io-cmd-file.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * NVMe Over Fabrics Target File I/O commands implementation.
  4. * Copyright (c) 2017-2018 Western Digital Corporation or its
  5. * affiliates.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/uio.h>
  9. #include <linux/falloc.h>
  10. #include <linux/file.h>
  11. #include "nvmet.h"
  12. #define NVMET_MAX_MPOOL_BVEC 16
  13. #define NVMET_MIN_MPOOL_OBJ 16
  14. void nvmet_file_ns_disable(struct nvmet_ns *ns)
  15. {
  16. if (ns->file) {
  17. if (ns->buffered_io)
  18. flush_workqueue(buffered_io_wq);
  19. mempool_destroy(ns->bvec_pool);
  20. ns->bvec_pool = NULL;
  21. kmem_cache_destroy(ns->bvec_cache);
  22. ns->bvec_cache = NULL;
  23. fput(ns->file);
  24. ns->file = NULL;
  25. }
  26. }
  27. int nvmet_file_ns_enable(struct nvmet_ns *ns)
  28. {
  29. int flags = O_RDWR | O_LARGEFILE;
  30. struct kstat stat;
  31. int ret;
  32. if (!ns->buffered_io)
  33. flags |= O_DIRECT;
  34. ns->file = filp_open(ns->device_path, flags, 0);
  35. if (IS_ERR(ns->file)) {
  36. pr_err("failed to open file %s: (%ld)\n",
  37. ns->device_path, PTR_ERR(ns->file));
  38. return PTR_ERR(ns->file);
  39. }
  40. ret = vfs_getattr(&ns->file->f_path,
  41. &stat, STATX_SIZE, AT_STATX_FORCE_SYNC);
  42. if (ret)
  43. goto err;
  44. ns->size = stat.size;
  45. ns->blksize_shift = file_inode(ns->file)->i_blkbits;
  46. ns->bvec_cache = kmem_cache_create("nvmet-bvec",
  47. NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec),
  48. 0, SLAB_HWCACHE_ALIGN, NULL);
  49. if (!ns->bvec_cache) {
  50. ret = -ENOMEM;
  51. goto err;
  52. }
  53. ns->bvec_pool = mempool_create(NVMET_MIN_MPOOL_OBJ, mempool_alloc_slab,
  54. mempool_free_slab, ns->bvec_cache);
  55. if (!ns->bvec_pool) {
  56. ret = -ENOMEM;
  57. goto err;
  58. }
  59. return ret;
  60. err:
  61. ns->size = 0;
  62. ns->blksize_shift = 0;
  63. nvmet_file_ns_disable(ns);
  64. return ret;
  65. }
  66. static void nvmet_file_init_bvec(struct bio_vec *bv, struct sg_page_iter *iter)
  67. {
  68. bv->bv_page = sg_page_iter_page(iter);
  69. bv->bv_offset = iter->sg->offset;
  70. bv->bv_len = PAGE_SIZE - iter->sg->offset;
  71. }
  72. static ssize_t nvmet_file_submit_bvec(struct nvmet_req *req, loff_t pos,
  73. unsigned long nr_segs, size_t count)
  74. {
  75. struct kiocb *iocb = &req->f.iocb;
  76. ssize_t (*call_iter)(struct kiocb *iocb, struct iov_iter *iter);
  77. struct iov_iter iter;
  78. int ki_flags = 0, rw;
  79. ssize_t ret;
  80. if (req->cmd->rw.opcode == nvme_cmd_write) {
  81. if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
  82. ki_flags = IOCB_DSYNC;
  83. call_iter = req->ns->file->f_op->write_iter;
  84. rw = WRITE;
  85. } else {
  86. call_iter = req->ns->file->f_op->read_iter;
  87. rw = READ;
  88. }
  89. iov_iter_bvec(&iter, rw, req->f.bvec, nr_segs, count);
  90. iocb->ki_pos = pos;
  91. iocb->ki_filp = req->ns->file;
  92. iocb->ki_flags = ki_flags | iocb_flags(req->ns->file);
  93. ret = call_iter(iocb, &iter);
  94. if (ret != -EIOCBQUEUED && iocb->ki_complete)
  95. iocb->ki_complete(iocb, ret, 0);
  96. return ret;
  97. }
  98. static void nvmet_file_io_done(struct kiocb *iocb, long ret, long ret2)
  99. {
  100. struct nvmet_req *req = container_of(iocb, struct nvmet_req, f.iocb);
  101. if (req->f.bvec != req->inline_bvec) {
  102. if (likely(req->f.mpool_alloc == false))
  103. kfree(req->f.bvec);
  104. else
  105. mempool_free(req->f.bvec, req->ns->bvec_pool);
  106. }
  107. nvmet_req_complete(req, ret != req->data_len ?
  108. NVME_SC_INTERNAL | NVME_SC_DNR : 0);
  109. }
  110. static void nvmet_file_execute_rw(struct nvmet_req *req)
  111. {
  112. ssize_t nr_bvec = DIV_ROUND_UP(req->data_len, PAGE_SIZE);
  113. struct sg_page_iter sg_pg_iter;
  114. unsigned long bv_cnt = 0;
  115. bool is_sync = false;
  116. size_t len = 0, total_len = 0;
  117. ssize_t ret = 0;
  118. loff_t pos;
  119. if (!req->sg_cnt || !nr_bvec) {
  120. nvmet_req_complete(req, 0);
  121. return;
  122. }
  123. pos = le64_to_cpu(req->cmd->rw.slba) << req->ns->blksize_shift;
  124. if (unlikely(pos + req->data_len > req->ns->size)) {
  125. nvmet_req_complete(req, NVME_SC_LBA_RANGE | NVME_SC_DNR);
  126. return;
  127. }
  128. if (nr_bvec > NVMET_MAX_INLINE_BIOVEC)
  129. req->f.bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
  130. GFP_KERNEL);
  131. else
  132. req->f.bvec = req->inline_bvec;
  133. req->f.mpool_alloc = false;
  134. if (unlikely(!req->f.bvec)) {
  135. /* fallback under memory pressure */
  136. req->f.bvec = mempool_alloc(req->ns->bvec_pool, GFP_KERNEL);
  137. req->f.mpool_alloc = true;
  138. if (nr_bvec > NVMET_MAX_MPOOL_BVEC)
  139. is_sync = true;
  140. }
  141. memset(&req->f.iocb, 0, sizeof(struct kiocb));
  142. for_each_sg_page(req->sg, &sg_pg_iter, req->sg_cnt, 0) {
  143. nvmet_file_init_bvec(&req->f.bvec[bv_cnt], &sg_pg_iter);
  144. len += req->f.bvec[bv_cnt].bv_len;
  145. total_len += req->f.bvec[bv_cnt].bv_len;
  146. bv_cnt++;
  147. WARN_ON_ONCE((nr_bvec - 1) < 0);
  148. if (unlikely(is_sync) &&
  149. (nr_bvec - 1 == 0 || bv_cnt == NVMET_MAX_MPOOL_BVEC)) {
  150. ret = nvmet_file_submit_bvec(req, pos, bv_cnt, len);
  151. if (ret < 0)
  152. goto out;
  153. pos += len;
  154. bv_cnt = 0;
  155. len = 0;
  156. }
  157. nr_bvec--;
  158. }
  159. if (WARN_ON_ONCE(total_len != req->data_len))
  160. ret = -EIO;
  161. out:
  162. if (unlikely(is_sync || ret)) {
  163. nvmet_file_io_done(&req->f.iocb, ret < 0 ? ret : total_len, 0);
  164. return;
  165. }
  166. req->f.iocb.ki_complete = nvmet_file_io_done;
  167. nvmet_file_submit_bvec(req, pos, bv_cnt, total_len);
  168. }
  169. static void nvmet_file_buffered_io_work(struct work_struct *w)
  170. {
  171. struct nvmet_req *req = container_of(w, struct nvmet_req, f.work);
  172. nvmet_file_execute_rw(req);
  173. }
  174. static void nvmet_file_execute_rw_buffered_io(struct nvmet_req *req)
  175. {
  176. INIT_WORK(&req->f.work, nvmet_file_buffered_io_work);
  177. queue_work(buffered_io_wq, &req->f.work);
  178. }
  179. u16 nvmet_file_flush(struct nvmet_req *req)
  180. {
  181. if (vfs_fsync(req->ns->file, 1) < 0)
  182. return NVME_SC_INTERNAL | NVME_SC_DNR;
  183. return 0;
  184. }
  185. static void nvmet_file_flush_work(struct work_struct *w)
  186. {
  187. struct nvmet_req *req = container_of(w, struct nvmet_req, f.work);
  188. nvmet_req_complete(req, nvmet_file_flush(req));
  189. }
  190. static void nvmet_file_execute_flush(struct nvmet_req *req)
  191. {
  192. INIT_WORK(&req->f.work, nvmet_file_flush_work);
  193. schedule_work(&req->f.work);
  194. }
  195. static void nvmet_file_execute_discard(struct nvmet_req *req)
  196. {
  197. int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
  198. struct nvme_dsm_range range;
  199. loff_t offset, len;
  200. u16 ret;
  201. int i;
  202. for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
  203. ret = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
  204. sizeof(range));
  205. if (ret)
  206. break;
  207. offset = le64_to_cpu(range.slba) << req->ns->blksize_shift;
  208. len = le32_to_cpu(range.nlb) << req->ns->blksize_shift;
  209. if (offset + len > req->ns->size) {
  210. ret = NVME_SC_LBA_RANGE | NVME_SC_DNR;
  211. break;
  212. }
  213. if (vfs_fallocate(req->ns->file, mode, offset, len)) {
  214. ret = NVME_SC_INTERNAL | NVME_SC_DNR;
  215. break;
  216. }
  217. }
  218. nvmet_req_complete(req, ret);
  219. }
  220. static void nvmet_file_dsm_work(struct work_struct *w)
  221. {
  222. struct nvmet_req *req = container_of(w, struct nvmet_req, f.work);
  223. switch (le32_to_cpu(req->cmd->dsm.attributes)) {
  224. case NVME_DSMGMT_AD:
  225. nvmet_file_execute_discard(req);
  226. return;
  227. case NVME_DSMGMT_IDR:
  228. case NVME_DSMGMT_IDW:
  229. default:
  230. /* Not supported yet */
  231. nvmet_req_complete(req, 0);
  232. return;
  233. }
  234. }
  235. static void nvmet_file_execute_dsm(struct nvmet_req *req)
  236. {
  237. INIT_WORK(&req->f.work, nvmet_file_dsm_work);
  238. schedule_work(&req->f.work);
  239. }
  240. static void nvmet_file_write_zeroes_work(struct work_struct *w)
  241. {
  242. struct nvmet_req *req = container_of(w, struct nvmet_req, f.work);
  243. struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
  244. int mode = FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE;
  245. loff_t offset;
  246. loff_t len;
  247. int ret;
  248. offset = le64_to_cpu(write_zeroes->slba) << req->ns->blksize_shift;
  249. len = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
  250. req->ns->blksize_shift);
  251. if (unlikely(offset + len > req->ns->size)) {
  252. nvmet_req_complete(req, NVME_SC_LBA_RANGE | NVME_SC_DNR);
  253. return;
  254. }
  255. ret = vfs_fallocate(req->ns->file, mode, offset, len);
  256. nvmet_req_complete(req, ret < 0 ? NVME_SC_INTERNAL | NVME_SC_DNR : 0);
  257. }
  258. static void nvmet_file_execute_write_zeroes(struct nvmet_req *req)
  259. {
  260. INIT_WORK(&req->f.work, nvmet_file_write_zeroes_work);
  261. schedule_work(&req->f.work);
  262. }
  263. u16 nvmet_file_parse_io_cmd(struct nvmet_req *req)
  264. {
  265. struct nvme_command *cmd = req->cmd;
  266. switch (cmd->common.opcode) {
  267. case nvme_cmd_read:
  268. case nvme_cmd_write:
  269. if (req->ns->buffered_io)
  270. req->execute = nvmet_file_execute_rw_buffered_io;
  271. else
  272. req->execute = nvmet_file_execute_rw;
  273. req->data_len = nvmet_rw_len(req);
  274. return 0;
  275. case nvme_cmd_flush:
  276. req->execute = nvmet_file_execute_flush;
  277. req->data_len = 0;
  278. return 0;
  279. case nvme_cmd_dsm:
  280. req->execute = nvmet_file_execute_dsm;
  281. req->data_len = (le32_to_cpu(cmd->dsm.nr) + 1) *
  282. sizeof(struct nvme_dsm_range);
  283. return 0;
  284. case nvme_cmd_write_zeroes:
  285. req->execute = nvmet_file_execute_write_zeroes;
  286. req->data_len = 0;
  287. return 0;
  288. default:
  289. pr_err("unhandled cmd for file ns %d on qid %d\n",
  290. cmd->common.opcode, req->sq->qid);
  291. return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
  292. }
  293. }