dsa.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993
  1. /*
  2. * net/dsa/dsa.c - Hardware switch handling
  3. * Copyright (c) 2008-2009 Marvell Semiconductor
  4. * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/device.h>
  12. #include <linux/list.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/slab.h>
  15. #include <linux/module.h>
  16. #include <net/dsa.h>
  17. #include <linux/of.h>
  18. #include <linux/of_mdio.h>
  19. #include <linux/of_platform.h>
  20. #include <linux/of_net.h>
  21. #include <linux/of_gpio.h>
  22. #include <linux/sysfs.h>
  23. #include <linux/phy_fixed.h>
  24. #include <linux/gpio/consumer.h>
  25. #include "dsa_priv.h"
  26. static struct sk_buff *dsa_slave_notag_xmit(struct sk_buff *skb,
  27. struct net_device *dev)
  28. {
  29. /* Just return the original SKB */
  30. return skb;
  31. }
  32. static const struct dsa_device_ops none_ops = {
  33. .xmit = dsa_slave_notag_xmit,
  34. .rcv = NULL,
  35. };
  36. const struct dsa_device_ops *dsa_device_ops[DSA_TAG_LAST] = {
  37. #ifdef CONFIG_NET_DSA_TAG_DSA
  38. [DSA_TAG_PROTO_DSA] = &dsa_netdev_ops,
  39. #endif
  40. #ifdef CONFIG_NET_DSA_TAG_EDSA
  41. [DSA_TAG_PROTO_EDSA] = &edsa_netdev_ops,
  42. #endif
  43. #ifdef CONFIG_NET_DSA_TAG_TRAILER
  44. [DSA_TAG_PROTO_TRAILER] = &trailer_netdev_ops,
  45. #endif
  46. #ifdef CONFIG_NET_DSA_TAG_BRCM
  47. [DSA_TAG_PROTO_BRCM] = &brcm_netdev_ops,
  48. #endif
  49. #ifdef CONFIG_NET_DSA_TAG_QCA
  50. [DSA_TAG_PROTO_QCA] = &qca_netdev_ops,
  51. #endif
  52. [DSA_TAG_PROTO_NONE] = &none_ops,
  53. };
  54. /* switch driver registration ***********************************************/
  55. static DEFINE_MUTEX(dsa_switch_drivers_mutex);
  56. static LIST_HEAD(dsa_switch_drivers);
  57. void register_switch_driver(struct dsa_switch_driver *drv)
  58. {
  59. mutex_lock(&dsa_switch_drivers_mutex);
  60. list_add_tail(&drv->list, &dsa_switch_drivers);
  61. mutex_unlock(&dsa_switch_drivers_mutex);
  62. }
  63. EXPORT_SYMBOL_GPL(register_switch_driver);
  64. void unregister_switch_driver(struct dsa_switch_driver *drv)
  65. {
  66. mutex_lock(&dsa_switch_drivers_mutex);
  67. list_del_init(&drv->list);
  68. mutex_unlock(&dsa_switch_drivers_mutex);
  69. }
  70. EXPORT_SYMBOL_GPL(unregister_switch_driver);
  71. static struct dsa_switch_ops *
  72. dsa_switch_probe(struct device *parent, struct device *host_dev, int sw_addr,
  73. const char **_name, void **priv)
  74. {
  75. struct dsa_switch_ops *ret;
  76. struct list_head *list;
  77. const char *name;
  78. ret = NULL;
  79. name = NULL;
  80. mutex_lock(&dsa_switch_drivers_mutex);
  81. list_for_each(list, &dsa_switch_drivers) {
  82. struct dsa_switch_ops *ops;
  83. struct dsa_switch_driver *drv;
  84. drv = list_entry(list, struct dsa_switch_driver, list);
  85. ops = drv->ops;
  86. name = ops->probe(parent, host_dev, sw_addr, priv);
  87. if (name != NULL) {
  88. ret = ops;
  89. break;
  90. }
  91. }
  92. mutex_unlock(&dsa_switch_drivers_mutex);
  93. *_name = name;
  94. return ret;
  95. }
  96. /* basic switch operations **************************************************/
  97. int dsa_cpu_dsa_setup(struct dsa_switch *ds, struct device *dev,
  98. struct device_node *port_dn, int port)
  99. {
  100. struct phy_device *phydev;
  101. int ret, mode;
  102. if (of_phy_is_fixed_link(port_dn)) {
  103. ret = of_phy_register_fixed_link(port_dn);
  104. if (ret) {
  105. dev_err(dev, "failed to register fixed PHY\n");
  106. return ret;
  107. }
  108. phydev = of_phy_find_device(port_dn);
  109. mode = of_get_phy_mode(port_dn);
  110. if (mode < 0)
  111. mode = PHY_INTERFACE_MODE_NA;
  112. phydev->interface = mode;
  113. genphy_config_init(phydev);
  114. genphy_read_status(phydev);
  115. if (ds->ops->adjust_link)
  116. ds->ops->adjust_link(ds, port, phydev);
  117. put_device(&phydev->mdio.dev);
  118. }
  119. return 0;
  120. }
  121. static int dsa_cpu_dsa_setups(struct dsa_switch *ds, struct device *dev)
  122. {
  123. struct device_node *port_dn;
  124. int ret, port;
  125. for (port = 0; port < DSA_MAX_PORTS; port++) {
  126. if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)))
  127. continue;
  128. port_dn = ds->ports[port].dn;
  129. ret = dsa_cpu_dsa_setup(ds, dev, port_dn, port);
  130. if (ret)
  131. return ret;
  132. }
  133. return 0;
  134. }
  135. const struct dsa_device_ops *dsa_resolve_tag_protocol(int tag_protocol)
  136. {
  137. const struct dsa_device_ops *ops;
  138. if (tag_protocol >= DSA_TAG_LAST)
  139. return ERR_PTR(-EINVAL);
  140. ops = dsa_device_ops[tag_protocol];
  141. if (!ops)
  142. return ERR_PTR(-ENOPROTOOPT);
  143. return ops;
  144. }
  145. int dsa_cpu_port_ethtool_setup(struct dsa_switch *ds)
  146. {
  147. struct net_device *master;
  148. struct ethtool_ops *cpu_ops;
  149. master = ds->dst->master_netdev;
  150. if (ds->master_netdev)
  151. master = ds->master_netdev;
  152. cpu_ops = devm_kzalloc(ds->dev, sizeof(*cpu_ops), GFP_KERNEL);
  153. if (!cpu_ops)
  154. return -ENOMEM;
  155. memcpy(&ds->dst->master_ethtool_ops, master->ethtool_ops,
  156. sizeof(struct ethtool_ops));
  157. ds->dst->master_orig_ethtool_ops = master->ethtool_ops;
  158. memcpy(cpu_ops, &ds->dst->master_ethtool_ops,
  159. sizeof(struct ethtool_ops));
  160. dsa_cpu_port_ethtool_init(cpu_ops);
  161. master->ethtool_ops = cpu_ops;
  162. return 0;
  163. }
  164. void dsa_cpu_port_ethtool_restore(struct dsa_switch *ds)
  165. {
  166. struct net_device *master;
  167. master = ds->dst->master_netdev;
  168. if (ds->master_netdev)
  169. master = ds->master_netdev;
  170. master->ethtool_ops = ds->dst->master_orig_ethtool_ops;
  171. }
  172. static int dsa_switch_setup_one(struct dsa_switch *ds, struct device *parent)
  173. {
  174. struct dsa_switch_ops *ops = ds->ops;
  175. struct dsa_switch_tree *dst = ds->dst;
  176. struct dsa_chip_data *cd = ds->cd;
  177. bool valid_name_found = false;
  178. int index = ds->index;
  179. int i, ret;
  180. /*
  181. * Validate supplied switch configuration.
  182. */
  183. for (i = 0; i < DSA_MAX_PORTS; i++) {
  184. char *name;
  185. name = cd->port_names[i];
  186. if (name == NULL)
  187. continue;
  188. if (!strcmp(name, "cpu")) {
  189. if (dst->cpu_switch != -1) {
  190. netdev_err(dst->master_netdev,
  191. "multiple cpu ports?!\n");
  192. return -EINVAL;
  193. }
  194. dst->cpu_switch = index;
  195. dst->cpu_port = i;
  196. ds->cpu_port_mask |= 1 << i;
  197. } else if (!strcmp(name, "dsa")) {
  198. ds->dsa_port_mask |= 1 << i;
  199. } else {
  200. ds->enabled_port_mask |= 1 << i;
  201. }
  202. valid_name_found = true;
  203. }
  204. if (!valid_name_found && i == DSA_MAX_PORTS)
  205. return -EINVAL;
  206. /* Make the built-in MII bus mask match the number of ports,
  207. * switch drivers can override this later
  208. */
  209. ds->phys_mii_mask = ds->enabled_port_mask;
  210. /*
  211. * If the CPU connects to this switch, set the switch tree
  212. * tagging protocol to the preferred tagging format of this
  213. * switch.
  214. */
  215. if (dst->cpu_switch == index) {
  216. enum dsa_tag_protocol tag_protocol;
  217. tag_protocol = ops->get_tag_protocol(ds);
  218. dst->tag_ops = dsa_resolve_tag_protocol(tag_protocol);
  219. if (IS_ERR(dst->tag_ops))
  220. return PTR_ERR(dst->tag_ops);
  221. dst->rcv = dst->tag_ops->rcv;
  222. }
  223. memcpy(ds->rtable, cd->rtable, sizeof(ds->rtable));
  224. /*
  225. * Do basic register setup.
  226. */
  227. ret = ops->setup(ds);
  228. if (ret < 0)
  229. return ret;
  230. if (ops->set_addr) {
  231. ret = ops->set_addr(ds, dst->master_netdev->dev_addr);
  232. if (ret < 0)
  233. return ret;
  234. }
  235. if (!ds->slave_mii_bus && ops->phy_read) {
  236. ds->slave_mii_bus = devm_mdiobus_alloc(parent);
  237. if (!ds->slave_mii_bus)
  238. return -ENOMEM;
  239. dsa_slave_mii_bus_init(ds);
  240. ret = mdiobus_register(ds->slave_mii_bus);
  241. if (ret < 0)
  242. return ret;
  243. }
  244. /*
  245. * Create network devices for physical switch ports.
  246. */
  247. for (i = 0; i < DSA_MAX_PORTS; i++) {
  248. ds->ports[i].dn = cd->port_dn[i];
  249. if (!(ds->enabled_port_mask & (1 << i)))
  250. continue;
  251. ret = dsa_slave_create(ds, parent, i, cd->port_names[i]);
  252. if (ret < 0)
  253. netdev_err(dst->master_netdev, "[%d]: can't create dsa slave device for port %d(%s): %d\n",
  254. index, i, cd->port_names[i], ret);
  255. }
  256. /* Perform configuration of the CPU and DSA ports */
  257. ret = dsa_cpu_dsa_setups(ds, parent);
  258. if (ret < 0)
  259. netdev_err(dst->master_netdev, "[%d] : can't configure CPU and DSA ports\n",
  260. index);
  261. ret = dsa_cpu_port_ethtool_setup(ds);
  262. if (ret)
  263. return ret;
  264. dsa_hwmon_register(ds);
  265. return 0;
  266. }
  267. static struct dsa_switch *
  268. dsa_switch_setup(struct dsa_switch_tree *dst, int index,
  269. struct device *parent, struct device *host_dev)
  270. {
  271. struct dsa_chip_data *cd = dst->pd->chip + index;
  272. struct dsa_switch_ops *ops;
  273. struct dsa_switch *ds;
  274. int ret;
  275. const char *name;
  276. void *priv;
  277. /*
  278. * Probe for switch model.
  279. */
  280. ops = dsa_switch_probe(parent, host_dev, cd->sw_addr, &name, &priv);
  281. if (!ops) {
  282. netdev_err(dst->master_netdev, "[%d]: could not detect attached switch\n",
  283. index);
  284. return ERR_PTR(-EINVAL);
  285. }
  286. netdev_info(dst->master_netdev, "[%d]: detected a %s switch\n",
  287. index, name);
  288. /*
  289. * Allocate and initialise switch state.
  290. */
  291. ds = devm_kzalloc(parent, sizeof(*ds), GFP_KERNEL);
  292. if (ds == NULL)
  293. return ERR_PTR(-ENOMEM);
  294. ds->dst = dst;
  295. ds->index = index;
  296. ds->cd = cd;
  297. ds->ops = ops;
  298. ds->priv = priv;
  299. ds->dev = parent;
  300. ret = dsa_switch_setup_one(ds, parent);
  301. if (ret)
  302. return ERR_PTR(ret);
  303. return ds;
  304. }
  305. void dsa_cpu_dsa_destroy(struct device_node *port_dn)
  306. {
  307. if (of_phy_is_fixed_link(port_dn))
  308. of_phy_deregister_fixed_link(port_dn);
  309. }
  310. static void dsa_switch_destroy(struct dsa_switch *ds)
  311. {
  312. int port;
  313. dsa_hwmon_unregister(ds);
  314. /* Destroy network devices for physical switch ports. */
  315. for (port = 0; port < DSA_MAX_PORTS; port++) {
  316. if (!(ds->enabled_port_mask & (1 << port)))
  317. continue;
  318. if (!ds->ports[port].netdev)
  319. continue;
  320. dsa_slave_destroy(ds->ports[port].netdev);
  321. }
  322. /* Disable configuration of the CPU and DSA ports */
  323. for (port = 0; port < DSA_MAX_PORTS; port++) {
  324. if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)))
  325. continue;
  326. dsa_cpu_dsa_destroy(ds->ports[port].dn);
  327. /* Clearing a bit which is not set does no harm */
  328. ds->cpu_port_mask |= ~(1 << port);
  329. ds->dsa_port_mask |= ~(1 << port);
  330. }
  331. if (ds->slave_mii_bus && ds->ops->phy_read)
  332. mdiobus_unregister(ds->slave_mii_bus);
  333. }
  334. #ifdef CONFIG_PM_SLEEP
  335. int dsa_switch_suspend(struct dsa_switch *ds)
  336. {
  337. int i, ret = 0;
  338. /* Suspend slave network devices */
  339. for (i = 0; i < DSA_MAX_PORTS; i++) {
  340. if (!dsa_is_port_initialized(ds, i))
  341. continue;
  342. ret = dsa_slave_suspend(ds->ports[i].netdev);
  343. if (ret)
  344. return ret;
  345. }
  346. if (ds->ops->suspend)
  347. ret = ds->ops->suspend(ds);
  348. return ret;
  349. }
  350. EXPORT_SYMBOL_GPL(dsa_switch_suspend);
  351. int dsa_switch_resume(struct dsa_switch *ds)
  352. {
  353. int i, ret = 0;
  354. if (ds->ops->resume)
  355. ret = ds->ops->resume(ds);
  356. if (ret)
  357. return ret;
  358. /* Resume slave network devices */
  359. for (i = 0; i < DSA_MAX_PORTS; i++) {
  360. if (!dsa_is_port_initialized(ds, i))
  361. continue;
  362. ret = dsa_slave_resume(ds->ports[i].netdev);
  363. if (ret)
  364. return ret;
  365. }
  366. return 0;
  367. }
  368. EXPORT_SYMBOL_GPL(dsa_switch_resume);
  369. #endif
  370. /* platform driver init and cleanup *****************************************/
  371. static int dev_is_class(struct device *dev, void *class)
  372. {
  373. if (dev->class != NULL && !strcmp(dev->class->name, class))
  374. return 1;
  375. return 0;
  376. }
  377. static struct device *dev_find_class(struct device *parent, char *class)
  378. {
  379. if (dev_is_class(parent, class)) {
  380. get_device(parent);
  381. return parent;
  382. }
  383. return device_find_child(parent, class, dev_is_class);
  384. }
  385. struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev)
  386. {
  387. struct device *d;
  388. d = dev_find_class(dev, "mdio_bus");
  389. if (d != NULL) {
  390. struct mii_bus *bus;
  391. bus = to_mii_bus(d);
  392. put_device(d);
  393. return bus;
  394. }
  395. return NULL;
  396. }
  397. EXPORT_SYMBOL_GPL(dsa_host_dev_to_mii_bus);
  398. static struct net_device *dev_to_net_device(struct device *dev)
  399. {
  400. struct device *d;
  401. d = dev_find_class(dev, "net");
  402. if (d != NULL) {
  403. struct net_device *nd;
  404. nd = to_net_dev(d);
  405. dev_hold(nd);
  406. put_device(d);
  407. return nd;
  408. }
  409. return NULL;
  410. }
  411. #ifdef CONFIG_OF
  412. static int dsa_of_setup_routing_table(struct dsa_platform_data *pd,
  413. struct dsa_chip_data *cd,
  414. int chip_index, int port_index,
  415. struct device_node *link)
  416. {
  417. const __be32 *reg;
  418. int link_sw_addr;
  419. struct device_node *parent_sw;
  420. int len;
  421. parent_sw = of_get_parent(link);
  422. if (!parent_sw)
  423. return -EINVAL;
  424. reg = of_get_property(parent_sw, "reg", &len);
  425. if (!reg || (len != sizeof(*reg) * 2))
  426. return -EINVAL;
  427. /*
  428. * Get the destination switch number from the second field of its 'reg'
  429. * property, i.e. for "reg = <0x19 1>" sw_addr is '1'.
  430. */
  431. link_sw_addr = be32_to_cpup(reg + 1);
  432. if (link_sw_addr >= pd->nr_chips)
  433. return -EINVAL;
  434. cd->rtable[link_sw_addr] = port_index;
  435. return 0;
  436. }
  437. static int dsa_of_probe_links(struct dsa_platform_data *pd,
  438. struct dsa_chip_data *cd,
  439. int chip_index, int port_index,
  440. struct device_node *port,
  441. const char *port_name)
  442. {
  443. struct device_node *link;
  444. int link_index;
  445. int ret;
  446. for (link_index = 0;; link_index++) {
  447. link = of_parse_phandle(port, "link", link_index);
  448. if (!link)
  449. break;
  450. if (!strcmp(port_name, "dsa") && pd->nr_chips > 1) {
  451. ret = dsa_of_setup_routing_table(pd, cd, chip_index,
  452. port_index, link);
  453. if (ret)
  454. return ret;
  455. }
  456. }
  457. return 0;
  458. }
  459. static void dsa_of_free_platform_data(struct dsa_platform_data *pd)
  460. {
  461. int i;
  462. int port_index;
  463. for (i = 0; i < pd->nr_chips; i++) {
  464. port_index = 0;
  465. while (port_index < DSA_MAX_PORTS) {
  466. kfree(pd->chip[i].port_names[port_index]);
  467. port_index++;
  468. }
  469. /* Drop our reference to the MDIO bus device */
  470. if (pd->chip[i].host_dev)
  471. put_device(pd->chip[i].host_dev);
  472. }
  473. kfree(pd->chip);
  474. }
  475. static int dsa_of_probe(struct device *dev)
  476. {
  477. struct device_node *np = dev->of_node;
  478. struct device_node *child, *mdio, *ethernet, *port;
  479. struct mii_bus *mdio_bus, *mdio_bus_switch;
  480. struct net_device *ethernet_dev;
  481. struct dsa_platform_data *pd;
  482. struct dsa_chip_data *cd;
  483. const char *port_name;
  484. int chip_index, port_index;
  485. const unsigned int *sw_addr, *port_reg;
  486. u32 eeprom_len;
  487. int ret;
  488. mdio = of_parse_phandle(np, "dsa,mii-bus", 0);
  489. if (!mdio)
  490. return -EINVAL;
  491. mdio_bus = of_mdio_find_bus(mdio);
  492. if (!mdio_bus)
  493. return -EPROBE_DEFER;
  494. ethernet = of_parse_phandle(np, "dsa,ethernet", 0);
  495. if (!ethernet) {
  496. ret = -EINVAL;
  497. goto out_put_mdio;
  498. }
  499. ethernet_dev = of_find_net_device_by_node(ethernet);
  500. if (!ethernet_dev) {
  501. ret = -EPROBE_DEFER;
  502. goto out_put_mdio;
  503. }
  504. pd = kzalloc(sizeof(*pd), GFP_KERNEL);
  505. if (!pd) {
  506. ret = -ENOMEM;
  507. goto out_put_ethernet;
  508. }
  509. dev->platform_data = pd;
  510. pd->of_netdev = ethernet_dev;
  511. pd->nr_chips = of_get_available_child_count(np);
  512. if (pd->nr_chips > DSA_MAX_SWITCHES)
  513. pd->nr_chips = DSA_MAX_SWITCHES;
  514. pd->chip = kcalloc(pd->nr_chips, sizeof(struct dsa_chip_data),
  515. GFP_KERNEL);
  516. if (!pd->chip) {
  517. ret = -ENOMEM;
  518. goto out_free;
  519. }
  520. chip_index = -1;
  521. for_each_available_child_of_node(np, child) {
  522. int i;
  523. chip_index++;
  524. cd = &pd->chip[chip_index];
  525. cd->of_node = child;
  526. /* Initialize the routing table */
  527. for (i = 0; i < DSA_MAX_SWITCHES; ++i)
  528. cd->rtable[i] = DSA_RTABLE_NONE;
  529. /* When assigning the host device, increment its refcount */
  530. cd->host_dev = get_device(&mdio_bus->dev);
  531. sw_addr = of_get_property(child, "reg", NULL);
  532. if (!sw_addr)
  533. continue;
  534. cd->sw_addr = be32_to_cpup(sw_addr);
  535. if (cd->sw_addr >= PHY_MAX_ADDR)
  536. continue;
  537. if (!of_property_read_u32(child, "eeprom-length", &eeprom_len))
  538. cd->eeprom_len = eeprom_len;
  539. mdio = of_parse_phandle(child, "mii-bus", 0);
  540. if (mdio) {
  541. mdio_bus_switch = of_mdio_find_bus(mdio);
  542. if (!mdio_bus_switch) {
  543. ret = -EPROBE_DEFER;
  544. goto out_free_chip;
  545. }
  546. /* Drop the mdio_bus device ref, replacing the host
  547. * device with the mdio_bus_switch device, keeping
  548. * the refcount from of_mdio_find_bus() above.
  549. */
  550. put_device(cd->host_dev);
  551. cd->host_dev = &mdio_bus_switch->dev;
  552. }
  553. for_each_available_child_of_node(child, port) {
  554. port_reg = of_get_property(port, "reg", NULL);
  555. if (!port_reg)
  556. continue;
  557. port_index = be32_to_cpup(port_reg);
  558. if (port_index >= DSA_MAX_PORTS)
  559. break;
  560. port_name = of_get_property(port, "label", NULL);
  561. if (!port_name)
  562. continue;
  563. cd->port_dn[port_index] = port;
  564. cd->port_names[port_index] = kstrdup(port_name,
  565. GFP_KERNEL);
  566. if (!cd->port_names[port_index]) {
  567. ret = -ENOMEM;
  568. goto out_free_chip;
  569. }
  570. ret = dsa_of_probe_links(pd, cd, chip_index,
  571. port_index, port, port_name);
  572. if (ret)
  573. goto out_free_chip;
  574. }
  575. }
  576. /* The individual chips hold their own refcount on the mdio bus,
  577. * so drop ours */
  578. put_device(&mdio_bus->dev);
  579. return 0;
  580. out_free_chip:
  581. dsa_of_free_platform_data(pd);
  582. out_free:
  583. kfree(pd);
  584. dev->platform_data = NULL;
  585. out_put_ethernet:
  586. put_device(&ethernet_dev->dev);
  587. out_put_mdio:
  588. put_device(&mdio_bus->dev);
  589. return ret;
  590. }
  591. static void dsa_of_remove(struct device *dev)
  592. {
  593. struct dsa_platform_data *pd = dev->platform_data;
  594. if (!dev->of_node)
  595. return;
  596. dsa_of_free_platform_data(pd);
  597. put_device(&pd->of_netdev->dev);
  598. kfree(pd);
  599. }
  600. #else
  601. static inline int dsa_of_probe(struct device *dev)
  602. {
  603. return 0;
  604. }
  605. static inline void dsa_of_remove(struct device *dev)
  606. {
  607. }
  608. #endif
  609. static int dsa_setup_dst(struct dsa_switch_tree *dst, struct net_device *dev,
  610. struct device *parent, struct dsa_platform_data *pd)
  611. {
  612. int i;
  613. unsigned configured = 0;
  614. dst->pd = pd;
  615. dst->master_netdev = dev;
  616. dst->cpu_switch = -1;
  617. dst->cpu_port = -1;
  618. for (i = 0; i < pd->nr_chips; i++) {
  619. struct dsa_switch *ds;
  620. ds = dsa_switch_setup(dst, i, parent, pd->chip[i].host_dev);
  621. if (IS_ERR(ds)) {
  622. netdev_err(dev, "[%d]: couldn't create dsa switch instance (error %ld)\n",
  623. i, PTR_ERR(ds));
  624. continue;
  625. }
  626. dst->ds[i] = ds;
  627. ++configured;
  628. }
  629. /*
  630. * If no switch was found, exit cleanly
  631. */
  632. if (!configured)
  633. return -EPROBE_DEFER;
  634. /*
  635. * If we use a tagging format that doesn't have an ethertype
  636. * field, make sure that all packets from this point on get
  637. * sent to the tag format's receive function.
  638. */
  639. wmb();
  640. dev->dsa_ptr = (void *)dst;
  641. return 0;
  642. }
  643. static int dsa_probe(struct platform_device *pdev)
  644. {
  645. struct dsa_platform_data *pd = pdev->dev.platform_data;
  646. struct net_device *dev;
  647. struct dsa_switch_tree *dst;
  648. int ret;
  649. if (pdev->dev.of_node) {
  650. ret = dsa_of_probe(&pdev->dev);
  651. if (ret)
  652. return ret;
  653. pd = pdev->dev.platform_data;
  654. }
  655. if (pd == NULL || (pd->netdev == NULL && pd->of_netdev == NULL))
  656. return -EINVAL;
  657. if (pd->of_netdev) {
  658. dev = pd->of_netdev;
  659. dev_hold(dev);
  660. } else {
  661. dev = dev_to_net_device(pd->netdev);
  662. }
  663. if (dev == NULL) {
  664. ret = -EPROBE_DEFER;
  665. goto out;
  666. }
  667. if (dev->dsa_ptr != NULL) {
  668. dev_put(dev);
  669. ret = -EEXIST;
  670. goto out;
  671. }
  672. dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL);
  673. if (dst == NULL) {
  674. dev_put(dev);
  675. ret = -ENOMEM;
  676. goto out;
  677. }
  678. platform_set_drvdata(pdev, dst);
  679. ret = dsa_setup_dst(dst, dev, &pdev->dev, pd);
  680. if (ret) {
  681. dev_put(dev);
  682. goto out;
  683. }
  684. return 0;
  685. out:
  686. dsa_of_remove(&pdev->dev);
  687. return ret;
  688. }
  689. static void dsa_remove_dst(struct dsa_switch_tree *dst)
  690. {
  691. int i;
  692. dst->master_netdev->dsa_ptr = NULL;
  693. /* If we used a tagging format that doesn't have an ethertype
  694. * field, make sure that all packets from this point get sent
  695. * without the tag and go through the regular receive path.
  696. */
  697. wmb();
  698. for (i = 0; i < dst->pd->nr_chips; i++) {
  699. struct dsa_switch *ds = dst->ds[i];
  700. if (ds)
  701. dsa_switch_destroy(ds);
  702. }
  703. dsa_cpu_port_ethtool_restore(dst->ds[0]);
  704. dev_put(dst->master_netdev);
  705. }
  706. static int dsa_remove(struct platform_device *pdev)
  707. {
  708. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  709. dsa_remove_dst(dst);
  710. dsa_of_remove(&pdev->dev);
  711. return 0;
  712. }
  713. static void dsa_shutdown(struct platform_device *pdev)
  714. {
  715. }
  716. static int dsa_switch_rcv(struct sk_buff *skb, struct net_device *dev,
  717. struct packet_type *pt, struct net_device *orig_dev)
  718. {
  719. struct dsa_switch_tree *dst = dev->dsa_ptr;
  720. if (unlikely(dst == NULL)) {
  721. kfree_skb(skb);
  722. return 0;
  723. }
  724. return dst->rcv(skb, dev, pt, orig_dev);
  725. }
  726. static struct packet_type dsa_pack_type __read_mostly = {
  727. .type = cpu_to_be16(ETH_P_XDSA),
  728. .func = dsa_switch_rcv,
  729. };
  730. static struct notifier_block dsa_netdevice_nb __read_mostly = {
  731. .notifier_call = dsa_slave_netdevice_event,
  732. };
  733. #ifdef CONFIG_PM_SLEEP
  734. static int dsa_suspend(struct device *d)
  735. {
  736. struct platform_device *pdev = to_platform_device(d);
  737. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  738. int i, ret = 0;
  739. for (i = 0; i < dst->pd->nr_chips; i++) {
  740. struct dsa_switch *ds = dst->ds[i];
  741. if (ds != NULL)
  742. ret = dsa_switch_suspend(ds);
  743. }
  744. return ret;
  745. }
  746. static int dsa_resume(struct device *d)
  747. {
  748. struct platform_device *pdev = to_platform_device(d);
  749. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  750. int i, ret = 0;
  751. for (i = 0; i < dst->pd->nr_chips; i++) {
  752. struct dsa_switch *ds = dst->ds[i];
  753. if (ds != NULL)
  754. ret = dsa_switch_resume(ds);
  755. }
  756. return ret;
  757. }
  758. #endif
  759. static SIMPLE_DEV_PM_OPS(dsa_pm_ops, dsa_suspend, dsa_resume);
  760. static const struct of_device_id dsa_of_match_table[] = {
  761. { .compatible = "marvell,dsa", },
  762. {}
  763. };
  764. MODULE_DEVICE_TABLE(of, dsa_of_match_table);
  765. static struct platform_driver dsa_driver = {
  766. .probe = dsa_probe,
  767. .remove = dsa_remove,
  768. .shutdown = dsa_shutdown,
  769. .driver = {
  770. .name = "dsa",
  771. .of_match_table = dsa_of_match_table,
  772. .pm = &dsa_pm_ops,
  773. },
  774. };
  775. static int __init dsa_init_module(void)
  776. {
  777. int rc;
  778. register_netdevice_notifier(&dsa_netdevice_nb);
  779. rc = platform_driver_register(&dsa_driver);
  780. if (rc)
  781. return rc;
  782. dev_add_pack(&dsa_pack_type);
  783. return 0;
  784. }
  785. module_init(dsa_init_module);
  786. static void __exit dsa_cleanup_module(void)
  787. {
  788. unregister_netdevice_notifier(&dsa_netdevice_nb);
  789. dev_remove_pack(&dsa_pack_type);
  790. platform_driver_unregister(&dsa_driver);
  791. }
  792. module_exit(dsa_cleanup_module);
  793. MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
  794. MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
  795. MODULE_LICENSE("GPL");
  796. MODULE_ALIAS("platform:dsa");