intel_ringbuffer.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  279. {
  280. int ret;
  281. if (!ring->fbc_dirty)
  282. return 0;
  283. ret = intel_ring_begin(ring, 6);
  284. if (ret)
  285. return ret;
  286. /* WaFbcNukeOn3DBlt:ivb/hsw */
  287. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  288. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  289. intel_ring_emit(ring, value);
  290. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  291. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  292. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  293. intel_ring_advance(ring);
  294. ring->fbc_dirty = false;
  295. return 0;
  296. }
  297. static int
  298. gen7_render_ring_flush(struct intel_engine_cs *ring,
  299. u32 invalidate_domains, u32 flush_domains)
  300. {
  301. u32 flags = 0;
  302. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  303. int ret;
  304. /*
  305. * Ensure that any following seqno writes only happen when the render
  306. * cache is indeed flushed.
  307. *
  308. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  309. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  310. * don't try to be clever and just set it unconditionally.
  311. */
  312. flags |= PIPE_CONTROL_CS_STALL;
  313. /* Just flush everything. Experiments have shown that reducing the
  314. * number of bits based on the write domains has little performance
  315. * impact.
  316. */
  317. if (flush_domains) {
  318. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  319. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  320. }
  321. if (invalidate_domains) {
  322. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  323. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  324. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  325. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  326. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  327. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  328. /*
  329. * TLB invalidate requires a post-sync write.
  330. */
  331. flags |= PIPE_CONTROL_QW_WRITE;
  332. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  333. /* Workaround: we must issue a pipe_control with CS-stall bit
  334. * set before a pipe_control command that has the state cache
  335. * invalidate bit set. */
  336. gen7_render_ring_cs_stall_wa(ring);
  337. }
  338. ret = intel_ring_begin(ring, 4);
  339. if (ret)
  340. return ret;
  341. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  342. intel_ring_emit(ring, flags);
  343. intel_ring_emit(ring, scratch_addr);
  344. intel_ring_emit(ring, 0);
  345. intel_ring_advance(ring);
  346. if (!invalidate_domains && flush_domains)
  347. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  348. return 0;
  349. }
  350. static int
  351. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  352. u32 flags, u32 scratch_addr)
  353. {
  354. int ret;
  355. ret = intel_ring_begin(ring, 6);
  356. if (ret)
  357. return ret;
  358. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  359. intel_ring_emit(ring, flags);
  360. intel_ring_emit(ring, scratch_addr);
  361. intel_ring_emit(ring, 0);
  362. intel_ring_emit(ring, 0);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_advance(ring);
  365. return 0;
  366. }
  367. static int
  368. gen8_render_ring_flush(struct intel_engine_cs *ring,
  369. u32 invalidate_domains, u32 flush_domains)
  370. {
  371. u32 flags = 0;
  372. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  373. int ret;
  374. flags |= PIPE_CONTROL_CS_STALL;
  375. if (flush_domains) {
  376. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  377. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  378. }
  379. if (invalidate_domains) {
  380. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  381. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  382. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  383. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  384. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  385. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  386. flags |= PIPE_CONTROL_QW_WRITE;
  387. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  388. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  389. ret = gen8_emit_pipe_control(ring,
  390. PIPE_CONTROL_CS_STALL |
  391. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  392. 0);
  393. if (ret)
  394. return ret;
  395. }
  396. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  397. if (ret)
  398. return ret;
  399. if (!invalidate_domains && flush_domains)
  400. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  401. return 0;
  402. }
  403. static void ring_write_tail(struct intel_engine_cs *ring,
  404. u32 value)
  405. {
  406. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  407. I915_WRITE_TAIL(ring, value);
  408. }
  409. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  410. {
  411. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  412. u64 acthd;
  413. if (INTEL_INFO(ring->dev)->gen >= 8)
  414. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  415. RING_ACTHD_UDW(ring->mmio_base));
  416. else if (INTEL_INFO(ring->dev)->gen >= 4)
  417. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  418. else
  419. acthd = I915_READ(ACTHD);
  420. return acthd;
  421. }
  422. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  423. {
  424. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  425. u32 addr;
  426. addr = dev_priv->status_page_dmah->busaddr;
  427. if (INTEL_INFO(ring->dev)->gen >= 4)
  428. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  429. I915_WRITE(HWS_PGA, addr);
  430. }
  431. static bool stop_ring(struct intel_engine_cs *ring)
  432. {
  433. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  434. if (!IS_GEN2(ring->dev)) {
  435. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  436. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  437. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  438. /* Sometimes we observe that the idle flag is not
  439. * set even though the ring is empty. So double
  440. * check before giving up.
  441. */
  442. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  443. return false;
  444. }
  445. }
  446. I915_WRITE_CTL(ring, 0);
  447. I915_WRITE_HEAD(ring, 0);
  448. ring->write_tail(ring, 0);
  449. if (!IS_GEN2(ring->dev)) {
  450. (void)I915_READ_CTL(ring);
  451. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  452. }
  453. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  454. }
  455. static int init_ring_common(struct intel_engine_cs *ring)
  456. {
  457. struct drm_device *dev = ring->dev;
  458. struct drm_i915_private *dev_priv = dev->dev_private;
  459. struct intel_ringbuffer *ringbuf = ring->buffer;
  460. struct drm_i915_gem_object *obj = ringbuf->obj;
  461. int ret = 0;
  462. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  463. if (!stop_ring(ring)) {
  464. /* G45 ring initialization often fails to reset head to zero */
  465. DRM_DEBUG_KMS("%s head not reset to zero "
  466. "ctl %08x head %08x tail %08x start %08x\n",
  467. ring->name,
  468. I915_READ_CTL(ring),
  469. I915_READ_HEAD(ring),
  470. I915_READ_TAIL(ring),
  471. I915_READ_START(ring));
  472. if (!stop_ring(ring)) {
  473. DRM_ERROR("failed to set %s head to zero "
  474. "ctl %08x head %08x tail %08x start %08x\n",
  475. ring->name,
  476. I915_READ_CTL(ring),
  477. I915_READ_HEAD(ring),
  478. I915_READ_TAIL(ring),
  479. I915_READ_START(ring));
  480. ret = -EIO;
  481. goto out;
  482. }
  483. }
  484. if (I915_NEED_GFX_HWS(dev))
  485. intel_ring_setup_status_page(ring);
  486. else
  487. ring_setup_phys_status_page(ring);
  488. /* Enforce ordering by reading HEAD register back */
  489. I915_READ_HEAD(ring);
  490. /* Initialize the ring. This must happen _after_ we've cleared the ring
  491. * registers with the above sequence (the readback of the HEAD registers
  492. * also enforces ordering), otherwise the hw might lose the new ring
  493. * register values. */
  494. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  495. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  496. if (I915_READ_HEAD(ring))
  497. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  498. ring->name, I915_READ_HEAD(ring));
  499. I915_WRITE_HEAD(ring, 0);
  500. (void)I915_READ_HEAD(ring);
  501. I915_WRITE_CTL(ring,
  502. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  503. | RING_VALID);
  504. /* If the head is still not zero, the ring is dead */
  505. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  506. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  507. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  508. DRM_ERROR("%s initialization failed "
  509. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  510. ring->name,
  511. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  512. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  513. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  514. ret = -EIO;
  515. goto out;
  516. }
  517. ringbuf->last_retired_head = -1;
  518. ringbuf->head = I915_READ_HEAD(ring);
  519. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  520. intel_ring_update_space(ringbuf);
  521. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  522. out:
  523. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  524. return ret;
  525. }
  526. void
  527. intel_fini_pipe_control(struct intel_engine_cs *ring)
  528. {
  529. struct drm_device *dev = ring->dev;
  530. if (ring->scratch.obj == NULL)
  531. return;
  532. if (INTEL_INFO(dev)->gen >= 5) {
  533. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  534. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  535. }
  536. drm_gem_object_unreference(&ring->scratch.obj->base);
  537. ring->scratch.obj = NULL;
  538. }
  539. int
  540. intel_init_pipe_control(struct intel_engine_cs *ring)
  541. {
  542. int ret;
  543. WARN_ON(ring->scratch.obj);
  544. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  545. if (ring->scratch.obj == NULL) {
  546. DRM_ERROR("Failed to allocate seqno page\n");
  547. ret = -ENOMEM;
  548. goto err;
  549. }
  550. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  551. if (ret)
  552. goto err_unref;
  553. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  554. if (ret)
  555. goto err_unref;
  556. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  557. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  558. if (ring->scratch.cpu_page == NULL) {
  559. ret = -ENOMEM;
  560. goto err_unpin;
  561. }
  562. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  563. ring->name, ring->scratch.gtt_offset);
  564. return 0;
  565. err_unpin:
  566. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  567. err_unref:
  568. drm_gem_object_unreference(&ring->scratch.obj->base);
  569. err:
  570. return ret;
  571. }
  572. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  573. struct intel_context *ctx)
  574. {
  575. int ret, i;
  576. struct drm_device *dev = ring->dev;
  577. struct drm_i915_private *dev_priv = dev->dev_private;
  578. struct i915_workarounds *w = &dev_priv->workarounds;
  579. if (WARN_ON(w->count == 0))
  580. return 0;
  581. ring->gpu_caches_dirty = true;
  582. ret = intel_ring_flush_all_caches(ring);
  583. if (ret)
  584. return ret;
  585. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  586. if (ret)
  587. return ret;
  588. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  589. for (i = 0; i < w->count; i++) {
  590. intel_ring_emit(ring, w->reg[i].addr);
  591. intel_ring_emit(ring, w->reg[i].value);
  592. }
  593. intel_ring_emit(ring, MI_NOOP);
  594. intel_ring_advance(ring);
  595. ring->gpu_caches_dirty = true;
  596. ret = intel_ring_flush_all_caches(ring);
  597. if (ret)
  598. return ret;
  599. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  600. return 0;
  601. }
  602. static int wa_add(struct drm_i915_private *dev_priv,
  603. const u32 addr, const u32 val, const u32 mask)
  604. {
  605. const u32 idx = dev_priv->workarounds.count;
  606. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  607. return -ENOSPC;
  608. dev_priv->workarounds.reg[idx].addr = addr;
  609. dev_priv->workarounds.reg[idx].value = val;
  610. dev_priv->workarounds.reg[idx].mask = mask;
  611. dev_priv->workarounds.count++;
  612. return 0;
  613. }
  614. #define WA_REG(addr, val, mask) { \
  615. const int r = wa_add(dev_priv, (addr), (val), (mask)); \
  616. if (r) \
  617. return r; \
  618. }
  619. #define WA_SET_BIT_MASKED(addr, mask) \
  620. WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
  621. #define WA_CLR_BIT_MASKED(addr, mask) \
  622. WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
  623. #define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
  624. #define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
  625. #define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
  626. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  627. {
  628. struct drm_device *dev = ring->dev;
  629. struct drm_i915_private *dev_priv = dev->dev_private;
  630. /* WaDisablePartialInstShootdown:bdw */
  631. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  632. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  633. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  634. STALL_DOP_GATING_DISABLE);
  635. /* WaDisableDopClockGating:bdw */
  636. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  637. DOP_CLOCK_GATING_DISABLE);
  638. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  639. GEN8_SAMPLER_POWER_BYPASS_DIS);
  640. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  641. * workaround for for a possible hang in the unlikely event a TLB
  642. * invalidation occurs during a PSD flush.
  643. */
  644. /* WaHdcDisableFetchWhenMasked:bdw */
  645. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  646. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  647. HDC_FORCE_NON_COHERENT |
  648. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  649. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  650. /* Wa4x4STCOptimizationDisable:bdw */
  651. WA_SET_BIT_MASKED(CACHE_MODE_1,
  652. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  653. /*
  654. * BSpec recommends 8x4 when MSAA is used,
  655. * however in practice 16x4 seems fastest.
  656. *
  657. * Note that PS/WM thread counts depend on the WIZ hashing
  658. * disable bit, which we don't touch here, but it's good
  659. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  660. */
  661. WA_SET_BIT_MASKED(GEN7_GT_MODE,
  662. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  663. return 0;
  664. }
  665. static int chv_init_workarounds(struct intel_engine_cs *ring)
  666. {
  667. struct drm_device *dev = ring->dev;
  668. struct drm_i915_private *dev_priv = dev->dev_private;
  669. /* WaDisablePartialInstShootdown:chv */
  670. /* WaDisableThreadStallDopClockGating:chv */
  671. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  672. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  673. STALL_DOP_GATING_DISABLE);
  674. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  675. * workaround for a possible hang in the unlikely event a TLB
  676. * invalidation occurs during a PSD flush.
  677. */
  678. /* WaForceEnableNonCoherent:chv */
  679. /* WaHdcDisableFetchWhenMasked:chv */
  680. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  681. HDC_FORCE_NON_COHERENT |
  682. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  683. return 0;
  684. }
  685. int init_workarounds_ring(struct intel_engine_cs *ring)
  686. {
  687. struct drm_device *dev = ring->dev;
  688. struct drm_i915_private *dev_priv = dev->dev_private;
  689. WARN_ON(ring->id != RCS);
  690. dev_priv->workarounds.count = 0;
  691. if (IS_BROADWELL(dev))
  692. return bdw_init_workarounds(ring);
  693. if (IS_CHERRYVIEW(dev))
  694. return chv_init_workarounds(ring);
  695. return 0;
  696. }
  697. static int init_render_ring(struct intel_engine_cs *ring)
  698. {
  699. struct drm_device *dev = ring->dev;
  700. struct drm_i915_private *dev_priv = dev->dev_private;
  701. int ret = init_ring_common(ring);
  702. if (ret)
  703. return ret;
  704. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  705. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  706. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  707. /* We need to disable the AsyncFlip performance optimisations in order
  708. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  709. * programmed to '1' on all products.
  710. *
  711. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  712. */
  713. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  714. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  715. /* Required for the hardware to program scanline values for waiting */
  716. /* WaEnableFlushTlbInvalidationMode:snb */
  717. if (INTEL_INFO(dev)->gen == 6)
  718. I915_WRITE(GFX_MODE,
  719. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  720. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  721. if (IS_GEN7(dev))
  722. I915_WRITE(GFX_MODE_GEN7,
  723. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  724. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  725. if (IS_GEN6(dev)) {
  726. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  727. * "If this bit is set, STCunit will have LRA as replacement
  728. * policy. [...] This bit must be reset. LRA replacement
  729. * policy is not supported."
  730. */
  731. I915_WRITE(CACHE_MODE_0,
  732. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  733. }
  734. if (INTEL_INFO(dev)->gen >= 6)
  735. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  736. if (HAS_L3_DPF(dev))
  737. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  738. return init_workarounds_ring(ring);
  739. }
  740. static void render_ring_cleanup(struct intel_engine_cs *ring)
  741. {
  742. struct drm_device *dev = ring->dev;
  743. struct drm_i915_private *dev_priv = dev->dev_private;
  744. if (dev_priv->semaphore_obj) {
  745. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  746. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  747. dev_priv->semaphore_obj = NULL;
  748. }
  749. intel_fini_pipe_control(ring);
  750. }
  751. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  752. unsigned int num_dwords)
  753. {
  754. #define MBOX_UPDATE_DWORDS 8
  755. struct drm_device *dev = signaller->dev;
  756. struct drm_i915_private *dev_priv = dev->dev_private;
  757. struct intel_engine_cs *waiter;
  758. int i, ret, num_rings;
  759. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  760. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  761. #undef MBOX_UPDATE_DWORDS
  762. ret = intel_ring_begin(signaller, num_dwords);
  763. if (ret)
  764. return ret;
  765. for_each_ring(waiter, dev_priv, i) {
  766. u32 seqno;
  767. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  768. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  769. continue;
  770. seqno = i915_gem_request_get_seqno(
  771. signaller->outstanding_lazy_request);
  772. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  773. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  774. PIPE_CONTROL_QW_WRITE |
  775. PIPE_CONTROL_FLUSH_ENABLE);
  776. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  777. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  778. intel_ring_emit(signaller, seqno);
  779. intel_ring_emit(signaller, 0);
  780. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  781. MI_SEMAPHORE_TARGET(waiter->id));
  782. intel_ring_emit(signaller, 0);
  783. }
  784. return 0;
  785. }
  786. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  787. unsigned int num_dwords)
  788. {
  789. #define MBOX_UPDATE_DWORDS 6
  790. struct drm_device *dev = signaller->dev;
  791. struct drm_i915_private *dev_priv = dev->dev_private;
  792. struct intel_engine_cs *waiter;
  793. int i, ret, num_rings;
  794. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  795. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  796. #undef MBOX_UPDATE_DWORDS
  797. ret = intel_ring_begin(signaller, num_dwords);
  798. if (ret)
  799. return ret;
  800. for_each_ring(waiter, dev_priv, i) {
  801. u32 seqno;
  802. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  803. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  804. continue;
  805. seqno = i915_gem_request_get_seqno(
  806. signaller->outstanding_lazy_request);
  807. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  808. MI_FLUSH_DW_OP_STOREDW);
  809. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  810. MI_FLUSH_DW_USE_GTT);
  811. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  812. intel_ring_emit(signaller, seqno);
  813. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  814. MI_SEMAPHORE_TARGET(waiter->id));
  815. intel_ring_emit(signaller, 0);
  816. }
  817. return 0;
  818. }
  819. static int gen6_signal(struct intel_engine_cs *signaller,
  820. unsigned int num_dwords)
  821. {
  822. struct drm_device *dev = signaller->dev;
  823. struct drm_i915_private *dev_priv = dev->dev_private;
  824. struct intel_engine_cs *useless;
  825. int i, ret, num_rings;
  826. #define MBOX_UPDATE_DWORDS 3
  827. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  828. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  829. #undef MBOX_UPDATE_DWORDS
  830. ret = intel_ring_begin(signaller, num_dwords);
  831. if (ret)
  832. return ret;
  833. for_each_ring(useless, dev_priv, i) {
  834. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  835. if (mbox_reg != GEN6_NOSYNC) {
  836. u32 seqno = i915_gem_request_get_seqno(
  837. signaller->outstanding_lazy_request);
  838. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  839. intel_ring_emit(signaller, mbox_reg);
  840. intel_ring_emit(signaller, seqno);
  841. }
  842. }
  843. /* If num_dwords was rounded, make sure the tail pointer is correct */
  844. if (num_rings % 2 == 0)
  845. intel_ring_emit(signaller, MI_NOOP);
  846. return 0;
  847. }
  848. /**
  849. * gen6_add_request - Update the semaphore mailbox registers
  850. *
  851. * @ring - ring that is adding a request
  852. * @seqno - return seqno stuck into the ring
  853. *
  854. * Update the mailbox registers in the *other* rings with the current seqno.
  855. * This acts like a signal in the canonical semaphore.
  856. */
  857. static int
  858. gen6_add_request(struct intel_engine_cs *ring)
  859. {
  860. int ret;
  861. if (ring->semaphore.signal)
  862. ret = ring->semaphore.signal(ring, 4);
  863. else
  864. ret = intel_ring_begin(ring, 4);
  865. if (ret)
  866. return ret;
  867. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  868. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  869. intel_ring_emit(ring,
  870. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  871. intel_ring_emit(ring, MI_USER_INTERRUPT);
  872. __intel_ring_advance(ring);
  873. return 0;
  874. }
  875. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  876. u32 seqno)
  877. {
  878. struct drm_i915_private *dev_priv = dev->dev_private;
  879. return dev_priv->last_seqno < seqno;
  880. }
  881. /**
  882. * intel_ring_sync - sync the waiter to the signaller on seqno
  883. *
  884. * @waiter - ring that is waiting
  885. * @signaller - ring which has, or will signal
  886. * @seqno - seqno which the waiter will block on
  887. */
  888. static int
  889. gen8_ring_sync(struct intel_engine_cs *waiter,
  890. struct intel_engine_cs *signaller,
  891. u32 seqno)
  892. {
  893. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  894. int ret;
  895. ret = intel_ring_begin(waiter, 4);
  896. if (ret)
  897. return ret;
  898. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  899. MI_SEMAPHORE_GLOBAL_GTT |
  900. MI_SEMAPHORE_POLL |
  901. MI_SEMAPHORE_SAD_GTE_SDD);
  902. intel_ring_emit(waiter, seqno);
  903. intel_ring_emit(waiter,
  904. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  905. intel_ring_emit(waiter,
  906. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  907. intel_ring_advance(waiter);
  908. return 0;
  909. }
  910. static int
  911. gen6_ring_sync(struct intel_engine_cs *waiter,
  912. struct intel_engine_cs *signaller,
  913. u32 seqno)
  914. {
  915. u32 dw1 = MI_SEMAPHORE_MBOX |
  916. MI_SEMAPHORE_COMPARE |
  917. MI_SEMAPHORE_REGISTER;
  918. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  919. int ret;
  920. /* Throughout all of the GEM code, seqno passed implies our current
  921. * seqno is >= the last seqno executed. However for hardware the
  922. * comparison is strictly greater than.
  923. */
  924. seqno -= 1;
  925. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  926. ret = intel_ring_begin(waiter, 4);
  927. if (ret)
  928. return ret;
  929. /* If seqno wrap happened, omit the wait with no-ops */
  930. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  931. intel_ring_emit(waiter, dw1 | wait_mbox);
  932. intel_ring_emit(waiter, seqno);
  933. intel_ring_emit(waiter, 0);
  934. intel_ring_emit(waiter, MI_NOOP);
  935. } else {
  936. intel_ring_emit(waiter, MI_NOOP);
  937. intel_ring_emit(waiter, MI_NOOP);
  938. intel_ring_emit(waiter, MI_NOOP);
  939. intel_ring_emit(waiter, MI_NOOP);
  940. }
  941. intel_ring_advance(waiter);
  942. return 0;
  943. }
  944. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  945. do { \
  946. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  947. PIPE_CONTROL_DEPTH_STALL); \
  948. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  949. intel_ring_emit(ring__, 0); \
  950. intel_ring_emit(ring__, 0); \
  951. } while (0)
  952. static int
  953. pc_render_add_request(struct intel_engine_cs *ring)
  954. {
  955. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  956. int ret;
  957. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  958. * incoherent with writes to memory, i.e. completely fubar,
  959. * so we need to use PIPE_NOTIFY instead.
  960. *
  961. * However, we also need to workaround the qword write
  962. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  963. * memory before requesting an interrupt.
  964. */
  965. ret = intel_ring_begin(ring, 32);
  966. if (ret)
  967. return ret;
  968. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  969. PIPE_CONTROL_WRITE_FLUSH |
  970. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  971. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  972. intel_ring_emit(ring,
  973. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  974. intel_ring_emit(ring, 0);
  975. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  976. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  977. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  978. scratch_addr += 2 * CACHELINE_BYTES;
  979. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  980. scratch_addr += 2 * CACHELINE_BYTES;
  981. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  982. scratch_addr += 2 * CACHELINE_BYTES;
  983. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  984. scratch_addr += 2 * CACHELINE_BYTES;
  985. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  986. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  987. PIPE_CONTROL_WRITE_FLUSH |
  988. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  989. PIPE_CONTROL_NOTIFY);
  990. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  991. intel_ring_emit(ring,
  992. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  993. intel_ring_emit(ring, 0);
  994. __intel_ring_advance(ring);
  995. return 0;
  996. }
  997. static u32
  998. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  999. {
  1000. /* Workaround to force correct ordering between irq and seqno writes on
  1001. * ivb (and maybe also on snb) by reading from a CS register (like
  1002. * ACTHD) before reading the status page. */
  1003. if (!lazy_coherency) {
  1004. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1005. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1006. }
  1007. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1008. }
  1009. static u32
  1010. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1011. {
  1012. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1013. }
  1014. static void
  1015. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1016. {
  1017. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1018. }
  1019. static u32
  1020. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1021. {
  1022. return ring->scratch.cpu_page[0];
  1023. }
  1024. static void
  1025. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1026. {
  1027. ring->scratch.cpu_page[0] = seqno;
  1028. }
  1029. static bool
  1030. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1031. {
  1032. struct drm_device *dev = ring->dev;
  1033. struct drm_i915_private *dev_priv = dev->dev_private;
  1034. unsigned long flags;
  1035. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1036. return false;
  1037. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1038. if (ring->irq_refcount++ == 0)
  1039. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1040. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1041. return true;
  1042. }
  1043. static void
  1044. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1045. {
  1046. struct drm_device *dev = ring->dev;
  1047. struct drm_i915_private *dev_priv = dev->dev_private;
  1048. unsigned long flags;
  1049. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1050. if (--ring->irq_refcount == 0)
  1051. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1052. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1053. }
  1054. static bool
  1055. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1056. {
  1057. struct drm_device *dev = ring->dev;
  1058. struct drm_i915_private *dev_priv = dev->dev_private;
  1059. unsigned long flags;
  1060. if (!intel_irqs_enabled(dev_priv))
  1061. return false;
  1062. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1063. if (ring->irq_refcount++ == 0) {
  1064. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1065. I915_WRITE(IMR, dev_priv->irq_mask);
  1066. POSTING_READ(IMR);
  1067. }
  1068. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1069. return true;
  1070. }
  1071. static void
  1072. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1073. {
  1074. struct drm_device *dev = ring->dev;
  1075. struct drm_i915_private *dev_priv = dev->dev_private;
  1076. unsigned long flags;
  1077. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1078. if (--ring->irq_refcount == 0) {
  1079. dev_priv->irq_mask |= ring->irq_enable_mask;
  1080. I915_WRITE(IMR, dev_priv->irq_mask);
  1081. POSTING_READ(IMR);
  1082. }
  1083. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1084. }
  1085. static bool
  1086. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1087. {
  1088. struct drm_device *dev = ring->dev;
  1089. struct drm_i915_private *dev_priv = dev->dev_private;
  1090. unsigned long flags;
  1091. if (!intel_irqs_enabled(dev_priv))
  1092. return false;
  1093. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1094. if (ring->irq_refcount++ == 0) {
  1095. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1096. I915_WRITE16(IMR, dev_priv->irq_mask);
  1097. POSTING_READ16(IMR);
  1098. }
  1099. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1100. return true;
  1101. }
  1102. static void
  1103. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1104. {
  1105. struct drm_device *dev = ring->dev;
  1106. struct drm_i915_private *dev_priv = dev->dev_private;
  1107. unsigned long flags;
  1108. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1109. if (--ring->irq_refcount == 0) {
  1110. dev_priv->irq_mask |= ring->irq_enable_mask;
  1111. I915_WRITE16(IMR, dev_priv->irq_mask);
  1112. POSTING_READ16(IMR);
  1113. }
  1114. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1115. }
  1116. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1117. {
  1118. struct drm_device *dev = ring->dev;
  1119. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1120. u32 mmio = 0;
  1121. /* The ring status page addresses are no longer next to the rest of
  1122. * the ring registers as of gen7.
  1123. */
  1124. if (IS_GEN7(dev)) {
  1125. switch (ring->id) {
  1126. case RCS:
  1127. mmio = RENDER_HWS_PGA_GEN7;
  1128. break;
  1129. case BCS:
  1130. mmio = BLT_HWS_PGA_GEN7;
  1131. break;
  1132. /*
  1133. * VCS2 actually doesn't exist on Gen7. Only shut up
  1134. * gcc switch check warning
  1135. */
  1136. case VCS2:
  1137. case VCS:
  1138. mmio = BSD_HWS_PGA_GEN7;
  1139. break;
  1140. case VECS:
  1141. mmio = VEBOX_HWS_PGA_GEN7;
  1142. break;
  1143. }
  1144. } else if (IS_GEN6(ring->dev)) {
  1145. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1146. } else {
  1147. /* XXX: gen8 returns to sanity */
  1148. mmio = RING_HWS_PGA(ring->mmio_base);
  1149. }
  1150. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1151. POSTING_READ(mmio);
  1152. /*
  1153. * Flush the TLB for this page
  1154. *
  1155. * FIXME: These two bits have disappeared on gen8, so a question
  1156. * arises: do we still need this and if so how should we go about
  1157. * invalidating the TLB?
  1158. */
  1159. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1160. u32 reg = RING_INSTPM(ring->mmio_base);
  1161. /* ring should be idle before issuing a sync flush*/
  1162. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1163. I915_WRITE(reg,
  1164. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1165. INSTPM_SYNC_FLUSH));
  1166. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1167. 1000))
  1168. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1169. ring->name);
  1170. }
  1171. }
  1172. static int
  1173. bsd_ring_flush(struct intel_engine_cs *ring,
  1174. u32 invalidate_domains,
  1175. u32 flush_domains)
  1176. {
  1177. int ret;
  1178. ret = intel_ring_begin(ring, 2);
  1179. if (ret)
  1180. return ret;
  1181. intel_ring_emit(ring, MI_FLUSH);
  1182. intel_ring_emit(ring, MI_NOOP);
  1183. intel_ring_advance(ring);
  1184. return 0;
  1185. }
  1186. static int
  1187. i9xx_add_request(struct intel_engine_cs *ring)
  1188. {
  1189. int ret;
  1190. ret = intel_ring_begin(ring, 4);
  1191. if (ret)
  1192. return ret;
  1193. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1194. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1195. intel_ring_emit(ring,
  1196. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1197. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1198. __intel_ring_advance(ring);
  1199. return 0;
  1200. }
  1201. static bool
  1202. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1203. {
  1204. struct drm_device *dev = ring->dev;
  1205. struct drm_i915_private *dev_priv = dev->dev_private;
  1206. unsigned long flags;
  1207. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1208. return false;
  1209. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1210. if (ring->irq_refcount++ == 0) {
  1211. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1212. I915_WRITE_IMR(ring,
  1213. ~(ring->irq_enable_mask |
  1214. GT_PARITY_ERROR(dev)));
  1215. else
  1216. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1217. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1218. }
  1219. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1220. return true;
  1221. }
  1222. static void
  1223. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1224. {
  1225. struct drm_device *dev = ring->dev;
  1226. struct drm_i915_private *dev_priv = dev->dev_private;
  1227. unsigned long flags;
  1228. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1229. if (--ring->irq_refcount == 0) {
  1230. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1231. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1232. else
  1233. I915_WRITE_IMR(ring, ~0);
  1234. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1235. }
  1236. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1237. }
  1238. static bool
  1239. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1240. {
  1241. struct drm_device *dev = ring->dev;
  1242. struct drm_i915_private *dev_priv = dev->dev_private;
  1243. unsigned long flags;
  1244. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1245. return false;
  1246. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1247. if (ring->irq_refcount++ == 0) {
  1248. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1249. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1250. }
  1251. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1252. return true;
  1253. }
  1254. static void
  1255. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1256. {
  1257. struct drm_device *dev = ring->dev;
  1258. struct drm_i915_private *dev_priv = dev->dev_private;
  1259. unsigned long flags;
  1260. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1261. if (--ring->irq_refcount == 0) {
  1262. I915_WRITE_IMR(ring, ~0);
  1263. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1264. }
  1265. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1266. }
  1267. static bool
  1268. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1269. {
  1270. struct drm_device *dev = ring->dev;
  1271. struct drm_i915_private *dev_priv = dev->dev_private;
  1272. unsigned long flags;
  1273. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1274. return false;
  1275. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1276. if (ring->irq_refcount++ == 0) {
  1277. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1278. I915_WRITE_IMR(ring,
  1279. ~(ring->irq_enable_mask |
  1280. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1281. } else {
  1282. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1283. }
  1284. POSTING_READ(RING_IMR(ring->mmio_base));
  1285. }
  1286. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1287. return true;
  1288. }
  1289. static void
  1290. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1291. {
  1292. struct drm_device *dev = ring->dev;
  1293. struct drm_i915_private *dev_priv = dev->dev_private;
  1294. unsigned long flags;
  1295. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1296. if (--ring->irq_refcount == 0) {
  1297. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1298. I915_WRITE_IMR(ring,
  1299. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1300. } else {
  1301. I915_WRITE_IMR(ring, ~0);
  1302. }
  1303. POSTING_READ(RING_IMR(ring->mmio_base));
  1304. }
  1305. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1306. }
  1307. static int
  1308. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1309. u64 offset, u32 length,
  1310. unsigned flags)
  1311. {
  1312. int ret;
  1313. ret = intel_ring_begin(ring, 2);
  1314. if (ret)
  1315. return ret;
  1316. intel_ring_emit(ring,
  1317. MI_BATCH_BUFFER_START |
  1318. MI_BATCH_GTT |
  1319. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1320. intel_ring_emit(ring, offset);
  1321. intel_ring_advance(ring);
  1322. return 0;
  1323. }
  1324. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1325. #define I830_BATCH_LIMIT (256*1024)
  1326. #define I830_TLB_ENTRIES (2)
  1327. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1328. static int
  1329. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1330. u64 offset, u32 len,
  1331. unsigned flags)
  1332. {
  1333. u32 cs_offset = ring->scratch.gtt_offset;
  1334. int ret;
  1335. ret = intel_ring_begin(ring, 6);
  1336. if (ret)
  1337. return ret;
  1338. /* Evict the invalid PTE TLBs */
  1339. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1340. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1341. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1342. intel_ring_emit(ring, cs_offset);
  1343. intel_ring_emit(ring, 0xdeadbeef);
  1344. intel_ring_emit(ring, MI_NOOP);
  1345. intel_ring_advance(ring);
  1346. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1347. if (len > I830_BATCH_LIMIT)
  1348. return -ENOSPC;
  1349. ret = intel_ring_begin(ring, 6 + 2);
  1350. if (ret)
  1351. return ret;
  1352. /* Blit the batch (which has now all relocs applied) to the
  1353. * stable batch scratch bo area (so that the CS never
  1354. * stumbles over its tlb invalidation bug) ...
  1355. */
  1356. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1357. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1358. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1359. intel_ring_emit(ring, cs_offset);
  1360. intel_ring_emit(ring, 4096);
  1361. intel_ring_emit(ring, offset);
  1362. intel_ring_emit(ring, MI_FLUSH);
  1363. intel_ring_emit(ring, MI_NOOP);
  1364. intel_ring_advance(ring);
  1365. /* ... and execute it. */
  1366. offset = cs_offset;
  1367. }
  1368. ret = intel_ring_begin(ring, 4);
  1369. if (ret)
  1370. return ret;
  1371. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1372. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1373. intel_ring_emit(ring, offset + len - 8);
  1374. intel_ring_emit(ring, MI_NOOP);
  1375. intel_ring_advance(ring);
  1376. return 0;
  1377. }
  1378. static int
  1379. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1380. u64 offset, u32 len,
  1381. unsigned flags)
  1382. {
  1383. int ret;
  1384. ret = intel_ring_begin(ring, 2);
  1385. if (ret)
  1386. return ret;
  1387. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1388. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1389. intel_ring_advance(ring);
  1390. return 0;
  1391. }
  1392. static void cleanup_status_page(struct intel_engine_cs *ring)
  1393. {
  1394. struct drm_i915_gem_object *obj;
  1395. obj = ring->status_page.obj;
  1396. if (obj == NULL)
  1397. return;
  1398. kunmap(sg_page(obj->pages->sgl));
  1399. i915_gem_object_ggtt_unpin(obj);
  1400. drm_gem_object_unreference(&obj->base);
  1401. ring->status_page.obj = NULL;
  1402. }
  1403. static int init_status_page(struct intel_engine_cs *ring)
  1404. {
  1405. struct drm_i915_gem_object *obj;
  1406. if ((obj = ring->status_page.obj) == NULL) {
  1407. unsigned flags;
  1408. int ret;
  1409. obj = i915_gem_alloc_object(ring->dev, 4096);
  1410. if (obj == NULL) {
  1411. DRM_ERROR("Failed to allocate status page\n");
  1412. return -ENOMEM;
  1413. }
  1414. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1415. if (ret)
  1416. goto err_unref;
  1417. flags = 0;
  1418. if (!HAS_LLC(ring->dev))
  1419. /* On g33, we cannot place HWS above 256MiB, so
  1420. * restrict its pinning to the low mappable arena.
  1421. * Though this restriction is not documented for
  1422. * gen4, gen5, or byt, they also behave similarly
  1423. * and hang if the HWS is placed at the top of the
  1424. * GTT. To generalise, it appears that all !llc
  1425. * platforms have issues with us placing the HWS
  1426. * above the mappable region (even though we never
  1427. * actualy map it).
  1428. */
  1429. flags |= PIN_MAPPABLE;
  1430. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1431. if (ret) {
  1432. err_unref:
  1433. drm_gem_object_unreference(&obj->base);
  1434. return ret;
  1435. }
  1436. ring->status_page.obj = obj;
  1437. }
  1438. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1439. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1440. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1441. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1442. ring->name, ring->status_page.gfx_addr);
  1443. return 0;
  1444. }
  1445. static int init_phys_status_page(struct intel_engine_cs *ring)
  1446. {
  1447. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1448. if (!dev_priv->status_page_dmah) {
  1449. dev_priv->status_page_dmah =
  1450. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1451. if (!dev_priv->status_page_dmah)
  1452. return -ENOMEM;
  1453. }
  1454. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1455. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1456. return 0;
  1457. }
  1458. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1459. {
  1460. iounmap(ringbuf->virtual_start);
  1461. ringbuf->virtual_start = NULL;
  1462. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1463. }
  1464. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1465. struct intel_ringbuffer *ringbuf)
  1466. {
  1467. struct drm_i915_private *dev_priv = to_i915(dev);
  1468. struct drm_i915_gem_object *obj = ringbuf->obj;
  1469. int ret;
  1470. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1471. if (ret)
  1472. return ret;
  1473. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1474. if (ret) {
  1475. i915_gem_object_ggtt_unpin(obj);
  1476. return ret;
  1477. }
  1478. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1479. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1480. if (ringbuf->virtual_start == NULL) {
  1481. i915_gem_object_ggtt_unpin(obj);
  1482. return -EINVAL;
  1483. }
  1484. return 0;
  1485. }
  1486. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1487. {
  1488. drm_gem_object_unreference(&ringbuf->obj->base);
  1489. ringbuf->obj = NULL;
  1490. }
  1491. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1492. struct intel_ringbuffer *ringbuf)
  1493. {
  1494. struct drm_i915_gem_object *obj;
  1495. obj = NULL;
  1496. if (!HAS_LLC(dev))
  1497. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1498. if (obj == NULL)
  1499. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1500. if (obj == NULL)
  1501. return -ENOMEM;
  1502. /* mark ring buffers as read-only from GPU side by default */
  1503. obj->gt_ro = 1;
  1504. ringbuf->obj = obj;
  1505. return 0;
  1506. }
  1507. static int intel_init_ring_buffer(struct drm_device *dev,
  1508. struct intel_engine_cs *ring)
  1509. {
  1510. struct intel_ringbuffer *ringbuf;
  1511. int ret;
  1512. WARN_ON(ring->buffer);
  1513. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1514. if (!ringbuf)
  1515. return -ENOMEM;
  1516. ring->buffer = ringbuf;
  1517. ring->dev = dev;
  1518. INIT_LIST_HEAD(&ring->active_list);
  1519. INIT_LIST_HEAD(&ring->request_list);
  1520. INIT_LIST_HEAD(&ring->execlist_queue);
  1521. ringbuf->size = 32 * PAGE_SIZE;
  1522. ringbuf->ring = ring;
  1523. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1524. init_waitqueue_head(&ring->irq_queue);
  1525. if (I915_NEED_GFX_HWS(dev)) {
  1526. ret = init_status_page(ring);
  1527. if (ret)
  1528. goto error;
  1529. } else {
  1530. BUG_ON(ring->id != RCS);
  1531. ret = init_phys_status_page(ring);
  1532. if (ret)
  1533. goto error;
  1534. }
  1535. WARN_ON(ringbuf->obj);
  1536. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1537. if (ret) {
  1538. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1539. ring->name, ret);
  1540. goto error;
  1541. }
  1542. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1543. if (ret) {
  1544. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1545. ring->name, ret);
  1546. intel_destroy_ringbuffer_obj(ringbuf);
  1547. goto error;
  1548. }
  1549. /* Workaround an erratum on the i830 which causes a hang if
  1550. * the TAIL pointer points to within the last 2 cachelines
  1551. * of the buffer.
  1552. */
  1553. ringbuf->effective_size = ringbuf->size;
  1554. if (IS_I830(dev) || IS_845G(dev))
  1555. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1556. ret = i915_cmd_parser_init_ring(ring);
  1557. if (ret)
  1558. goto error;
  1559. return 0;
  1560. error:
  1561. kfree(ringbuf);
  1562. ring->buffer = NULL;
  1563. return ret;
  1564. }
  1565. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1566. {
  1567. struct drm_i915_private *dev_priv;
  1568. struct intel_ringbuffer *ringbuf;
  1569. if (!intel_ring_initialized(ring))
  1570. return;
  1571. dev_priv = to_i915(ring->dev);
  1572. ringbuf = ring->buffer;
  1573. intel_stop_ring_buffer(ring);
  1574. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1575. intel_unpin_ringbuffer_obj(ringbuf);
  1576. intel_destroy_ringbuffer_obj(ringbuf);
  1577. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1578. if (ring->cleanup)
  1579. ring->cleanup(ring);
  1580. cleanup_status_page(ring);
  1581. i915_cmd_parser_fini_ring(ring);
  1582. kfree(ringbuf);
  1583. ring->buffer = NULL;
  1584. }
  1585. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1586. {
  1587. struct intel_ringbuffer *ringbuf = ring->buffer;
  1588. struct drm_i915_gem_request *request;
  1589. int ret;
  1590. if (intel_ring_space(ringbuf) >= n)
  1591. return 0;
  1592. list_for_each_entry(request, &ring->request_list, list) {
  1593. if (__intel_ring_space(request->tail, ringbuf->tail,
  1594. ringbuf->size) >= n) {
  1595. break;
  1596. }
  1597. }
  1598. if (&request->list == &ring->request_list)
  1599. return -ENOSPC;
  1600. ret = i915_wait_request(request);
  1601. if (ret)
  1602. return ret;
  1603. i915_gem_retire_requests_ring(ring);
  1604. return 0;
  1605. }
  1606. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1607. {
  1608. struct drm_device *dev = ring->dev;
  1609. struct drm_i915_private *dev_priv = dev->dev_private;
  1610. struct intel_ringbuffer *ringbuf = ring->buffer;
  1611. unsigned long end;
  1612. int ret;
  1613. ret = intel_ring_wait_request(ring, n);
  1614. if (ret != -ENOSPC)
  1615. return ret;
  1616. /* force the tail write in case we have been skipping them */
  1617. __intel_ring_advance(ring);
  1618. /* With GEM the hangcheck timer should kick us out of the loop,
  1619. * leaving it early runs the risk of corrupting GEM state (due
  1620. * to running on almost untested codepaths). But on resume
  1621. * timers don't work yet, so prevent a complete hang in that
  1622. * case by choosing an insanely large timeout. */
  1623. end = jiffies + 60 * HZ;
  1624. ret = 0;
  1625. trace_i915_ring_wait_begin(ring);
  1626. do {
  1627. if (intel_ring_space(ringbuf) >= n)
  1628. break;
  1629. ringbuf->head = I915_READ_HEAD(ring);
  1630. if (intel_ring_space(ringbuf) >= n)
  1631. break;
  1632. msleep(1);
  1633. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1634. ret = -ERESTARTSYS;
  1635. break;
  1636. }
  1637. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1638. dev_priv->mm.interruptible);
  1639. if (ret)
  1640. break;
  1641. if (time_after(jiffies, end)) {
  1642. ret = -EBUSY;
  1643. break;
  1644. }
  1645. } while (1);
  1646. trace_i915_ring_wait_end(ring);
  1647. return ret;
  1648. }
  1649. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1650. {
  1651. uint32_t __iomem *virt;
  1652. struct intel_ringbuffer *ringbuf = ring->buffer;
  1653. int rem = ringbuf->size - ringbuf->tail;
  1654. if (ringbuf->space < rem) {
  1655. int ret = ring_wait_for_space(ring, rem);
  1656. if (ret)
  1657. return ret;
  1658. }
  1659. virt = ringbuf->virtual_start + ringbuf->tail;
  1660. rem /= 4;
  1661. while (rem--)
  1662. iowrite32(MI_NOOP, virt++);
  1663. ringbuf->tail = 0;
  1664. intel_ring_update_space(ringbuf);
  1665. return 0;
  1666. }
  1667. int intel_ring_idle(struct intel_engine_cs *ring)
  1668. {
  1669. struct drm_i915_gem_request *req;
  1670. int ret;
  1671. /* We need to add any requests required to flush the objects and ring */
  1672. if (ring->outstanding_lazy_request) {
  1673. ret = i915_add_request(ring);
  1674. if (ret)
  1675. return ret;
  1676. }
  1677. /* Wait upon the last request to be completed */
  1678. if (list_empty(&ring->request_list))
  1679. return 0;
  1680. req = list_entry(ring->request_list.prev,
  1681. struct drm_i915_gem_request,
  1682. list);
  1683. return i915_wait_request(req);
  1684. }
  1685. static int
  1686. intel_ring_alloc_request(struct intel_engine_cs *ring)
  1687. {
  1688. int ret;
  1689. struct drm_i915_gem_request *request;
  1690. if (ring->outstanding_lazy_request)
  1691. return 0;
  1692. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1693. if (request == NULL)
  1694. return -ENOMEM;
  1695. kref_init(&request->ref);
  1696. request->ring = ring;
  1697. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  1698. if (ret) {
  1699. kfree(request);
  1700. return ret;
  1701. }
  1702. ring->outstanding_lazy_request = request;
  1703. return 0;
  1704. }
  1705. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1706. int bytes)
  1707. {
  1708. struct intel_ringbuffer *ringbuf = ring->buffer;
  1709. int ret;
  1710. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1711. ret = intel_wrap_ring_buffer(ring);
  1712. if (unlikely(ret))
  1713. return ret;
  1714. }
  1715. if (unlikely(ringbuf->space < bytes)) {
  1716. ret = ring_wait_for_space(ring, bytes);
  1717. if (unlikely(ret))
  1718. return ret;
  1719. }
  1720. return 0;
  1721. }
  1722. int intel_ring_begin(struct intel_engine_cs *ring,
  1723. int num_dwords)
  1724. {
  1725. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1726. int ret;
  1727. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1728. dev_priv->mm.interruptible);
  1729. if (ret)
  1730. return ret;
  1731. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1732. if (ret)
  1733. return ret;
  1734. /* Preallocate the olr before touching the ring */
  1735. ret = intel_ring_alloc_request(ring);
  1736. if (ret)
  1737. return ret;
  1738. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1739. return 0;
  1740. }
  1741. /* Align the ring tail to a cacheline boundary */
  1742. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1743. {
  1744. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1745. int ret;
  1746. if (num_dwords == 0)
  1747. return 0;
  1748. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1749. ret = intel_ring_begin(ring, num_dwords);
  1750. if (ret)
  1751. return ret;
  1752. while (num_dwords--)
  1753. intel_ring_emit(ring, MI_NOOP);
  1754. intel_ring_advance(ring);
  1755. return 0;
  1756. }
  1757. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1758. {
  1759. struct drm_device *dev = ring->dev;
  1760. struct drm_i915_private *dev_priv = dev->dev_private;
  1761. BUG_ON(ring->outstanding_lazy_request);
  1762. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1763. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1764. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1765. if (HAS_VEBOX(dev))
  1766. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1767. }
  1768. ring->set_seqno(ring, seqno);
  1769. ring->hangcheck.seqno = seqno;
  1770. }
  1771. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1772. u32 value)
  1773. {
  1774. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1775. /* Every tail move must follow the sequence below */
  1776. /* Disable notification that the ring is IDLE. The GT
  1777. * will then assume that it is busy and bring it out of rc6.
  1778. */
  1779. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1780. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1781. /* Clear the context id. Here be magic! */
  1782. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1783. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1784. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1785. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1786. 50))
  1787. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1788. /* Now that the ring is fully powered up, update the tail */
  1789. I915_WRITE_TAIL(ring, value);
  1790. POSTING_READ(RING_TAIL(ring->mmio_base));
  1791. /* Let the ring send IDLE messages to the GT again,
  1792. * and so let it sleep to conserve power when idle.
  1793. */
  1794. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1795. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1796. }
  1797. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1798. u32 invalidate, u32 flush)
  1799. {
  1800. uint32_t cmd;
  1801. int ret;
  1802. ret = intel_ring_begin(ring, 4);
  1803. if (ret)
  1804. return ret;
  1805. cmd = MI_FLUSH_DW;
  1806. if (INTEL_INFO(ring->dev)->gen >= 8)
  1807. cmd += 1;
  1808. /*
  1809. * Bspec vol 1c.5 - video engine command streamer:
  1810. * "If ENABLED, all TLBs will be invalidated once the flush
  1811. * operation is complete. This bit is only valid when the
  1812. * Post-Sync Operation field is a value of 1h or 3h."
  1813. */
  1814. if (invalidate & I915_GEM_GPU_DOMAINS)
  1815. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1816. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1817. intel_ring_emit(ring, cmd);
  1818. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1819. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1820. intel_ring_emit(ring, 0); /* upper addr */
  1821. intel_ring_emit(ring, 0); /* value */
  1822. } else {
  1823. intel_ring_emit(ring, 0);
  1824. intel_ring_emit(ring, MI_NOOP);
  1825. }
  1826. intel_ring_advance(ring);
  1827. return 0;
  1828. }
  1829. static int
  1830. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1831. u64 offset, u32 len,
  1832. unsigned flags)
  1833. {
  1834. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1835. int ret;
  1836. ret = intel_ring_begin(ring, 4);
  1837. if (ret)
  1838. return ret;
  1839. /* FIXME(BDW): Address space and security selectors. */
  1840. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1841. intel_ring_emit(ring, lower_32_bits(offset));
  1842. intel_ring_emit(ring, upper_32_bits(offset));
  1843. intel_ring_emit(ring, MI_NOOP);
  1844. intel_ring_advance(ring);
  1845. return 0;
  1846. }
  1847. static int
  1848. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1849. u64 offset, u32 len,
  1850. unsigned flags)
  1851. {
  1852. int ret;
  1853. ret = intel_ring_begin(ring, 2);
  1854. if (ret)
  1855. return ret;
  1856. intel_ring_emit(ring,
  1857. MI_BATCH_BUFFER_START |
  1858. (flags & I915_DISPATCH_SECURE ?
  1859. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1860. /* bit0-7 is the length on GEN6+ */
  1861. intel_ring_emit(ring, offset);
  1862. intel_ring_advance(ring);
  1863. return 0;
  1864. }
  1865. static int
  1866. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1867. u64 offset, u32 len,
  1868. unsigned flags)
  1869. {
  1870. int ret;
  1871. ret = intel_ring_begin(ring, 2);
  1872. if (ret)
  1873. return ret;
  1874. intel_ring_emit(ring,
  1875. MI_BATCH_BUFFER_START |
  1876. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1877. /* bit0-7 is the length on GEN6+ */
  1878. intel_ring_emit(ring, offset);
  1879. intel_ring_advance(ring);
  1880. return 0;
  1881. }
  1882. /* Blitter support (SandyBridge+) */
  1883. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1884. u32 invalidate, u32 flush)
  1885. {
  1886. struct drm_device *dev = ring->dev;
  1887. struct drm_i915_private *dev_priv = dev->dev_private;
  1888. uint32_t cmd;
  1889. int ret;
  1890. ret = intel_ring_begin(ring, 4);
  1891. if (ret)
  1892. return ret;
  1893. cmd = MI_FLUSH_DW;
  1894. if (INTEL_INFO(ring->dev)->gen >= 8)
  1895. cmd += 1;
  1896. /*
  1897. * Bspec vol 1c.3 - blitter engine command streamer:
  1898. * "If ENABLED, all TLBs will be invalidated once the flush
  1899. * operation is complete. This bit is only valid when the
  1900. * Post-Sync Operation field is a value of 1h or 3h."
  1901. */
  1902. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1903. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1904. MI_FLUSH_DW_OP_STOREDW;
  1905. intel_ring_emit(ring, cmd);
  1906. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1907. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1908. intel_ring_emit(ring, 0); /* upper addr */
  1909. intel_ring_emit(ring, 0); /* value */
  1910. } else {
  1911. intel_ring_emit(ring, 0);
  1912. intel_ring_emit(ring, MI_NOOP);
  1913. }
  1914. intel_ring_advance(ring);
  1915. if (!invalidate && flush) {
  1916. if (IS_GEN7(dev))
  1917. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1918. else if (IS_BROADWELL(dev))
  1919. dev_priv->fbc.need_sw_cache_clean = true;
  1920. }
  1921. return 0;
  1922. }
  1923. int intel_init_render_ring_buffer(struct drm_device *dev)
  1924. {
  1925. struct drm_i915_private *dev_priv = dev->dev_private;
  1926. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1927. struct drm_i915_gem_object *obj;
  1928. int ret;
  1929. ring->name = "render ring";
  1930. ring->id = RCS;
  1931. ring->mmio_base = RENDER_RING_BASE;
  1932. if (INTEL_INFO(dev)->gen >= 8) {
  1933. if (i915_semaphore_is_enabled(dev)) {
  1934. obj = i915_gem_alloc_object(dev, 4096);
  1935. if (obj == NULL) {
  1936. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1937. i915.semaphores = 0;
  1938. } else {
  1939. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1940. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1941. if (ret != 0) {
  1942. drm_gem_object_unreference(&obj->base);
  1943. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1944. i915.semaphores = 0;
  1945. } else
  1946. dev_priv->semaphore_obj = obj;
  1947. }
  1948. }
  1949. ring->init_context = intel_ring_workarounds_emit;
  1950. ring->add_request = gen6_add_request;
  1951. ring->flush = gen8_render_ring_flush;
  1952. ring->irq_get = gen8_ring_get_irq;
  1953. ring->irq_put = gen8_ring_put_irq;
  1954. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1955. ring->get_seqno = gen6_ring_get_seqno;
  1956. ring->set_seqno = ring_set_seqno;
  1957. if (i915_semaphore_is_enabled(dev)) {
  1958. WARN_ON(!dev_priv->semaphore_obj);
  1959. ring->semaphore.sync_to = gen8_ring_sync;
  1960. ring->semaphore.signal = gen8_rcs_signal;
  1961. GEN8_RING_SEMAPHORE_INIT;
  1962. }
  1963. } else if (INTEL_INFO(dev)->gen >= 6) {
  1964. ring->add_request = gen6_add_request;
  1965. ring->flush = gen7_render_ring_flush;
  1966. if (INTEL_INFO(dev)->gen == 6)
  1967. ring->flush = gen6_render_ring_flush;
  1968. ring->irq_get = gen6_ring_get_irq;
  1969. ring->irq_put = gen6_ring_put_irq;
  1970. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1971. ring->get_seqno = gen6_ring_get_seqno;
  1972. ring->set_seqno = ring_set_seqno;
  1973. if (i915_semaphore_is_enabled(dev)) {
  1974. ring->semaphore.sync_to = gen6_ring_sync;
  1975. ring->semaphore.signal = gen6_signal;
  1976. /*
  1977. * The current semaphore is only applied on pre-gen8
  1978. * platform. And there is no VCS2 ring on the pre-gen8
  1979. * platform. So the semaphore between RCS and VCS2 is
  1980. * initialized as INVALID. Gen8 will initialize the
  1981. * sema between VCS2 and RCS later.
  1982. */
  1983. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1984. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1985. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1986. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1987. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1988. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1989. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1990. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1991. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1992. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1993. }
  1994. } else if (IS_GEN5(dev)) {
  1995. ring->add_request = pc_render_add_request;
  1996. ring->flush = gen4_render_ring_flush;
  1997. ring->get_seqno = pc_render_get_seqno;
  1998. ring->set_seqno = pc_render_set_seqno;
  1999. ring->irq_get = gen5_ring_get_irq;
  2000. ring->irq_put = gen5_ring_put_irq;
  2001. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2002. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2003. } else {
  2004. ring->add_request = i9xx_add_request;
  2005. if (INTEL_INFO(dev)->gen < 4)
  2006. ring->flush = gen2_render_ring_flush;
  2007. else
  2008. ring->flush = gen4_render_ring_flush;
  2009. ring->get_seqno = ring_get_seqno;
  2010. ring->set_seqno = ring_set_seqno;
  2011. if (IS_GEN2(dev)) {
  2012. ring->irq_get = i8xx_ring_get_irq;
  2013. ring->irq_put = i8xx_ring_put_irq;
  2014. } else {
  2015. ring->irq_get = i9xx_ring_get_irq;
  2016. ring->irq_put = i9xx_ring_put_irq;
  2017. }
  2018. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2019. }
  2020. ring->write_tail = ring_write_tail;
  2021. if (IS_HASWELL(dev))
  2022. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2023. else if (IS_GEN8(dev))
  2024. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2025. else if (INTEL_INFO(dev)->gen >= 6)
  2026. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2027. else if (INTEL_INFO(dev)->gen >= 4)
  2028. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2029. else if (IS_I830(dev) || IS_845G(dev))
  2030. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2031. else
  2032. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2033. ring->init_hw = init_render_ring;
  2034. ring->cleanup = render_ring_cleanup;
  2035. /* Workaround batchbuffer to combat CS tlb bug. */
  2036. if (HAS_BROKEN_CS_TLB(dev)) {
  2037. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2038. if (obj == NULL) {
  2039. DRM_ERROR("Failed to allocate batch bo\n");
  2040. return -ENOMEM;
  2041. }
  2042. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2043. if (ret != 0) {
  2044. drm_gem_object_unreference(&obj->base);
  2045. DRM_ERROR("Failed to ping batch bo\n");
  2046. return ret;
  2047. }
  2048. ring->scratch.obj = obj;
  2049. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2050. }
  2051. ret = intel_init_ring_buffer(dev, ring);
  2052. if (ret)
  2053. return ret;
  2054. if (INTEL_INFO(dev)->gen >= 5) {
  2055. ret = intel_init_pipe_control(ring);
  2056. if (ret)
  2057. return ret;
  2058. }
  2059. return 0;
  2060. }
  2061. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2062. {
  2063. struct drm_i915_private *dev_priv = dev->dev_private;
  2064. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2065. ring->name = "bsd ring";
  2066. ring->id = VCS;
  2067. ring->write_tail = ring_write_tail;
  2068. if (INTEL_INFO(dev)->gen >= 6) {
  2069. ring->mmio_base = GEN6_BSD_RING_BASE;
  2070. /* gen6 bsd needs a special wa for tail updates */
  2071. if (IS_GEN6(dev))
  2072. ring->write_tail = gen6_bsd_ring_write_tail;
  2073. ring->flush = gen6_bsd_ring_flush;
  2074. ring->add_request = gen6_add_request;
  2075. ring->get_seqno = gen6_ring_get_seqno;
  2076. ring->set_seqno = ring_set_seqno;
  2077. if (INTEL_INFO(dev)->gen >= 8) {
  2078. ring->irq_enable_mask =
  2079. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2080. ring->irq_get = gen8_ring_get_irq;
  2081. ring->irq_put = gen8_ring_put_irq;
  2082. ring->dispatch_execbuffer =
  2083. gen8_ring_dispatch_execbuffer;
  2084. if (i915_semaphore_is_enabled(dev)) {
  2085. ring->semaphore.sync_to = gen8_ring_sync;
  2086. ring->semaphore.signal = gen8_xcs_signal;
  2087. GEN8_RING_SEMAPHORE_INIT;
  2088. }
  2089. } else {
  2090. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2091. ring->irq_get = gen6_ring_get_irq;
  2092. ring->irq_put = gen6_ring_put_irq;
  2093. ring->dispatch_execbuffer =
  2094. gen6_ring_dispatch_execbuffer;
  2095. if (i915_semaphore_is_enabled(dev)) {
  2096. ring->semaphore.sync_to = gen6_ring_sync;
  2097. ring->semaphore.signal = gen6_signal;
  2098. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2099. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2100. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2101. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2102. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2103. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2104. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2105. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2106. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2107. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2108. }
  2109. }
  2110. } else {
  2111. ring->mmio_base = BSD_RING_BASE;
  2112. ring->flush = bsd_ring_flush;
  2113. ring->add_request = i9xx_add_request;
  2114. ring->get_seqno = ring_get_seqno;
  2115. ring->set_seqno = ring_set_seqno;
  2116. if (IS_GEN5(dev)) {
  2117. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2118. ring->irq_get = gen5_ring_get_irq;
  2119. ring->irq_put = gen5_ring_put_irq;
  2120. } else {
  2121. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2122. ring->irq_get = i9xx_ring_get_irq;
  2123. ring->irq_put = i9xx_ring_put_irq;
  2124. }
  2125. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2126. }
  2127. ring->init_hw = init_ring_common;
  2128. return intel_init_ring_buffer(dev, ring);
  2129. }
  2130. /**
  2131. * Initialize the second BSD ring for Broadwell GT3.
  2132. * It is noted that this only exists on Broadwell GT3.
  2133. */
  2134. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2135. {
  2136. struct drm_i915_private *dev_priv = dev->dev_private;
  2137. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2138. if ((INTEL_INFO(dev)->gen != 8)) {
  2139. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2140. return -EINVAL;
  2141. }
  2142. ring->name = "bsd2 ring";
  2143. ring->id = VCS2;
  2144. ring->write_tail = ring_write_tail;
  2145. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2146. ring->flush = gen6_bsd_ring_flush;
  2147. ring->add_request = gen6_add_request;
  2148. ring->get_seqno = gen6_ring_get_seqno;
  2149. ring->set_seqno = ring_set_seqno;
  2150. ring->irq_enable_mask =
  2151. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2152. ring->irq_get = gen8_ring_get_irq;
  2153. ring->irq_put = gen8_ring_put_irq;
  2154. ring->dispatch_execbuffer =
  2155. gen8_ring_dispatch_execbuffer;
  2156. if (i915_semaphore_is_enabled(dev)) {
  2157. ring->semaphore.sync_to = gen8_ring_sync;
  2158. ring->semaphore.signal = gen8_xcs_signal;
  2159. GEN8_RING_SEMAPHORE_INIT;
  2160. }
  2161. ring->init_hw = init_ring_common;
  2162. return intel_init_ring_buffer(dev, ring);
  2163. }
  2164. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2165. {
  2166. struct drm_i915_private *dev_priv = dev->dev_private;
  2167. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2168. ring->name = "blitter ring";
  2169. ring->id = BCS;
  2170. ring->mmio_base = BLT_RING_BASE;
  2171. ring->write_tail = ring_write_tail;
  2172. ring->flush = gen6_ring_flush;
  2173. ring->add_request = gen6_add_request;
  2174. ring->get_seqno = gen6_ring_get_seqno;
  2175. ring->set_seqno = ring_set_seqno;
  2176. if (INTEL_INFO(dev)->gen >= 8) {
  2177. ring->irq_enable_mask =
  2178. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2179. ring->irq_get = gen8_ring_get_irq;
  2180. ring->irq_put = gen8_ring_put_irq;
  2181. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2182. if (i915_semaphore_is_enabled(dev)) {
  2183. ring->semaphore.sync_to = gen8_ring_sync;
  2184. ring->semaphore.signal = gen8_xcs_signal;
  2185. GEN8_RING_SEMAPHORE_INIT;
  2186. }
  2187. } else {
  2188. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2189. ring->irq_get = gen6_ring_get_irq;
  2190. ring->irq_put = gen6_ring_put_irq;
  2191. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2192. if (i915_semaphore_is_enabled(dev)) {
  2193. ring->semaphore.signal = gen6_signal;
  2194. ring->semaphore.sync_to = gen6_ring_sync;
  2195. /*
  2196. * The current semaphore is only applied on pre-gen8
  2197. * platform. And there is no VCS2 ring on the pre-gen8
  2198. * platform. So the semaphore between BCS and VCS2 is
  2199. * initialized as INVALID. Gen8 will initialize the
  2200. * sema between BCS and VCS2 later.
  2201. */
  2202. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2203. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2204. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2205. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2206. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2207. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2208. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2209. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2210. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2211. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2212. }
  2213. }
  2214. ring->init_hw = init_ring_common;
  2215. return intel_init_ring_buffer(dev, ring);
  2216. }
  2217. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2218. {
  2219. struct drm_i915_private *dev_priv = dev->dev_private;
  2220. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2221. ring->name = "video enhancement ring";
  2222. ring->id = VECS;
  2223. ring->mmio_base = VEBOX_RING_BASE;
  2224. ring->write_tail = ring_write_tail;
  2225. ring->flush = gen6_ring_flush;
  2226. ring->add_request = gen6_add_request;
  2227. ring->get_seqno = gen6_ring_get_seqno;
  2228. ring->set_seqno = ring_set_seqno;
  2229. if (INTEL_INFO(dev)->gen >= 8) {
  2230. ring->irq_enable_mask =
  2231. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2232. ring->irq_get = gen8_ring_get_irq;
  2233. ring->irq_put = gen8_ring_put_irq;
  2234. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2235. if (i915_semaphore_is_enabled(dev)) {
  2236. ring->semaphore.sync_to = gen8_ring_sync;
  2237. ring->semaphore.signal = gen8_xcs_signal;
  2238. GEN8_RING_SEMAPHORE_INIT;
  2239. }
  2240. } else {
  2241. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2242. ring->irq_get = hsw_vebox_get_irq;
  2243. ring->irq_put = hsw_vebox_put_irq;
  2244. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2245. if (i915_semaphore_is_enabled(dev)) {
  2246. ring->semaphore.sync_to = gen6_ring_sync;
  2247. ring->semaphore.signal = gen6_signal;
  2248. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2249. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2250. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2251. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2252. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2253. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2254. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2255. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2256. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2257. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2258. }
  2259. }
  2260. ring->init_hw = init_ring_common;
  2261. return intel_init_ring_buffer(dev, ring);
  2262. }
  2263. int
  2264. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2265. {
  2266. int ret;
  2267. if (!ring->gpu_caches_dirty)
  2268. return 0;
  2269. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2270. if (ret)
  2271. return ret;
  2272. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2273. ring->gpu_caches_dirty = false;
  2274. return 0;
  2275. }
  2276. int
  2277. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2278. {
  2279. uint32_t flush_domains;
  2280. int ret;
  2281. flush_domains = 0;
  2282. if (ring->gpu_caches_dirty)
  2283. flush_domains = I915_GEM_GPU_DOMAINS;
  2284. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2285. if (ret)
  2286. return ret;
  2287. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2288. ring->gpu_caches_dirty = false;
  2289. return 0;
  2290. }
  2291. void
  2292. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2293. {
  2294. int ret;
  2295. if (!intel_ring_initialized(ring))
  2296. return;
  2297. ret = intel_ring_idle(ring);
  2298. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2299. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2300. ring->name, ret);
  2301. stop_ring(ring);
  2302. }