t offset;
  102. struct scatterlist src[2];
  103. struct scatterlist dst[2];
  104. };
  105. struct atmel_aes_gcm_ctx {
  106. struct atmel_aes_base_ctx base;
  107. struct scatterlist src[2];
  108. struct scatterlist dst[2];
  109. u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
  110. u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
  111. u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
  112. size_t textlen;
  113. const u32 *ghash_in;
  114. u32 *ghash_out;
  115. atmel_aes_fn_t ghash_resume;
  116. };
  117. struct atmel_aes_xts_ctx {
  118. struct atmel_aes_base_ctx base;
  119. u32 key2[AES_KEYSIZE_256 / sizeof(u32)];
  120. };
  121. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  122. struct atmel_aes_authenc_ctx {
  123. struct atmel_aes_base_ctx base;
  124. struct atmel_sha_authenc_ctx *auth;
  125. };
  126. #endif
  127. struct atmel_aes_reqctx {
  128. unsigned long mode;
  129. u32 lastc[AES_BLOCK_SIZE / sizeof(u32)];
  130. };
  131. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  132. struct atmel_aes_authenc_reqctx {
  133. struct atmel_aes_reqctx base;
  134. struct scatterlist src[2];
  135. struct scatterlist dst[2];
  136. size_t textlen;
  137. u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)];
  138. /* auth_req MUST be place last. */
  139. struct ahash_request auth_req;
  140. };
  141. #endif
  142. struct atmel_aes_dma {
  143. struct dma_chan *chan;
  144. struct scatterlist *sg;
  145. int nents;
  146. unsigned int remainder;
  147. unsigned int sg_len;
  148. };
  149. struct atmel_aes_dev {
  150. struct list_head list;
  151. unsigned long phys_base;
  152. void __iomem *io_base;
  153. struct crypto_async_request *areq;
  154. struct atmel_aes_base_ctx *ctx;
  155. bool is_async;
  156. atmel_aes_fn_t resume;
  157. atmel_aes_fn_t cpu_transfer_complete;
  158. struct device *dev;
  159. struct clk *iclk;
  160. int irq;
  161. unsigned long flags;
  162. spinlock_t lock;
  163. struct crypto_queue queue;
  164. struct tasklet_struct done_task;
  165. struct tasklet_struct queue_task;
  166. size_t total;
  167. size_t datalen;
  168. u32 *data;
  169. struct atmel_aes_dma src;
  170. struct atmel_aes_dma dst;
  171. size_t buflen;
  172. void *buf;
  173. struct scatterlist aligned_sg;
  174. struct scatterlist *real_dst;
  175. struct atmel_aes_caps caps;
  176. u32 hw_version;
  177. };
  178. struct atmel_aes_drv {
  179. struct list_head dev_list;
  180. spinlock_t lock;
  181. };
  182. static struct atmel_aes_drv atmel_aes = {
  183. .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
  184. .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
  185. };
  186. #ifdef VERBOSE_DEBUG
  187. static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
  188. {
  189. switch (offset) {
  190. case AES_CR:
  191. return "CR";
  192. case AES_MR:
  193. return "MR";
  194. case AES_ISR:
  195. return "ISR";
  196. case AES_IMR:
  197. return "IMR";
  198. case AES_IER:
  199. return "IER";
  200. case AES_IDR:
  201. return "IDR";
  202. case AES_KEYWR(0):
  203. case AES_KEYWR(1):
  204. case AES_KEYWR(2):
  205. case AES_KEYWR(3):
  206. case AES_KEYWR(4):
  207. case AES_KEYWR(5):
  208. case AES_KEYWR(6):
  209. case AES_KEYWR(7):
  210. snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
  211. break;
  212. case AES_IDATAR(0):
  213. case AES_IDATAR(1):
  214. case AES_IDATAR(2):
  215. case AES_IDATAR(3):
  216. snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
  217. break;
  218. case AES_ODATAR(0):
  219. case AES_ODATAR(1):
  220. case AES_ODATAR(2):
  221. case AES_ODATAR(3):
  222. snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
  223. break;
  224. case AES_IVR(0):
  225. case AES_IVR(1):
  226. case AES_IVR(2):
  227. case AES_IVR(3):
  228. snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
  229. break;
  230. case AES_AADLENR:
  231. return "AADLENR";
  232. case AES_CLENR:
  233. return "CLENR";
  234. case AES_GHASHR(0):
  235. case AES_GHASHR(1):
  236. case AES_GHASHR(2):
  237. case AES_GHASHR(3):
  238. snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
  239. break;
  240. case AES_TAGR(0):
  241. case AES_TAGR(1):
  242. case AES_TAGR(2):
  243. case AES_TAGR(3):
  244. snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
  245. break;
  246. case AES_CTRR:
  247. return "CTRR";
  248. case AES_GCMHR(0):
  249. case AES_GCMHR(1):
  250. case AES_GCMHR(2):
  251. case AES_GCMHR(3):
  252. snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
  253. break;
  254. case AES_EMR:
  255. return "EMR";
  256. case AES_TWR(0):
  257. case AES_TWR(1):
  258. case AES_TWR(2):
  259. case AES_TWR(3):
  260. snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
  261. break;
  262. case AES_ALPHAR(0):
  263. case AES_ALPHAR(1):
  264. case AES_ALPHAR(2):
  265. case AES_ALPHAR(3):
  266. snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
  267. break;
  268. default:
  269. snprintf(tmp, sz, "0x%02x", offset);
  270. break;
  271. }
  272. return tmp;
  273. }
  274. #endif /* VERBOSE_DEBUG */
  275. /* Shared functions */
  276. static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
  277. {
  278. u32 value = readl_relaxed(dd->io_base + offset);
  279. #ifdef VERBOSE_DEBUG
  280. if (dd->flags & AES_FLAGS_DUMP_REG) {
  281. char tmp[16];
  282. dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
  283. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  284. }
  285. #endif /* VERBOSE_DEBUG */
  286. return value;
  287. }
  288. static inline void atmel_aes_write(struct atmel_aes_dev *dd,
  289. u32 offset, u32 value)
  290. {
  291. #ifdef VERBOSE_DEBUG
  292. if (dd->flags & AES_FLAGS_DUMP_REG) {
  293. char tmp[16];
  294. dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
  295. atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
  296. }
  297. #endif /* VERBOSE_DEBUG */
  298. writel_relaxed(value, dd->io_base + offset);
  299. }
  300. static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
  301. u32 *value, int count)
  302. {
  303. for (; count--; value++, offset += 4)
  304. *value = atmel_aes_read(dd, offset);
  305. }
  306. static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
  307. const u32 *value, int count)
  308. {
  309. for (; count--; value++, offset += 4)
  310. atmel_aes_write(dd, offset, *value);
  311. }
  312. static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
  313. u32 *value)
  314. {
  315. atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  316. }
  317. static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
  318. const u32 *value)
  319. {
  320. atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
  321. }
  322. static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
  323. atmel_aes_fn_t resume)
  324. {
  325. u32 isr = atmel_aes_read(dd, AES_ISR);
  326. if (unlikely(isr & AES_INT_DATARDY))
  327. return resume(dd);
  328. dd->resume = resume;
  329. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  330. return -EINPROGRESS;
  331. }
  332. static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
  333. {
  334. len &= block_size - 1;
  335. return len ? block_size - len : 0;
  336. }
  337. static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
  338. {
  339. struct atmel_aes_dev *aes_dd = NULL;
  340. struct atmel_aes_dev *tmp;
  341. spin_lock_bh(&atmel_aes.lock);
  342. if (!ctx->dd) {
  343. list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
  344. aes_dd = tmp;
  345. break;
  346. }
  347. ctx->dd = aes_dd;
  348. } else {
  349. aes_dd = ctx->dd;
  350. }
  351. spin_unlock_bh(&atmel_aes.lock);
  352. return aes_dd;
  353. }
  354. static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
  355. {
  356. int err;
  357. err = clk_enable(dd->iclk);
  358. if (err)
  359. return err;
  360. atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
  361. atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
  362. return 0;
  363. }
  364. static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
  365. {
  366. return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
  367. }
  368. static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
  369. {
  370. int err;
  371. err = atmel_aes_hw_init(dd);
  372. if (err)
  373. return err;
  374. dd->hw_version = atmel_aes_get_version(dd);
  375. dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
  376. clk_disable(dd->iclk);
  377. return 0;
  378. }
  379. static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
  380. const struct atmel_aes_reqctx *rctx)
  381. {
  382. /* Clear all but persistent flags and set request flags. */
  383. dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
  384. }
  385. static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
  386. {
  387. return (dd->flags & AES_FLAGS_ENCRYPT);
  388. }
  389. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  390. static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
  391. #endif
  392. static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
  393. {
  394. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  395. if (dd->ctx->is_aead)
  396. atmel_aes_authenc_complete(dd, err);
  397. #endif
  398. clk_disable(dd->iclk);
  399. dd->flags &= ~AES_FLAGS_BUSY;
  400. if (!dd->ctx->is_aead) {
  401. struct ablkcipher_request *req =
  402. ablkcipher_request_cast(dd->areq);
  403. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  404. struct crypto_ablkcipher *ablkcipher =
  405. crypto_ablkcipher_reqtfm(req);
  406. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  407. if (rctx->mode & AES_FLAGS_ENCRYPT) {
  408. scatterwalk_map_and_copy(req->info, req->dst,
  409. req->nbytes - ivsize, ivsize, 0);
  410. } else {
  411. if (req->src == req->dst) {
  412. memcpy(req->info, rctx->lastc, ivsize);
  413. } else {
  414. scatterwalk_map_and_copy(req->info, req->src,
  415. req->nbytes - ivsize, ivsize, 0);
  416. }
  417. }
  418. }
  419. if (dd->is_async)
  420. dd->areq->complete(dd->areq, err);
  421. tasklet_schedule(&dd->queue_task);
  422. return err;
  423. }
  424. static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
  425. const u32 *iv, const u32 *key, int keylen)
  426. {
  427. u32 valmr = 0;
  428. /* MR register must be set before IV registers */
  429. if (keylen == AES_KEYSIZE_128)
  430. valmr |= AES_MR_KEYSIZE_128;
  431. else if (keylen == AES_KEYSIZE_192)
  432. valmr |= AES_MR_KEYSIZE_192;
  433. else
  434. valmr |= AES_MR_KEYSIZE_256;
  435. valmr |= dd->flags & AES_FLAGS_MODE_MASK;
  436. if (use_dma) {
  437. valmr |= AES_MR_SMOD_IDATAR0;
  438. if (dd->caps.has_dualbuff)
  439. valmr |= AES_MR_DUALBUFF;
  440. } else {
  441. valmr |= AES_MR_SMOD_AUTO;
  442. }
  443. atmel_aes_write(dd, AES_MR, valmr);
  444. atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
  445. if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
  446. atmel_aes_write_block(dd, AES_IVR(0), iv);
  447. }
  448. static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
  449. const u32 *iv)
  450. {
  451. atmel_aes_write_ctrl_key(dd, use_dma, iv,
  452. dd->ctx->key, dd->ctx->keylen);
  453. }
  454. /* CPU transfer */
  455. static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
  456. {
  457. int err = 0;
  458. u32 isr;
  459. for (;;) {
  460. atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
  461. dd->data += 4;
  462. dd->datalen -= AES_BLOCK_SIZE;
  463. if (dd->datalen < AES_BLOCK_SIZE)
  464. break;
  465. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  466. isr = atmel_aes_read(dd, AES_ISR);
  467. if (!(isr & AES_INT_DATARDY)) {
  468. dd->resume = atmel_aes_cpu_transfer;
  469. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  470. return -EINPROGRESS;
  471. }
  472. }
  473. if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  474. dd->buf, dd->total))
  475. err = -EINVAL;
  476. if (err)
  477. return atmel_aes_complete(dd, err);
  478. return dd->cpu_transfer_complete(dd);
  479. }
  480. static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
  481. struct scatterlist *src,
  482. struct scatterlist *dst,
  483. size_t len,
  484. atmel_aes_fn_t resume)
  485. {
  486. size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
  487. if (unlikely(len == 0))
  488. return -EINVAL;
  489. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  490. dd->total = len;
  491. dd->real_dst = dst;
  492. dd->cpu_transfer_complete = resume;
  493. dd->datalen = len + padlen;
  494. dd->data = (u32 *)dd->buf;
  495. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  496. return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
  497. }
  498. /* DMA transfer */
  499. static void atmel_aes_dma_callback(void *data);
  500. static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
  501. struct scatterlist *sg,
  502. size_t len,
  503. struct atmel_aes_dma *dma)
  504. {
  505. int nents;
  506. if (!IS_ALIGNED(len, dd->ctx->block_size))
  507. return false;
  508. for (nents = 0; sg; sg = sg_next(sg), ++nents) {
  509. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  510. return false;
  511. if (len <= sg->length) {
  512. if (!IS_ALIGNED(len, dd->ctx->block_size))
  513. return false;
  514. dma->nents = nents+1;
  515. dma->remainder = sg->length - len;
  516. sg->length = len;
  517. return true;
  518. }
  519. if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
  520. return false;
  521. len -= sg->length;
  522. }
  523. return false;
  524. }
  525. static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
  526. {
  527. struct scatterlist *sg = dma->sg;
  528. int nents = dma->nents;
  529. if (!dma->remainder)
  530. return;
  531. while (--nents > 0 && sg)
  532. sg = sg_next(sg);
  533. if (!sg)
  534. return;
  535. sg->length += dma->remainder;
  536. }
  537. static int atmel_aes_map(struct atmel_aes_dev *dd,
  538. struct scatterlist *src,
  539. struct scatterlist *dst,
  540. size_t len)
  541. {
  542. bool src_aligned, dst_aligned;
  543. size_t padlen;
  544. dd->total = len;
  545. dd->src.sg = src;
  546. dd->dst.sg = dst;
  547. dd->real_dst = dst;
  548. src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
  549. if (src == dst)
  550. dst_aligned = src_aligned;
  551. else
  552. dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
  553. if (!src_aligned || !dst_aligned) {
  554. padlen = atmel_aes_padlen(len, dd->ctx->block_size);
  555. if (dd->buflen < len + padlen)
  556. return -ENOMEM;
  557. if (!src_aligned) {
  558. sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
  559. dd->src.sg = &dd->aligned_sg;
  560. dd->src.nents = 1;
  561. dd->src.remainder = 0;
  562. }
  563. if (!dst_aligned) {
  564. dd->dst.sg = &dd->aligned_sg;
  565. dd->dst.nents = 1;
  566. dd->dst.remainder = 0;
  567. }
  568. sg_init_table(&dd->aligned_sg, 1);
  569. sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
  570. }
  571. if (dd->src.sg == dd->dst.sg) {
  572. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  573. DMA_BIDIRECTIONAL);
  574. dd->dst.sg_len = dd->src.sg_len;
  575. if (!dd->src.sg_len)
  576. return -EFAULT;
  577. } else {
  578. dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
  579. DMA_TO_DEVICE);
  580. if (!dd->src.sg_len)
  581. return -EFAULT;
  582. dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  583. DMA_FROM_DEVICE);
  584. if (!dd->dst.sg_len) {
  585. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  586. DMA_TO_DEVICE);
  587. return -EFAULT;
  588. }
  589. }
  590. return 0;
  591. }
  592. static void atmel_aes_unmap(struct atmel_aes_dev *dd)
  593. {
  594. if (dd->src.sg == dd->dst.sg) {
  595. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  596. DMA_BIDIRECTIONAL);
  597. if (dd->src.sg != &dd->aligned_sg)
  598. atmel_aes_restore_sg(&dd->src);
  599. } else {
  600. dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
  601. DMA_FROM_DEVICE);
  602. if (dd->dst.sg != &dd->aligned_sg)
  603. atmel_aes_restore_sg(&dd->dst);
  604. dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
  605. DMA_TO_DEVICE);
  606. if (dd->src.sg != &dd->aligned_sg)
  607. atmel_aes_restore_sg(&dd->src);
  608. }
  609. if (dd->dst.sg == &dd->aligned_sg)
  610. sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
  611. dd->buf, dd->total);
  612. }
  613. static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
  614. enum dma_slave_buswidth addr_width,
  615. enum dma_transfer_direction dir,
  616. u32 maxburst)
  617. {
  618. struct dma_async_tx_descriptor *desc;
  619. struct dma_slave_config config;
  620. dma_async_tx_callback callback;
  621. struct atmel_aes_dma *dma;
  622. int err;
  623. memset(&config, 0, sizeof(config));
  624. config.direction = dir;
  625. config.src_addr_width = addr_width;
  626. config.dst_addr_width = addr_width;
  627. config.src_maxburst = maxburst;
  628. config.dst_maxburst = maxburst;
  629. switch (dir) {
  630. case DMA_MEM_TO_DEV:
  631. dma = &dd->src;
  632. callback = NULL;
  633. config.dst_addr = dd->phys_base + AES_IDATAR(0);
  634. break;
  635. case DMA_DEV_TO_MEM:
  636. dma = &dd->dst;
  637. callback = atmel_aes_dma_callback;
  638. config.src_addr = dd->phys_base + AES_ODATAR(0);
  639. break;
  640. default:
  641. return -EINVAL;
  642. }
  643. err = dmaengine_slave_config(dma->chan, &config);
  644. if (err)
  645. return err;
  646. desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
  647. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  648. if (!desc)
  649. return -ENOMEM;
  650. desc->callback = callback;
  651. desc->callback_param = dd;
  652. dmaengine_submit(desc);
  653. dma_async_issue_pending(dma->chan);
  654. return 0;
  655. }
  656. static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
  657. enum dma_transfer_direction dir)
  658. {
  659. struct atmel_aes_dma *dma;
  660. switch (dir) {
  661. case DMA_MEM_TO_DEV:
  662. dma = &dd->src;
  663. break;
  664. case DMA_DEV_TO_MEM:
  665. dma = &dd->dst;
  666. break;
  667. default:
  668. return;
  669. }
  670. dmaengine_terminate_all(dma->chan);
  671. }
  672. static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
  673. struct scatterlist *src,
  674. struct scatterlist *dst,
  675. size_t len,
  676. atmel_aes_fn_t resume)
  677. {
  678. enum dma_slave_buswidth addr_width;
  679. u32 maxburst;
  680. int err;
  681. switch (dd->ctx->block_size) {
  682. case CFB8_BLOCK_SIZE:
  683. addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  684. maxburst = 1;
  685. break;
  686. case CFB16_BLOCK_SIZE:
  687. addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  688. maxburst = 1;
  689. break;
  690. case CFB32_BLOCK_SIZE:
  691. case CFB64_BLOCK_SIZE:
  692. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  693. maxburst = 1;
  694. break;
  695. case AES_BLOCK_SIZE:
  696. addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  697. maxburst = dd->caps.max_burst_size;
  698. break;
  699. default:
  700. err = -EINVAL;
  701. goto exit;
  702. }
  703. err = atmel_aes_map(dd, src, dst, len);
  704. if (err)
  705. goto exit;
  706. dd->resume = resume;
  707. /* Set output DMA transfer first */
  708. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
  709. maxburst);
  710. if (err)
  711. goto unmap;
  712. /* Then set input DMA transfer */
  713. err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
  714. maxburst);
  715. if (err)
  716. goto output_transfer_stop;
  717. return -EINPROGRESS;
  718. output_transfer_stop:
  719. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  720. unmap:
  721. atmel_aes_unmap(dd);
  722. exit:
  723. return atmel_aes_complete(dd, err);
  724. }
  725. static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
  726. {
  727. atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
  728. atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
  729. atmel_aes_unmap(dd);
  730. }
  731. static void atmel_aes_dma_callback(void *data)
  732. {
  733. struct atmel_aes_dev *dd = data;
  734. atmel_aes_dma_stop(dd);
  735. dd->is_async = true;
  736. (void)dd->resume(dd);
  737. }
  738. static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
  739. struct crypto_async_request *new_areq)
  740. {
  741. struct crypto_async_request *areq, *backlog;
  742. struct atmel_aes_base_ctx *ctx;
  743. unsigned long flags;
  744. bool start_async;
  745. int err, ret = 0;
  746. spin_lock_irqsave(&dd->lock, flags);
  747. if (new_areq)
  748. ret = crypto_enqueue_request(&dd->queue, new_areq);
  749. if (dd->flags & AES_FLAGS_BUSY) {
  750. spin_unlock_irqrestore(&dd->lock, flags);
  751. return ret;
  752. }
  753. backlog = crypto_get_backlog(&dd->queue);
  754. areq = crypto_dequeue_request(&dd->queue);
  755. if (areq)
  756. dd->flags |= AES_FLAGS_BUSY;
  757. spin_unlock_irqrestore(&dd->lock, flags);
  758. if (!areq)
  759. return ret;
  760. if (backlog)
  761. backlog->complete(backlog, -EINPROGRESS);
  762. ctx = crypto_tfm_ctx(areq->tfm);
  763. dd->areq = areq;
  764. dd->ctx = ctx;
  765. start_async = (areq != new_areq);
  766. dd->is_async = start_async;
  767. /* WARNING: ctx->start() MAY change dd->is_async. */
  768. err = ctx->start(dd);
  769. return (start_async) ? ret : err;
  770. }
  771. /* AES async block ciphers */
  772. static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
  773. {
  774. return atmel_aes_complete(dd, 0);
  775. }
  776. static int atmel_aes_start(struct atmel_aes_dev *dd)
  777. {
  778. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  779. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  780. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
  781. dd->ctx->block_size != AES_BLOCK_SIZE);
  782. int err;
  783. atmel_aes_set_mode(dd, rctx);
  784. err = atmel_aes_hw_init(dd);
  785. if (err)
  786. return atmel_aes_complete(dd, err);
  787. atmel_aes_write_ctrl(dd, use_dma, req->info);
  788. if (use_dma)
  789. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  790. atmel_aes_transfer_complete);
  791. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  792. atmel_aes_transfer_complete);
  793. }
  794. static inline struct atmel_aes_ctr_ctx *
  795. atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
  796. {
  797. return container_of(ctx, struct atmel_aes_ctr_ctx, base);
  798. }
  799. static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
  800. {
  801. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  802. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  803. struct scatterlist *src, *dst;
  804. u32 ctr, blocks;
  805. size_t datalen;
  806. bool use_dma, fragmented = false;
  807. /* Check for transfer completion. */
  808. ctx->offset += dd->total;
  809. if (ctx->offset >= req->nbytes)
  810. return atmel_aes_transfer_complete(dd);
  811. /* Compute data length. */
  812. datalen = req->nbytes - ctx->offset;
  813. blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
  814. ctr = be32_to_cpu(ctx->iv[3]);
  815. if (dd->caps.has_ctr32) {
  816. /* Check 32bit counter overflow. */
  817. u32 start = ctr;
  818. u32 end = start + blocks - 1;
  819. if (end < start) {
  820. ctr |= 0xffffffff;
  821. datalen = AES_BLOCK_SIZE * -start;
  822. fragmented = true;
  823. }
  824. } else {
  825. /* Check 16bit counter overflow. */
  826. u16 start = ctr & 0xffff;
  827. u16 end = start + (u16)blocks - 1;
  828. if (blocks >> 16 || end < start) {
  829. ctr |= 0xffff;
  830. datalen = AES_BLOCK_SIZE * (0x10000-start);
  831. fragmented = true;
  832. }
  833. }
  834. use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
  835. /* Jump to offset. */
  836. src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
  837. dst = ((req->src == req->dst) ? src :
  838. scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
  839. /* Configure hardware. */
  840. atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
  841. if (unlikely(fragmented)) {
  842. /*
  843. * Increment the counter manually to cope with the hardware
  844. * counter overflow.
  845. */
  846. ctx->iv[3] = cpu_to_be32(ctr);
  847. crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
  848. }
  849. if (use_dma)
  850. return atmel_aes_dma_start(dd, src, dst, datalen,
  851. atmel_aes_ctr_transfer);
  852. return atmel_aes_cpu_start(dd, src, dst, datalen,
  853. atmel_aes_ctr_transfer);
  854. }
  855. static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
  856. {
  857. struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
  858. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  859. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  860. int err;
  861. atmel_aes_set_mode(dd, rctx);
  862. err = atmel_aes_hw_init(dd);
  863. if (err)
  864. return atmel_aes_complete(dd, err);
  865. memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
  866. ctx->offset = 0;
  867. dd->total = 0;
  868. return atmel_aes_ctr_transfer(dd);
  869. }
  870. static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  871. {
  872. struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
  873. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
  874. struct atmel_aes_reqctx *rctx;
  875. struct atmel_aes_dev *dd;
  876. switch (mode & AES_FLAGS_OPMODE_MASK) {
  877. case AES_FLAGS_CFB8:
  878. ctx->block_size = CFB8_BLOCK_SIZE;
  879. break;
  880. case AES_FLAGS_CFB16:
  881. ctx->block_size = CFB16_BLOCK_SIZE;
  882. break;
  883. case AES_FLAGS_CFB32:
  884. ctx->block_size = CFB32_BLOCK_SIZE;
  885. break;
  886. case AES_FLAGS_CFB64:
  887. ctx->block_size = CFB64_BLOCK_SIZE;
  888. break;
  889. default:
  890. ctx->block_size = AES_BLOCK_SIZE;
  891. break;
  892. }
  893. ctx->is_aead = false;
  894. dd = atmel_aes_find_dev(ctx);
  895. if (!dd)
  896. return -ENODEV;
  897. rctx = ablkcipher_request_ctx(req);
  898. rctx->mode = mode;
  899. if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
  900. int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
  901. scatterwalk_map_and_copy(rctx->lastc, req->src,
  902. (req->nbytes - ivsize), ivsize, 0);
  903. }
  904. return atmel_aes_handle_queue(dd, &req->base);
  905. }
  906. static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  907. unsigned int keylen)
  908. {
  909. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  910. if (keylen != AES_KEYSIZE_128 &&
  911. keylen != AES_KEYSIZE_192 &&
  912. keylen != AES_KEYSIZE_256) {
  913. crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  914. return -EINVAL;
  915. }
  916. memcpy(ctx->key, key, keylen);
  917. ctx->keylen = keylen;
  918. return 0;
  919. }
  920. static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
  921. {
  922. return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  923. }
  924. static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
  925. {
  926. return atmel_aes_crypt(req, AES_FLAGS_ECB);
  927. }
  928. static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
  929. {
  930. return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  931. }
  932. static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
  933. {
  934. return atmel_aes_crypt(req, AES_FLAGS_CBC);
  935. }
  936. static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
  937. {
  938. return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
  939. }
  940. static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
  941. {
  942. return atmel_aes_crypt(req, AES_FLAGS_OFB);
  943. }
  944. static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
  945. {
  946. return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
  947. }
  948. static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
  949. {
  950. return atmel_aes_crypt(req, AES_FLAGS_CFB128);
  951. }
  952. static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
  953. {
  954. return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
  955. }
  956. static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
  957. {
  958. return atmel_aes_crypt(req, AES_FLAGS_CFB64);
  959. }
  960. static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
  961. {
  962. return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
  963. }
  964. static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
  965. {
  966. return atmel_aes_crypt(req, AES_FLAGS_CFB32);
  967. }
  968. static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
  969. {
  970. return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
  971. }
  972. static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
  973. {
  974. return atmel_aes_crypt(req, AES_FLAGS_CFB16);
  975. }
  976. static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
  977. {
  978. return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
  979. }
  980. static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
  981. {
  982. return atmel_aes_crypt(req, AES_FLAGS_CFB8);
  983. }
  984. static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
  985. {
  986. return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
  987. }
  988. static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
  989. {
  990. return atmel_aes_crypt(req, AES_FLAGS_CTR);
  991. }
  992. static int atmel_aes_cra_init(struct crypto_tfm *tfm)
  993. {
  994. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  995. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  996. ctx->base.start = atmel_aes_start;
  997. return 0;
  998. }
  999. static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
  1000. {
  1001. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  1002. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  1003. ctx->base.start = atmel_aes_ctr_start;
  1004. return 0;
  1005. }
  1006. static struct crypto_alg aes_algs[] = {
  1007. {
  1008. .cra_name = "ecb(aes)",
  1009. .cra_driver_name = "atmel-ecb-aes",
  1010. .cra_priority = ATMEL_AES_PRIORITY,
  1011. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1012. .cra_blocksize = AES_BLOCK_SIZE,
  1013. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1014. .cra_alignmask = 0xf,
  1015. .cra_type = &crypto_ablkcipher_type,
  1016. .cra_module = THIS_MODULE,
  1017. .cra_init = atmel_aes_cra_init,
  1018. .cra_u.ablkcipher = {
  1019. .min_keysize = AES_MIN_KEY_SIZE,
  1020. .max_keysize = AES_MAX_KEY_SIZE,
  1021. .setkey = atmel_aes_setkey,
  1022. .encrypt = atmel_aes_ecb_encrypt,
  1023. .decrypt = atmel_aes_ecb_decrypt,
  1024. }
  1025. },
  1026. {
  1027. .cra_name = "cbc(aes)",
  1028. .cra_driver_name = "atmel-cbc-aes",
  1029. .cra_priority = ATMEL_AES_PRIORITY,
  1030. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1031. .cra_blocksize = AES_BLOCK_SIZE,
  1032. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1033. .cra_alignmask = 0xf,
  1034. .cra_type = &crypto_ablkcipher_type,
  1035. .cra_module = THIS_MODULE,
  1036. .cra_init = atmel_aes_cra_init,
  1037. .cra_u.ablkcipher = {
  1038. .min_keysize = AES_MIN_KEY_SIZE,
  1039. .max_keysize = AES_MAX_KEY_SIZE,
  1040. .ivsize = AES_BLOCK_SIZE,
  1041. .setkey = atmel_aes_setkey,
  1042. .encrypt = atmel_aes_cbc_encrypt,
  1043. .decrypt = atmel_aes_cbc_decrypt,
  1044. }
  1045. },
  1046. {
  1047. .cra_name = "ofb(aes)",
  1048. .cra_driver_name = "atmel-ofb-aes",
  1049. .cra_priority = ATMEL_AES_PRIORITY,
  1050. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1051. .cra_blocksize = AES_BLOCK_SIZE,
  1052. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1053. .cra_alignmask = 0xf,
  1054. .cra_type = &crypto_ablkcipher_type,
  1055. .cra_module = THIS_MODULE,
  1056. .cra_init = atmel_aes_cra_init,
  1057. .cra_u.ablkcipher = {
  1058. .min_keysize = AES_MIN_KEY_SIZE,
  1059. .max_keysize = AES_MAX_KEY_SIZE,
  1060. .ivsize = AES_BLOCK_SIZE,
  1061. .setkey = atmel_aes_setkey,
  1062. .encrypt = atmel_aes_ofb_encrypt,
  1063. .decrypt = atmel_aes_ofb_decrypt,
  1064. }
  1065. },
  1066. {
  1067. .cra_name = "cfb(aes)",
  1068. .cra_driver_name = "atmel-cfb-aes",
  1069. .cra_priority = ATMEL_AES_PRIORITY,
  1070. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1071. .cra_blocksize = AES_BLOCK_SIZE,
  1072. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1073. .cra_alignmask = 0xf,
  1074. .cra_type = &crypto_ablkcipher_type,
  1075. .cra_module = THIS_MODULE,
  1076. .cra_init = atmel_aes_cra_init,
  1077. .cra_u.ablkcipher = {
  1078. .min_keysize = AES_MIN_KEY_SIZE,
  1079. .max_keysize = AES_MAX_KEY_SIZE,
  1080. .ivsize = AES_BLOCK_SIZE,
  1081. .setkey = atmel_aes_setkey,
  1082. .encrypt = atmel_aes_cfb_encrypt,
  1083. .decrypt = atmel_aes_cfb_decrypt,
  1084. }
  1085. },
  1086. {
  1087. .cra_name = "cfb32(aes)",
  1088. .cra_driver_name = "atmel-cfb32-aes",
  1089. .cra_priority = ATMEL_AES_PRIORITY,
  1090. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1091. .cra_blocksize = CFB32_BLOCK_SIZE,
  1092. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1093. .cra_alignmask = 0x3,
  1094. .cra_type = &crypto_ablkcipher_type,
  1095. .cra_module = THIS_MODULE,
  1096. .cra_init = atmel_aes_cra_init,
  1097. .cra_u.ablkcipher = {
  1098. .min_keysize = AES_MIN_KEY_SIZE,
  1099. .max_keysize = AES_MAX_KEY_SIZE,
  1100. .ivsize = AES_BLOCK_SIZE,
  1101. .setkey = atmel_aes_setkey,
  1102. .encrypt = atmel_aes_cfb32_encrypt,
  1103. .decrypt = atmel_aes_cfb32_decrypt,
  1104. }
  1105. },
  1106. {
  1107. .cra_name = "cfb16(aes)",
  1108. .cra_driver_name = "atmel-cfb16-aes",
  1109. .cra_priority = ATMEL_AES_PRIORITY,
  1110. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1111. .cra_blocksize = CFB16_BLOCK_SIZE,
  1112. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1113. .cra_alignmask = 0x1,
  1114. .cra_type = &crypto_ablkcipher_type,
  1115. .cra_module = THIS_MODULE,
  1116. .cra_init = atmel_aes_cra_init,
  1117. .cra_u.ablkcipher = {
  1118. .min_keysize = AES_MIN_KEY_SIZE,
  1119. .max_keysize = AES_MAX_KEY_SIZE,
  1120. .ivsize = AES_BLOCK_SIZE,
  1121. .setkey = atmel_aes_setkey,
  1122. .encrypt = atmel_aes_cfb16_encrypt,
  1123. .decrypt = atmel_aes_cfb16_decrypt,
  1124. }
  1125. },
  1126. {
  1127. .cra_name = "cfb8(aes)",
  1128. .cra_driver_name = "atmel-cfb8-aes",
  1129. .cra_priority = ATMEL_AES_PRIORITY,
  1130. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1131. .cra_blocksize = CFB8_BLOCK_SIZE,
  1132. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1133. .cra_alignmask = 0x0,
  1134. .cra_type = &crypto_ablkcipher_type,
  1135. .cra_module = THIS_MODULE,
  1136. .cra_init = atmel_aes_cra_init,
  1137. .cra_u.ablkcipher = {
  1138. .min_keysize = AES_MIN_KEY_SIZE,
  1139. .max_keysize = AES_MAX_KEY_SIZE,
  1140. .ivsize = AES_BLOCK_SIZE,
  1141. .setkey = atmel_aes_setkey,
  1142. .encrypt = atmel_aes_cfb8_encrypt,
  1143. .decrypt = atmel_aes_cfb8_decrypt,
  1144. }
  1145. },
  1146. {
  1147. .cra_name = "ctr(aes)",
  1148. .cra_driver_name = "atmel-ctr-aes",
  1149. .cra_priority = ATMEL_AES_PRIORITY,
  1150. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1151. .cra_blocksize = 1,
  1152. .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
  1153. .cra_alignmask = 0xf,
  1154. .cra_type = &crypto_ablkcipher_type,
  1155. .cra_module = THIS_MODULE,
  1156. .cra_init = atmel_aes_ctr_cra_init,
  1157. .cra_u.ablkcipher = {
  1158. .min_keysize = AES_MIN_KEY_SIZE,
  1159. .max_keysize = AES_MAX_KEY_SIZE,
  1160. .ivsize = AES_BLOCK_SIZE,
  1161. .setkey = atmel_aes_setkey,
  1162. .encrypt = atmel_aes_ctr_encrypt,
  1163. .decrypt = atmel_aes_ctr_decrypt,
  1164. }
  1165. },
  1166. };
  1167. static struct crypto_alg aes_cfb64_alg = {
  1168. .cra_name = "cfb64(aes)",
  1169. .cra_driver_name = "atmel-cfb64-aes",
  1170. .cra_priority = ATMEL_AES_PRIORITY,
  1171. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1172. .cra_blocksize = CFB64_BLOCK_SIZE,
  1173. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  1174. .cra_alignmask = 0x7,
  1175. .cra_type = &crypto_ablkcipher_type,
  1176. .cra_module = THIS_MODULE,
  1177. .cra_init = atmel_aes_cra_init,
  1178. .cra_u.ablkcipher = {
  1179. .min_keysize = AES_MIN_KEY_SIZE,
  1180. .max_keysize = AES_MAX_KEY_SIZE,
  1181. .ivsize = AES_BLOCK_SIZE,
  1182. .setkey = atmel_aes_setkey,
  1183. .encrypt = atmel_aes_cfb64_encrypt,
  1184. .decrypt = atmel_aes_cfb64_decrypt,
  1185. }
  1186. };
  1187. /* gcm aead functions */
  1188. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1189. const u32 *data, size_t datalen,
  1190. const u32 *ghash_in, u32 *ghash_out,
  1191. atmel_aes_fn_t resume);
  1192. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
  1193. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
  1194. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
  1195. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
  1196. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
  1197. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
  1198. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
  1199. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
  1200. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
  1201. static inline struct atmel_aes_gcm_ctx *
  1202. atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1203. {
  1204. return container_of(ctx, struct atmel_aes_gcm_ctx, base);
  1205. }
  1206. static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
  1207. const u32 *data, size_t datalen,
  1208. const u32 *ghash_in, u32 *ghash_out,
  1209. atmel_aes_fn_t resume)
  1210. {
  1211. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1212. dd->data = (u32 *)data;
  1213. dd->datalen = datalen;
  1214. ctx->ghash_in = ghash_in;
  1215. ctx->ghash_out = ghash_out;
  1216. ctx->ghash_resume = resume;
  1217. atmel_aes_write_ctrl(dd, false, NULL);
  1218. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
  1219. }
  1220. static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
  1221. {
  1222. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1223. /* Set the data length. */
  1224. atmel_aes_write(dd, AES_AADLENR, dd->total);
  1225. atmel_aes_write(dd, AES_CLENR, 0);
  1226. /* If needed, overwrite the GCM Intermediate Hash Word Registers */
  1227. if (ctx->ghash_in)
  1228. atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
  1229. return atmel_aes_gcm_ghash_finalize(dd);
  1230. }
  1231. static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
  1232. {
  1233. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1234. u32 isr;
  1235. /* Write data into the Input Data Registers. */
  1236. while (dd->datalen > 0) {
  1237. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1238. dd->data += 4;
  1239. dd->datalen -= AES_BLOCK_SIZE;
  1240. isr = atmel_aes_read(dd, AES_ISR);
  1241. if (!(isr & AES_INT_DATARDY)) {
  1242. dd->resume = atmel_aes_gcm_ghash_finalize;
  1243. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1244. return -EINPROGRESS;
  1245. }
  1246. }
  1247. /* Read the computed hash from GHASHRx. */
  1248. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
  1249. return ctx->ghash_resume(dd);
  1250. }
  1251. static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
  1252. {
  1253. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1254. struct aead_request *req = aead_request_cast(dd->areq);
  1255. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1256. struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
  1257. size_t ivsize = crypto_aead_ivsize(tfm);
  1258. size_t datalen, padlen;
  1259. const void *iv = req->iv;
  1260. u8 *data = dd->buf;
  1261. int err;
  1262. atmel_aes_set_mode(dd, rctx);
  1263. err = atmel_aes_hw_init(dd);
  1264. if (err)
  1265. return atmel_aes_complete(dd, err);
  1266. if (likely(ivsize == GCM_AES_IV_SIZE)) {
  1267. memcpy(ctx->j0, iv, ivsize);
  1268. ctx->j0[3] = cpu_to_be32(1);
  1269. return atmel_aes_gcm_process(dd);
  1270. }
  1271. padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
  1272. datalen = ivsize + padlen + AES_BLOCK_SIZE;
  1273. if (datalen > dd->buflen)
  1274. return atmel_aes_complete(dd, -EINVAL);
  1275. memcpy(data, iv, ivsize);
  1276. memset(data + ivsize, 0, padlen + sizeof(u64));
  1277. ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
  1278. return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
  1279. NULL, ctx->j0, atmel_aes_gcm_process);
  1280. }
  1281. static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
  1282. {
  1283. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1284. struct aead_request *req = aead_request_cast(dd->areq);
  1285. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1286. bool enc = atmel_aes_is_encrypt(dd);
  1287. u32 authsize;
  1288. /* Compute text length. */
  1289. authsize = crypto_aead_authsize(tfm);
  1290. ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1291. /*
  1292. * According to tcrypt test suite, the GCM Automatic Tag Generation
  1293. * fails when both the message and its associated data are empty.
  1294. */
  1295. if (likely(req->assoclen != 0 || ctx->textlen != 0))
  1296. dd->flags |= AES_FLAGS_GTAGEN;
  1297. atmel_aes_write_ctrl(dd, false, NULL);
  1298. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
  1299. }
  1300. static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
  1301. {
  1302. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1303. struct aead_request *req = aead_request_cast(dd->areq);
  1304. u32 j0_lsw, *j0 = ctx->j0;
  1305. size_t padlen;
  1306. /* Write incr32(J0) into IV. */
  1307. j0_lsw = j0[3];
  1308. j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
  1309. atmel_aes_write_block(dd, AES_IVR(0), j0);
  1310. j0[3] = j0_lsw;
  1311. /* Set aad and text lengths. */
  1312. atmel_aes_write(dd, AES_AADLENR, req->assoclen);
  1313. atmel_aes_write(dd, AES_CLENR, ctx->textlen);
  1314. /* Check whether AAD are present. */
  1315. if (unlikely(req->assoclen == 0)) {
  1316. dd->datalen = 0;
  1317. return atmel_aes_gcm_data(dd);
  1318. }
  1319. /* Copy assoc data and add padding. */
  1320. padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
  1321. if (unlikely(req->assoclen + padlen > dd->buflen))
  1322. return atmel_aes_complete(dd, -EINVAL);
  1323. sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
  1324. /* Write assoc data into the Input Data register. */
  1325. dd->data = (u32 *)dd->buf;
  1326. dd->datalen = req->assoclen + padlen;
  1327. return atmel_aes_gcm_data(dd);
  1328. }
  1329. static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
  1330. {
  1331. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1332. struct aead_request *req = aead_request_cast(dd->areq);
  1333. bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
  1334. struct scatterlist *src, *dst;
  1335. u32 isr, mr;
  1336. /* Write AAD first. */
  1337. while (dd->datalen > 0) {
  1338. atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
  1339. dd->data += 4;
  1340. dd->datalen -= AES_BLOCK_SIZE;
  1341. isr = atmel_aes_read(dd, AES_ISR);
  1342. if (!(isr & AES_INT_DATARDY)) {
  1343. dd->resume = atmel_aes_gcm_data;
  1344. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  1345. return -EINPROGRESS;
  1346. }
  1347. }
  1348. /* GMAC only. */
  1349. if (unlikely(ctx->textlen == 0))
  1350. return atmel_aes_gcm_tag_init(dd);
  1351. /* Prepare src and dst scatter lists to transfer cipher/plain texts */
  1352. src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
  1353. dst = ((req->src == req->dst) ? src :
  1354. scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
  1355. if (use_dma) {
  1356. /* Update the Mode Register for DMA transfers. */
  1357. mr = atmel_aes_read(dd, AES_MR);
  1358. mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
  1359. mr |= AES_MR_SMOD_IDATAR0;
  1360. if (dd->caps.has_dualbuff)
  1361. mr |= AES_MR_DUALBUFF;
  1362. atmel_aes_write(dd, AES_MR, mr);
  1363. return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
  1364. atmel_aes_gcm_tag_init);
  1365. }
  1366. return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
  1367. atmel_aes_gcm_tag_init);
  1368. }
  1369. static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
  1370. {
  1371. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1372. struct aead_request *req = aead_request_cast(dd->areq);
  1373. u64 *data = dd->buf;
  1374. if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
  1375. if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
  1376. dd->resume = atmel_aes_gcm_tag_init;
  1377. atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
  1378. return -EINPROGRESS;
  1379. }
  1380. return atmel_aes_gcm_finalize(dd);
  1381. }
  1382. /* Read the GCM Intermediate Hash Word Registers. */
  1383. atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
  1384. data[0] = cpu_to_be64(req->assoclen * 8);
  1385. data[1] = cpu_to_be64(ctx->textlen * 8);
  1386. return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
  1387. ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
  1388. }
  1389. static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
  1390. {
  1391. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1392. unsigned long flags;
  1393. /*
  1394. * Change mode to CTR to complete the tag generation.
  1395. * Use J0 as Initialization Vector.
  1396. */
  1397. flags = dd->flags;
  1398. dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
  1399. dd->flags |= AES_FLAGS_CTR;
  1400. atmel_aes_write_ctrl(dd, false, ctx->j0);
  1401. dd->flags = flags;
  1402. atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
  1403. return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
  1404. }
  1405. static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
  1406. {
  1407. struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
  1408. struct aead_request *req = aead_request_cast(dd->areq);
  1409. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1410. bool enc = atmel_aes_is_encrypt(dd);
  1411. u32 offset, authsize, itag[4], *otag = ctx->tag;
  1412. int err;
  1413. /* Read the computed tag. */
  1414. if (likely(dd->flags & AES_FLAGS_GTAGEN))
  1415. atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
  1416. else
  1417. atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
  1418. offset = req->assoclen + ctx->textlen;
  1419. authsize = crypto_aead_authsize(tfm);
  1420. if (enc) {
  1421. scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
  1422. err = 0;
  1423. } else {
  1424. scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
  1425. err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
  1426. }
  1427. return atmel_aes_complete(dd, err);
  1428. }
  1429. static int atmel_aes_gcm_crypt(struct aead_request *req,
  1430. unsigned long mode)
  1431. {
  1432. struct atmel_aes_base_ctx *ctx;
  1433. struct atmel_aes_reqctx *rctx;
  1434. struct atmel_aes_dev *dd;
  1435. ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  1436. ctx->block_size = AES_BLOCK_SIZE;
  1437. ctx->is_aead = true;
  1438. dd = atmel_aes_find_dev(ctx);
  1439. if (!dd)
  1440. return -ENODEV;
  1441. rctx = aead_request_ctx(req);
  1442. rctx->mode = AES_FLAGS_GCM | mode;
  1443. return atmel_aes_handle_queue(dd, &req->base);
  1444. }
  1445. static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
  1446. unsigned int keylen)
  1447. {
  1448. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1449. if (keylen != AES_KEYSIZE_256 &&
  1450. keylen != AES_KEYSIZE_192 &&
  1451. keylen != AES_KEYSIZE_128) {
  1452. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1453. return -EINVAL;
  1454. }
  1455. memcpy(ctx->key, key, keylen);
  1456. ctx->keylen = keylen;
  1457. return 0;
  1458. }
  1459. static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
  1460. unsigned int authsize)
  1461. {
  1462. /* Same as crypto_gcm_authsize() from crypto/gcm.c */
  1463. switch (authsize) {
  1464. case 4:
  1465. case 8:
  1466. case 12:
  1467. case 13:
  1468. case 14:
  1469. case 15:
  1470. case 16:
  1471. break;
  1472. default:
  1473. return -EINVAL;
  1474. }
  1475. return 0;
  1476. }
  1477. static int atmel_aes_gcm_encrypt(struct aead_request *req)
  1478. {
  1479. return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
  1480. }
  1481. static int atmel_aes_gcm_decrypt(struct aead_request *req)
  1482. {
  1483. return atmel_aes_gcm_crypt(req, 0);
  1484. }
  1485. static int atmel_aes_gcm_init(struct crypto_aead *tfm)
  1486. {
  1487. struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
  1488. crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
  1489. ctx->base.start = atmel_aes_gcm_start;
  1490. return 0;
  1491. }
  1492. static struct aead_alg aes_gcm_alg = {
  1493. .setkey = atmel_aes_gcm_setkey,
  1494. .setauthsize = atmel_aes_gcm_setauthsize,
  1495. .encrypt = atmel_aes_gcm_encrypt,
  1496. .decrypt = atmel_aes_gcm_decrypt,
  1497. .init = atmel_aes_gcm_init,
  1498. .ivsize = GCM_AES_IV_SIZE,
  1499. .maxauthsize = AES_BLOCK_SIZE,
  1500. .base = {
  1501. .cra_name = "gcm(aes)",
  1502. .cra_driver_name = "atmel-gcm-aes",
  1503. .cra_priority = ATMEL_AES_PRIORITY,
  1504. .cra_flags = CRYPTO_ALG_ASYNC,
  1505. .cra_blocksize = 1,
  1506. .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
  1507. .cra_alignmask = 0xf,
  1508. .cra_module = THIS_MODULE,
  1509. },
  1510. };
  1511. /* xts functions */
  1512. static inline struct atmel_aes_xts_ctx *
  1513. atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
  1514. {
  1515. return container_of(ctx, struct atmel_aes_xts_ctx, base);
  1516. }
  1517. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
  1518. static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
  1519. {
  1520. struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
  1521. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1522. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  1523. unsigned long flags;
  1524. int err;
  1525. atmel_aes_set_mode(dd, rctx);
  1526. err = atmel_aes_hw_init(dd);
  1527. if (err)
  1528. return atmel_aes_complete(dd, err);
  1529. /* Compute the tweak value from req->info with ecb(aes). */
  1530. flags = dd->flags;
  1531. dd->flags &= ~AES_FLAGS_MODE_MASK;
  1532. dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
  1533. atmel_aes_write_ctrl_key(dd, false, NULL,
  1534. ctx->key2, ctx->base.keylen);
  1535. dd->flags = flags;
  1536. atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
  1537. return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
  1538. }
  1539. static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
  1540. {
  1541. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  1542. bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
  1543. u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
  1544. static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
  1545. u8 *tweak_bytes = (u8 *)tweak;
  1546. int i;
  1547. /* Read the computed ciphered tweak value. */
  1548. atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
  1549. /*
  1550. * Hardware quirk:
  1551. * the order of the ciphered tweak bytes need to be reversed before
  1552. * writing them into the ODATARx registers.
  1553. */
  1554. for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
  1555. u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
  1556. tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
  1557. tweak_bytes[i] = tmp;
  1558. }
  1559. /* Process the data. */
  1560. atmel_aes_write_ctrl(dd, use_dma, NULL);
  1561. atmel_aes_write_block(dd, AES_TWR(0), tweak);
  1562. atmel_aes_write_block(dd, AES_ALPHAR(0), one);
  1563. if (use_dma)
  1564. return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
  1565. atmel_aes_transfer_complete);
  1566. return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
  1567. atmel_aes_transfer_complete);
  1568. }
  1569. static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  1570. unsigned int keylen)
  1571. {
  1572. struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  1573. int err;
  1574. err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
  1575. if (err)
  1576. return err;
  1577. memcpy(ctx->base.key, key, keylen/2);
  1578. memcpy(ctx->key2, key + keylen/2, keylen/2);
  1579. ctx->base.keylen = keylen/2;
  1580. return 0;
  1581. }
  1582. static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
  1583. {
  1584. return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
  1585. }
  1586. static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
  1587. {
  1588. return atmel_aes_crypt(req, AES_FLAGS_XTS);
  1589. }
  1590. static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
  1591. {
  1592. struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  1593. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  1594. ctx->base.start = atmel_aes_xts_start;
  1595. return 0;
  1596. }
  1597. static struct crypto_alg aes_xts_alg = {
  1598. .cra_name = "xts(aes)",
  1599. .cra_driver_name = "atmel-xts-aes",
  1600. .cra_priority = ATMEL_AES_PRIORITY,
  1601. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  1602. .cra_blocksize = AES_BLOCK_SIZE,
  1603. .cra_ctxsize = sizeof(struct atmel_aes_xts_ctx),
  1604. .cra_alignmask = 0xf,
  1605. .cra_type = &crypto_ablkcipher_type,
  1606. .cra_module = THIS_MODULE,
  1607. .cra_init = atmel_aes_xts_cra_init,
  1608. .cra_u.ablkcipher = {
  1609. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  1610. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  1611. .ivsize = AES_BLOCK_SIZE,
  1612. .setkey = atmel_aes_xts_setkey,
  1613. .encrypt = atmel_aes_xts_encrypt,
  1614. .decrypt = atmel_aes_xts_decrypt,
  1615. }
  1616. };
  1617. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  1618. /* authenc aead functions */
  1619. static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
  1620. static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
  1621. bool is_async);
  1622. static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
  1623. bool is_async);
  1624. static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
  1625. static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
  1626. bool is_async);
  1627. static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
  1628. {
  1629. struct aead_request *req = aead_request_cast(dd->areq);
  1630. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1631. if (err && (dd->flags & AES_FLAGS_OWN_SHA))
  1632. atmel_sha_authenc_abort(&rctx->auth_req);
  1633. dd->flags &= ~AES_FLAGS_OWN_SHA;
  1634. }
  1635. static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
  1636. {
  1637. struct aead_request *req = aead_request_cast(dd->areq);
  1638. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1639. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1640. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1641. int err;
  1642. atmel_aes_set_mode(dd, &rctx->base);
  1643. err = atmel_aes_hw_init(dd);
  1644. if (err)
  1645. return atmel_aes_complete(dd, err);
  1646. return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
  1647. atmel_aes_authenc_init, dd);
  1648. }
  1649. static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
  1650. bool is_async)
  1651. {
  1652. struct aead_request *req = aead_request_cast(dd->areq);
  1653. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1654. if (is_async)
  1655. dd->is_async = true;
  1656. if (err)
  1657. return atmel_aes_complete(dd, err);
  1658. /* If here, we've got the ownership of the SHA device. */
  1659. dd->flags |= AES_FLAGS_OWN_SHA;
  1660. /* Configure the SHA device. */
  1661. return atmel_sha_authenc_init(&rctx->auth_req,
  1662. req->src, req->assoclen,
  1663. rctx->textlen,
  1664. atmel_aes_authenc_transfer, dd);
  1665. }
  1666. static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
  1667. bool is_async)
  1668. {
  1669. struct aead_request *req = aead_request_cast(dd->areq);
  1670. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1671. bool enc = atmel_aes_is_encrypt(dd);
  1672. struct scatterlist *src, *dst;
  1673. u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
  1674. u32 emr;
  1675. if (is_async)
  1676. dd->is_async = true;
  1677. if (err)
  1678. return atmel_aes_complete(dd, err);
  1679. /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
  1680. src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
  1681. dst = src;
  1682. if (req->src != req->dst)
  1683. dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
  1684. /* Configure the AES device. */
  1685. memcpy(iv, req->iv, sizeof(iv));
  1686. /*
  1687. * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
  1688. * 'true' even if the data transfer is actually performed by the CPU (so
  1689. * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
  1690. * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
  1691. * must be set to *_MR_SMOD_IDATAR0.
  1692. */
  1693. atmel_aes_write_ctrl(dd, true, iv);
  1694. emr = AES_EMR_PLIPEN;
  1695. if (!enc)
  1696. emr |= AES_EMR_PLIPD;
  1697. atmel_aes_write(dd, AES_EMR, emr);
  1698. /* Transfer data. */
  1699. return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
  1700. atmel_aes_authenc_digest);
  1701. }
  1702. static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
  1703. {
  1704. struct aead_request *req = aead_request_cast(dd->areq);
  1705. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1706. /* atmel_sha_authenc_final() releases the SHA device. */
  1707. dd->flags &= ~AES_FLAGS_OWN_SHA;
  1708. return atmel_sha_authenc_final(&rctx->auth_req,
  1709. rctx->digest, sizeof(rctx->digest),
  1710. atmel_aes_authenc_final, dd);
  1711. }
  1712. static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
  1713. bool is_async)
  1714. {
  1715. struct aead_request *req = aead_request_cast(dd->areq);
  1716. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1717. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1718. bool enc = atmel_aes_is_encrypt(dd);
  1719. u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
  1720. u32 offs, authsize;
  1721. if (is_async)
  1722. dd->is_async = true;
  1723. if (err)
  1724. goto complete;
  1725. offs = req->assoclen + rctx->textlen;
  1726. authsize = crypto_aead_authsize(tfm);
  1727. if (enc) {
  1728. scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
  1729. } else {
  1730. scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
  1731. if (crypto_memneq(idigest, odigest, authsize))
  1732. err = -EBADMSG;
  1733. }
  1734. complete:
  1735. return atmel_aes_complete(dd, err);
  1736. }
  1737. static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
  1738. unsigned int keylen)
  1739. {
  1740. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1741. struct crypto_authenc_keys keys;
  1742. u32 flags;
  1743. int err;
  1744. if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
  1745. goto badkey;
  1746. if (keys.enckeylen > sizeof(ctx->base.key))
  1747. goto badkey;
  1748. /* Save auth key. */
  1749. flags = crypto_aead_get_flags(tfm);
  1750. err = atmel_sha_authenc_setkey(ctx->auth,
  1751. keys.authkey, keys.authkeylen,
  1752. &flags);
  1753. crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
  1754. if (err) {
  1755. memzero_explicit(&keys, sizeof(keys));
  1756. return err;
  1757. }
  1758. /* Save enc key. */
  1759. ctx->base.keylen = keys.enckeylen;
  1760. memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
  1761. memzero_explicit(&keys, sizeof(keys));
  1762. return 0;
  1763. badkey:
  1764. crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  1765. memzero_explicit(&keys, sizeof(keys));
  1766. return -EINVAL;
  1767. }
  1768. static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
  1769. unsigned long auth_mode)
  1770. {
  1771. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1772. unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
  1773. ctx->auth = atmel_sha_authenc_spawn(auth_mode);
  1774. if (IS_ERR(ctx->auth))
  1775. return PTR_ERR(ctx->auth);
  1776. crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
  1777. auth_reqsize));
  1778. ctx->base.start = atmel_aes_authenc_start;
  1779. return 0;
  1780. }
  1781. static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
  1782. {
  1783. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
  1784. }
  1785. static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
  1786. {
  1787. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
  1788. }
  1789. static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
  1790. {
  1791. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
  1792. }
  1793. static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
  1794. {
  1795. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
  1796. }
  1797. static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
  1798. {
  1799. return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
  1800. }
  1801. static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
  1802. {
  1803. struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
  1804. atmel_sha_authenc_free(ctx->auth);
  1805. }
  1806. static int atmel_aes_authenc_crypt(struct aead_request *req,
  1807. unsigned long mode)
  1808. {
  1809. struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
  1810. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  1811. struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
  1812. u32 authsize = crypto_aead_authsize(tfm);
  1813. bool enc = (mode & AES_FLAGS_ENCRYPT);
  1814. struct atmel_aes_dev *dd;
  1815. /* Compute text length. */
  1816. if (!enc && req->cryptlen < authsize)
  1817. return -EINVAL;
  1818. rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
  1819. /*
  1820. * Currently, empty messages are not supported yet:
  1821. * the SHA auto-padding can be used only on non-empty messages.
  1822. * Hence a special case needs to be implemented for empty message.
  1823. */
  1824. if (!rctx->textlen && !req->assoclen)
  1825. return -EINVAL;
  1826. rctx->base.mode = mode;
  1827. ctx->block_size = AES_BLOCK_SIZE;
  1828. ctx->is_aead = true;
  1829. dd = atmel_aes_find_dev(ctx);
  1830. if (!dd)
  1831. return -ENODEV;
  1832. return atmel_aes_handle_queue(dd, &req->base);
  1833. }
  1834. static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
  1835. {
  1836. return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
  1837. }
  1838. static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
  1839. {
  1840. return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
  1841. }
  1842. static struct aead_alg aes_authenc_algs[] = {
  1843. {
  1844. .setkey = atmel_aes_authenc_setkey,
  1845. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1846. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1847. .init = atmel_aes_authenc_hmac_sha1_init_tfm,
  1848. .exit = atmel_aes_authenc_exit_tfm,
  1849. .ivsize = AES_BLOCK_SIZE,
  1850. .maxauthsize = SHA1_DIGEST_SIZE,
  1851. .base = {
  1852. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  1853. .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes",
  1854. .cra_priority = ATMEL_AES_PRIORITY,
  1855. .cra_flags = CRYPTO_ALG_ASYNC,
  1856. .cra_blocksize = AES_BLOCK_SIZE,
  1857. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1858. .cra_alignmask = 0xf,
  1859. .cra_module = THIS_MODULE,
  1860. },
  1861. },
  1862. {
  1863. .setkey = atmel_aes_authenc_setkey,
  1864. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1865. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1866. .init = atmel_aes_authenc_hmac_sha224_init_tfm,
  1867. .exit = atmel_aes_authenc_exit_tfm,
  1868. .ivsize = AES_BLOCK_SIZE,
  1869. .maxauthsize = SHA224_DIGEST_SIZE,
  1870. .base = {
  1871. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  1872. .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes",
  1873. .cra_priority = ATMEL_AES_PRIORITY,
  1874. .cra_flags = CRYPTO_ALG_ASYNC,
  1875. .cra_blocksize = AES_BLOCK_SIZE,
  1876. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1877. .cra_alignmask = 0xf,
  1878. .cra_module = THIS_MODULE,
  1879. },
  1880. },
  1881. {
  1882. .setkey = atmel_aes_authenc_setkey,
  1883. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1884. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1885. .init = atmel_aes_authenc_hmac_sha256_init_tfm,
  1886. .exit = atmel_aes_authenc_exit_tfm,
  1887. .ivsize = AES_BLOCK_SIZE,
  1888. .maxauthsize = SHA256_DIGEST_SIZE,
  1889. .base = {
  1890. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  1891. .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes",
  1892. .cra_priority = ATMEL_AES_PRIORITY,
  1893. .cra_flags = CRYPTO_ALG_ASYNC,
  1894. .cra_blocksize = AES_BLOCK_SIZE,
  1895. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1896. .cra_alignmask = 0xf,
  1897. .cra_module = THIS_MODULE,
  1898. },
  1899. },
  1900. {
  1901. .setkey = atmel_aes_authenc_setkey,
  1902. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1903. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1904. .init = atmel_aes_authenc_hmac_sha384_init_tfm,
  1905. .exit = atmel_aes_authenc_exit_tfm,
  1906. .ivsize = AES_BLOCK_SIZE,
  1907. .maxauthsize = SHA384_DIGEST_SIZE,
  1908. .base = {
  1909. .cra_name = "authenc(hmac(sha384),cbc(aes))",
  1910. .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes",
  1911. .cra_priority = ATMEL_AES_PRIORITY,
  1912. .cra_flags = CRYPTO_ALG_ASYNC,
  1913. .cra_blocksize = AES_BLOCK_SIZE,
  1914. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1915. .cra_alignmask = 0xf,
  1916. .cra_module = THIS_MODULE,
  1917. },
  1918. },
  1919. {
  1920. .setkey = atmel_aes_authenc_setkey,
  1921. .encrypt = atmel_aes_authenc_cbc_aes_encrypt,
  1922. .decrypt = atmel_aes_authenc_cbc_aes_decrypt,
  1923. .init = atmel_aes_authenc_hmac_sha512_init_tfm,
  1924. .exit = atmel_aes_authenc_exit_tfm,
  1925. .ivsize = AES_BLOCK_SIZE,
  1926. .maxauthsize = SHA512_DIGEST_SIZE,
  1927. .base = {
  1928. .cra_name = "authenc(hmac(sha512),cbc(aes))",
  1929. .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes",
  1930. .cra_priority = ATMEL_AES_PRIORITY,
  1931. .cra_flags = CRYPTO_ALG_ASYNC,
  1932. .cra_blocksize = AES_BLOCK_SIZE,
  1933. .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx),
  1934. .cra_alignmask = 0xf,
  1935. .cra_module = THIS_MODULE,
  1936. },
  1937. },
  1938. };
  1939. #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
  1940. /* Probe functions */
  1941. static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
  1942. {
  1943. dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
  1944. dd->buflen = ATMEL_AES_BUFFER_SIZE;
  1945. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  1946. if (!dd->buf) {
  1947. dev_err(dd->dev, "unable to alloc pages.\n");
  1948. return -ENOMEM;
  1949. }
  1950. return 0;
  1951. }
  1952. static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
  1953. {
  1954. free_page((unsigned long)dd->buf);
  1955. }
  1956. static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
  1957. {
  1958. struct at_dma_slave *sl = slave;
  1959. if (sl && sl->dma_dev == chan->device->dev) {
  1960. chan->private = sl;
  1961. return true;
  1962. } else {
  1963. return false;
  1964. }
  1965. }
  1966. static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
  1967. struct crypto_platform_data *pdata)
  1968. {
  1969. struct at_dma_slave *slave;
  1970. dma_cap_mask_t mask;
  1971. dma_cap_zero(mask);
  1972. dma_cap_set(DMA_SLAVE, mask);
  1973. /* Try to grab 2 DMA channels */
  1974. slave = &pdata->dma_slave->rxdata;
  1975. dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1976. slave, dd->dev, "tx");
  1977. if (!dd->src.chan)
  1978. goto err_dma_in;
  1979. slave = &pdata->dma_slave->txdata;
  1980. dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
  1981. slave, dd->dev, "rx");
  1982. if (!dd->dst.chan)
  1983. goto err_dma_out;
  1984. return 0;
  1985. err_dma_out:
  1986. dma_release_channel(dd->src.chan);
  1987. err_dma_in:
  1988. dev_warn(dd->dev, "no DMA channel available\n");
  1989. return -ENODEV;
  1990. }
  1991. static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
  1992. {
  1993. dma_release_channel(dd->dst.chan);
  1994. dma_release_channel(dd->src.chan);
  1995. }
  1996. static void atmel_aes_queue_task(unsigned long data)
  1997. {
  1998. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  1999. atmel_aes_handle_queue(dd, NULL);
  2000. }
  2001. static void atmel_aes_done_task(unsigned long data)
  2002. {
  2003. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  2004. dd->is_async = true;
  2005. (void)dd->resume(dd);
  2006. }
  2007. static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
  2008. {
  2009. struct atmel_aes_dev *aes_dd = dev_id;
  2010. u32 reg;
  2011. reg = atmel_aes_read(aes_dd, AES_ISR);
  2012. if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
  2013. atmel_aes_write(aes_dd, AES_IDR, reg);
  2014. if (AES_FLAGS_BUSY & aes_dd->flags)
  2015. tasklet_schedule(&aes_dd->done_task);
  2016. else
  2017. dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
  2018. return IRQ_HANDLED;
  2019. }
  2020. return IRQ_NONE;
  2021. }
  2022. static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
  2023. {
  2024. int i;
  2025. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2026. if (dd->caps.has_authenc)
  2027. for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
  2028. crypto_unregister_aead(&aes_authenc_algs[i]);
  2029. #endif
  2030. if (dd->caps.has_xts)
  2031. crypto_unregister_alg(&aes_xts_alg);
  2032. if (dd->caps.has_gcm)
  2033. crypto_unregister_aead(&aes_gcm_alg);
  2034. if (dd->caps.has_cfb64)
  2035. crypto_unregister_alg(&aes_cfb64_alg);
  2036. for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
  2037. crypto_unregister_alg(&aes_algs[i]);
  2038. }
  2039. static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
  2040. {
  2041. int err, i, j;
  2042. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  2043. err = crypto_register_alg(&aes_algs[i]);
  2044. if (err)
  2045. goto err_aes_algs;
  2046. }
  2047. if (dd->caps.has_cfb64) {
  2048. err = crypto_register_alg(&aes_cfb64_alg);
  2049. if (err)
  2050. goto err_aes_cfb64_alg;
  2051. }
  2052. if (dd->caps.has_gcm) {
  2053. err = crypto_register_aead(&aes_gcm_alg);
  2054. if (err)
  2055. goto err_aes_gcm_alg;
  2056. }
  2057. if (dd->caps.has_xts) {
  2058. err = crypto_register_alg(&aes_xts_alg);
  2059. if (err)
  2060. goto err_aes_xts_alg;
  2061. }
  2062. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2063. if (dd->caps.has_authenc) {
  2064. for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
  2065. err = crypto_register_aead(&aes_authenc_algs[i]);
  2066. if (err)
  2067. goto err_aes_authenc_alg;
  2068. }
  2069. }
  2070. #endif
  2071. return 0;
  2072. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2073. /* i = ARRAY_SIZE(aes_authenc_algs); */
  2074. err_aes_authenc_alg:
  2075. for (j = 0; j < i; j++)
  2076. crypto_unregister_aead(&aes_authenc_algs[j]);
  2077. crypto_unregister_alg(&aes_xts_alg);
  2078. #endif
  2079. err_aes_xts_alg:
  2080. crypto_unregister_aead(&aes_gcm_alg);
  2081. err_aes_gcm_alg:
  2082. crypto_unregister_alg(&aes_cfb64_alg);
  2083. err_aes_cfb64_alg:
  2084. i = ARRAY_SIZE(aes_algs);
  2085. err_aes_algs:
  2086. for (j = 0; j < i; j++)
  2087. crypto_unregister_alg(&aes_algs[j]);
  2088. return err;
  2089. }
  2090. static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
  2091. {
  2092. dd->caps.has_dualbuff = 0;
  2093. dd->caps.has_cfb64 = 0;
  2094. dd->caps.has_ctr32 = 0;
  2095. dd->caps.has_gcm = 0;
  2096. dd->caps.has_xts = 0;
  2097. dd->caps.has_authenc = 0;
  2098. dd->caps.max_burst_size = 1;
  2099. /* keep only major version number */
  2100. switch (dd->hw_version & 0xff0) {
  2101. case 0x500:
  2102. dd->caps.has_dualbuff = 1;
  2103. dd->caps.has_cfb64 = 1;
  2104. dd->caps.has_ctr32 = 1;
  2105. dd->caps.has_gcm = 1;
  2106. dd->caps.has_xts = 1;
  2107. dd->caps.has_authenc = 1;
  2108. dd->caps.max_burst_size = 4;
  2109. break;
  2110. case 0x200:
  2111. dd->caps.has_dualbuff = 1;
  2112. dd->caps.has_cfb64 = 1;
  2113. dd->caps.has_ctr32 = 1;
  2114. dd->caps.has_gcm = 1;
  2115. dd->caps.max_burst_size = 4;
  2116. break;
  2117. case 0x130:
  2118. dd->caps.has_dualbuff = 1;
  2119. dd->caps.has_cfb64 = 1;
  2120. dd->caps.max_burst_size = 4;
  2121. break;
  2122. case 0x120:
  2123. break;
  2124. default:
  2125. dev_warn(dd->dev,
  2126. "Unmanaged aes version, set minimum capabilities\n");
  2127. break;
  2128. }
  2129. }
  2130. #if defined(CONFIG_OF)
  2131. static const struct of_device_id atmel_aes_dt_ids[] = {
  2132. { .compatible = "atmel,at91sam9g46-aes" },
  2133. { /* sentinel */ }
  2134. };
  2135. MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
  2136. static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  2137. {
  2138. struct device_node *np = pdev->dev.of_node;
  2139. struct crypto_platform_data *pdata;
  2140. if (!np) {
  2141. dev_err(&pdev->dev, "device node not found\n");
  2142. return ERR_PTR(-EINVAL);
  2143. }
  2144. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  2145. if (!pdata)
  2146. return ERR_PTR(-ENOMEM);
  2147. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  2148. sizeof(*(pdata->dma_slave)),
  2149. GFP_KERNEL);
  2150. if (!pdata->dma_slave) {
  2151. devm_kfree(&pdev->dev, pdata);
  2152. return ERR_PTR(-ENOMEM);
  2153. }
  2154. return pdata;
  2155. }
  2156. #else
  2157. static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  2158. {
  2159. return ERR_PTR(-EINVAL);
  2160. }
  2161. #endif
  2162. static int atmel_aes_probe(struct platform_device *pdev)
  2163. {
  2164. struct atmel_aes_dev *aes_dd;
  2165. struct crypto_platform_data *pdata;
  2166. struct device *dev = &pdev->dev;
  2167. struct resource *aes_res;
  2168. int err;
  2169. pdata = pdev->dev.platform_data;
  2170. if (!pdata) {
  2171. pdata = atmel_aes_of_init(pdev);
  2172. if (IS_ERR(pdata)) {
  2173. err = PTR_ERR(pdata);
  2174. goto aes_dd_err;
  2175. }
  2176. }
  2177. if (!pdata->dma_slave) {
  2178. err = -ENXIO;
  2179. goto aes_dd_err;
  2180. }
  2181. aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
  2182. if (aes_dd == NULL) {
  2183. err = -ENOMEM;
  2184. goto aes_dd_err;
  2185. }
  2186. aes_dd->dev = dev;
  2187. platform_set_drvdata(pdev, aes_dd);
  2188. INIT_LIST_HEAD(&aes_dd->list);
  2189. spin_lock_init(&aes_dd->lock);
  2190. tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
  2191. (unsigned long)aes_dd);
  2192. tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
  2193. (unsigned long)aes_dd);
  2194. crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
  2195. /* Get the base address */
  2196. aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2197. if (!aes_res) {
  2198. dev_err(dev, "no MEM resource info\n");
  2199. err = -ENODEV;
  2200. goto res_err;
  2201. }
  2202. aes_dd->phys_base = aes_res->start;
  2203. /* Get the IRQ */
  2204. aes_dd->irq = platform_get_irq(pdev, 0);
  2205. if (aes_dd->irq < 0) {
  2206. dev_err(dev, "no IRQ resource info\n");
  2207. err = aes_dd->irq;
  2208. goto res_err;
  2209. }
  2210. err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
  2211. IRQF_SHARED, "atmel-aes", aes_dd);
  2212. if (err) {
  2213. dev_err(dev, "unable to request aes irq.\n");
  2214. goto res_err;
  2215. }
  2216. /* Initializing the clock */
  2217. aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
  2218. if (IS_ERR(aes_dd->iclk)) {
  2219. dev_err(dev, "clock initialization failed.\n");
  2220. err = PTR_ERR(aes_dd->iclk);
  2221. goto res_err;
  2222. }
  2223. aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
  2224. if (IS_ERR(aes_dd->io_base)) {
  2225. dev_err(dev, "can't ioremap\n");
  2226. err = PTR_ERR(aes_dd->io_base);
  2227. goto res_err;
  2228. }
  2229. err = clk_prepare(aes_dd->iclk);
  2230. if (err)
  2231. goto res_err;
  2232. err = atmel_aes_hw_version_init(aes_dd);
  2233. if (err)
  2234. goto iclk_unprepare;
  2235. atmel_aes_get_cap(aes_dd);
  2236. #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
  2237. if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
  2238. err = -EPROBE_DEFER;
  2239. goto iclk_unprepare;
  2240. }
  2241. #endif
  2242. err = atmel_aes_buff_init(aes_dd);
  2243. if (err)
  2244. goto err_aes_buff;
  2245. err = atmel_aes_dma_init(aes_dd, pdata);
  2246. if (err)
  2247. goto err_aes_dma;
  2248. spin_lock(&atmel_aes.lock);
  2249. list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
  2250. spin_unlock(&atmel_aes.lock);
  2251. err = atmel_aes_register_algs(aes_dd);
  2252. if (err)
  2253. goto err_algs;
  2254. dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
  2255. dma_chan_name(aes_dd->src.chan),
  2256. dma_chan_name(aes_dd->dst.chan));
  2257. return 0;
  2258. err_algs:
  2259. spin_lock(&atmel_aes.lock);
  2260. list_del(&aes_dd->list);
  2261. spin_unlock(&atmel_aes.lock);
  2262. atmel_aes_dma_cleanup(aes_dd);
  2263. err_aes_dma:
  2264. atmel_aes_buff_cleanup(aes_dd);
  2265. err_aes_buff:
  2266. iclk_unprepare:
  2267. clk_unprepare(aes_dd->iclk);
  2268. res_err:
  2269. tasklet_kill(&aes_dd->done_task);
  2270. tasklet_kill(&aes_dd->queue_task);
  2271. aes_dd_err:
  2272. if (err != -EPROBE_DEFER)
  2273. dev_err(dev, "initialization failed.\n");
  2274. return err;
  2275. }
  2276. static int atmel_aes_remove(struct platform_device *pdev)
  2277. {
  2278. struct atmel_aes_dev *aes_dd;
  2279. aes_dd = platform_get_drvdata(pdev);
  2280. if (!aes_dd)
  2281. return -ENODEV;
  2282. spin_lock(&atmel_aes.lock);
  2283. list_del(&aes_dd->list);
  2284. spin_unlock(&atmel_aes.lock);
  2285. atmel_aes_unregister_algs(aes_dd);
  2286. tasklet_kill(&aes_dd->done_task);
  2287. tasklet_kill(&aes_dd->queue_task);
  2288. atmel_aes_dma_cleanup(aes_dd);
  2289. atmel_aes_buff_cleanup(aes_dd);
  2290. clk_unprepare(aes_dd->iclk);
  2291. return 0;
  2292. }
  2293. static struct platform_driver atmel_aes_driver = {
  2294. .probe = atmel_aes_probe,
  2295. .remove = atmel_aes_remove,
  2296. .driver = {
  2297. .name = "atmel_aes",
  2298. .of_match_table = of_match_ptr(atmel_aes_dt_ids),
  2299. },
  2300. };
  2301. module_platform_driver(atmel_aes_driver);
  2302. MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
  2303. MODULE_LICENSE("GPL v2");
  2304. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");