123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490 |
- // SPDX-License-Identifier: GPL-2.0
- /* Copyright (c) 2018 Intel Corporation */
- #include <linux/delay.h>
- #include "igc_hw.h"
- /**
- * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the necessary semaphores for exclusive access to the EEPROM.
- * Set the EEPROM access request bit and wait for EEPROM access grant bit.
- * Return successful if access grant bit set, else clear the request for
- * EEPROM access and return -IGC_ERR_NVM (-1).
- */
- static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
- {
- return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
- }
- /**
- * igc_release_nvm_i225 - Release exclusive access to EEPROM
- * @hw: pointer to the HW structure
- *
- * Stop any current commands to the EEPROM and clear the EEPROM request bit,
- * then release the semaphores acquired.
- */
- static void igc_release_nvm_i225(struct igc_hw *hw)
- {
- igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
- }
- /**
- * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- */
- static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
- {
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
- u32 swsm;
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = rd32(IGC_SWSM);
- if (!(swsm & IGC_SWSM_SMBI))
- break;
- usleep_range(500, 600);
- i++;
- }
- if (i == timeout) {
- /* In rare circumstances, the SW semaphore may already be held
- * unintentionally. Clear the semaphore once before giving up.
- */
- if (hw->dev_spec._base.clear_semaphore_once) {
- hw->dev_spec._base.clear_semaphore_once = false;
- igc_put_hw_semaphore(hw);
- for (i = 0; i < timeout; i++) {
- swsm = rd32(IGC_SWSM);
- if (!(swsm & IGC_SWSM_SMBI))
- break;
- usleep_range(500, 600);
- }
- }
- /* If we do not have the semaphore here, we have to give up. */
- if (i == timeout) {
- hw_dbg("Driver can't access device - SMBI bit is set.\n");
- return -IGC_ERR_NVM;
- }
- }
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = rd32(IGC_SWSM);
- wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
- /* Semaphore acquired if bit latched */
- if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
- break;
- usleep_range(500, 600);
- }
- if (i == timeout) {
- /* Release semaphores */
- igc_put_hw_semaphore(hw);
- hw_dbg("Driver can't access the NVM\n");
- return -IGC_ERR_NVM;
- }
- return 0;
- }
- /**
- * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
- * will also specify which port we're acquiring the lock for.
- */
- s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
- {
- s32 i = 0, timeout = 200;
- u32 fwmask = mask << 16;
- u32 swmask = mask;
- s32 ret_val = 0;
- u32 swfw_sync;
- while (i < timeout) {
- if (igc_get_hw_semaphore_i225(hw)) {
- ret_val = -IGC_ERR_SWFW_SYNC;
- goto out;
- }
- swfw_sync = rd32(IGC_SW_FW_SYNC);
- if (!(swfw_sync & (fwmask | swmask)))
- break;
- /* Firmware currently using resource (fwmask) */
- igc_put_hw_semaphore(hw);
- mdelay(5);
- i++;
- }
- if (i == timeout) {
- hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
- ret_val = -IGC_ERR_SWFW_SYNC;
- goto out;
- }
- swfw_sync |= swmask;
- wr32(IGC_SW_FW_SYNC, swfw_sync);
- igc_put_hw_semaphore(hw);
- out:
- return ret_val;
- }
- /**
- * igc_release_swfw_sync_i225 - Release SW/FW semaphore
- * @hw: pointer to the HW structure
- * @mask: specifies which semaphore to acquire
- *
- * Release the SW/FW semaphore used to access the PHY or NVM. The mask
- * will also specify which port we're releasing the lock for.
- */
- void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
- {
- u32 swfw_sync;
- while (igc_get_hw_semaphore_i225(hw))
- ; /* Empty */
- swfw_sync = rd32(IGC_SW_FW_SYNC);
- swfw_sync &= ~mask;
- wr32(IGC_SW_FW_SYNC, swfw_sync);
- igc_put_hw_semaphore(hw);
- }
- /**
- * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
- * @hw: pointer to the HW structure
- * @offset: offset of word in the Shadow Ram to read
- * @words: number of words to read
- * @data: word read from the Shadow Ram
- *
- * Reads a 16 bit word from the Shadow Ram using the EERD register.
- * Uses necessary synchronization semaphores.
- */
- static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- s32 status = 0;
- u16 i, count;
- /* We cannot hold synchronization semaphores for too long,
- * because of forceful takeover procedure. However it is more efficient
- * to read in bursts than synchronizing access for each word.
- */
- for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
- count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
- IGC_EERD_EEWR_MAX_COUNT : (words - i);
- status = hw->nvm.ops.acquire(hw);
- if (status)
- break;
- status = igc_read_nvm_eerd(hw, offset, count, data + i);
- hw->nvm.ops.release(hw);
- if (status)
- break;
- }
- return status;
- }
- /**
- * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
- * @hw: pointer to the HW structure
- * @offset: offset within the Shadow Ram to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the Shadow Ram
- *
- * Writes data to Shadow Ram at offset using EEWR register.
- *
- * If igc_update_nvm_checksum is not called after this function , the
- * Shadow Ram will most likely contain an invalid checksum.
- */
- static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- struct igc_nvm_info *nvm = &hw->nvm;
- u32 attempts = 100000;
- u32 i, k, eewr = 0;
- s32 ret_val = 0;
- /* A check for invalid values: offset too large, too many words,
- * too many words for the offset, and not enough words.
- */
- if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
- words == 0) {
- hw_dbg("nvm parameter(s) out of bounds\n");
- ret_val = -IGC_ERR_NVM;
- goto out;
- }
- for (i = 0; i < words; i++) {
- eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
- (data[i] << IGC_NVM_RW_REG_DATA) |
- IGC_NVM_RW_REG_START;
- wr32(IGC_SRWR, eewr);
- for (k = 0; k < attempts; k++) {
- if (IGC_NVM_RW_REG_DONE &
- rd32(IGC_SRWR)) {
- ret_val = 0;
- break;
- }
- udelay(5);
- }
- if (ret_val) {
- hw_dbg("Shadow RAM write EEWR timed out\n");
- break;
- }
- }
- out:
- return ret_val;
- }
- /**
- * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
- * @hw: pointer to the HW structure
- * @offset: offset within the Shadow RAM to be written to
- * @words: number of words to write
- * @data: 16 bit word(s) to be written to the Shadow RAM
- *
- * Writes data to Shadow RAM at offset using EEWR register.
- *
- * If igc_update_nvm_checksum is not called after this function , the
- * data will not be committed to FLASH and also Shadow RAM will most likely
- * contain an invalid checksum.
- *
- * If error code is returned, data and Shadow RAM may be inconsistent - buffer
- * partially written.
- */
- static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
- u16 *data)
- {
- s32 status = 0;
- u16 i, count;
- /* We cannot hold synchronization semaphores for too long,
- * because of forceful takeover procedure. However it is more efficient
- * to write in bursts than synchronizing access for each word.
- */
- for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
- count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
- IGC_EERD_EEWR_MAX_COUNT : (words - i);
- status = hw->nvm.ops.acquire(hw);
- if (status)
- break;
- status = igc_write_nvm_srwr(hw, offset, count, data + i);
- hw->nvm.ops.release(hw);
- if (status)
- break;
- }
- return status;
- }
- /**
- * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
- * and then verifies that the sum of the EEPROM is equal to 0xBABA.
- */
- static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
- {
- s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
- u16 *data);
- s32 status = 0;
- status = hw->nvm.ops.acquire(hw);
- if (status)
- goto out;
- /* Replace the read function with semaphore grabbing with
- * the one that skips this for a while.
- * We have semaphore taken already here.
- */
- read_op_ptr = hw->nvm.ops.read;
- hw->nvm.ops.read = igc_read_nvm_eerd;
- status = igc_validate_nvm_checksum(hw);
- /* Revert original read operation. */
- hw->nvm.ops.read = read_op_ptr;
- hw->nvm.ops.release(hw);
- out:
- return status;
- }
- /**
- * igc_pool_flash_update_done_i225 - Pool FLUDONE status
- * @hw: pointer to the HW structure
- */
- static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
- {
- s32 ret_val = -IGC_ERR_NVM;
- u32 i, reg;
- for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
- reg = rd32(IGC_EECD);
- if (reg & IGC_EECD_FLUDONE_I225) {
- ret_val = 0;
- break;
- }
- udelay(5);
- }
- return ret_val;
- }
- /**
- * igc_update_flash_i225 - Commit EEPROM to the flash
- * @hw: pointer to the HW structure
- */
- static s32 igc_update_flash_i225(struct igc_hw *hw)
- {
- s32 ret_val = 0;
- u32 flup;
- ret_val = igc_pool_flash_update_done_i225(hw);
- if (ret_val == -IGC_ERR_NVM) {
- hw_dbg("Flash update time out\n");
- goto out;
- }
- flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
- wr32(IGC_EECD, flup);
- ret_val = igc_pool_flash_update_done_i225(hw);
- if (ret_val)
- hw_dbg("Flash update time out\n");
- else
- hw_dbg("Flash update complete\n");
- out:
- return ret_val;
- }
- /**
- * igc_update_nvm_checksum_i225 - Update EEPROM checksum
- * @hw: pointer to the HW structure
- *
- * Updates the EEPROM checksum by reading/adding each word of the EEPROM
- * up to the checksum. Then calculates the EEPROM checksum and writes the
- * value to the EEPROM. Next commit EEPROM data onto the Flash.
- */
- static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
- {
- u16 checksum = 0;
- s32 ret_val = 0;
- u16 i, nvm_data;
- /* Read the first word from the EEPROM. If this times out or fails, do
- * not continue or we could be in for a very long wait while every
- * EEPROM read fails
- */
- ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
- if (ret_val) {
- hw_dbg("EEPROM read failed\n");
- goto out;
- }
- ret_val = hw->nvm.ops.acquire(hw);
- if (ret_val)
- goto out;
- /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
- * because we do not want to take the synchronization
- * semaphores twice here.
- */
- for (i = 0; i < NVM_CHECKSUM_REG; i++) {
- ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
- if (ret_val) {
- hw->nvm.ops.release(hw);
- hw_dbg("NVM Read Error while updating checksum.\n");
- goto out;
- }
- checksum += nvm_data;
- }
- checksum = (u16)NVM_SUM - checksum;
- ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
- &checksum);
- if (ret_val) {
- hw->nvm.ops.release(hw);
- hw_dbg("NVM Write Error while updating checksum.\n");
- goto out;
- }
- hw->nvm.ops.release(hw);
- ret_val = igc_update_flash_i225(hw);
- out:
- return ret_val;
- }
- /**
- * igc_get_flash_presence_i225 - Check if flash device is detected
- * @hw: pointer to the HW structure
- */
- bool igc_get_flash_presence_i225(struct igc_hw *hw)
- {
- bool ret_val = false;
- u32 eec = 0;
- eec = rd32(IGC_EECD);
- if (eec & IGC_EECD_FLASH_DETECTED_I225)
- ret_val = true;
- return ret_val;
- }
- /**
- * igc_init_nvm_params_i225 - Init NVM func ptrs.
- * @hw: pointer to the HW structure
- */
- s32 igc_init_nvm_params_i225(struct igc_hw *hw)
- {
- struct igc_nvm_info *nvm = &hw->nvm;
- nvm->ops.acquire = igc_acquire_nvm_i225;
- nvm->ops.release = igc_release_nvm_i225;
- /* NVM Function Pointers */
- if (igc_get_flash_presence_i225(hw)) {
- hw->nvm.type = igc_nvm_flash_hw;
- nvm->ops.read = igc_read_nvm_srrd_i225;
- nvm->ops.write = igc_write_nvm_srwr_i225;
- nvm->ops.validate = igc_validate_nvm_checksum_i225;
- nvm->ops.update = igc_update_nvm_checksum_i225;
- } else {
- hw->nvm.type = igc_nvm_invm;
- nvm->ops.read = igc_read_nvm_eerd;
- nvm->ops.write = NULL;
- nvm->ops.validate = NULL;
- nvm->ops.update = NULL;
- }
- return 0;
- }
|