intel_pm.c 192 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void i8xx_disable_fbc(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. u32 fbc_ctl;
  69. /* Disable compression */
  70. fbc_ctl = I915_READ(FBC_CONTROL);
  71. if ((fbc_ctl & FBC_CTL_EN) == 0)
  72. return;
  73. fbc_ctl &= ~FBC_CTL_EN;
  74. I915_WRITE(FBC_CONTROL, fbc_ctl);
  75. /* Wait for compressing bit to clear */
  76. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  77. DRM_DEBUG_KMS("FBC idle timed out\n");
  78. return;
  79. }
  80. DRM_DEBUG_KMS("disabled FBC\n");
  81. }
  82. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  83. {
  84. struct drm_device *dev = crtc->dev;
  85. struct drm_i915_private *dev_priv = dev->dev_private;
  86. struct drm_framebuffer *fb = crtc->primary->fb;
  87. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  88. struct drm_i915_gem_object *obj = intel_fb->obj;
  89. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  90. int cfb_pitch;
  91. int i;
  92. u32 fbc_ctl;
  93. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  94. if (fb->pitches[0] < cfb_pitch)
  95. cfb_pitch = fb->pitches[0];
  96. /* FBC_CTL wants 32B or 64B units */
  97. if (IS_GEN2(dev))
  98. cfb_pitch = (cfb_pitch / 32) - 1;
  99. else
  100. cfb_pitch = (cfb_pitch / 64) - 1;
  101. /* Clear old tags */
  102. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  103. I915_WRITE(FBC_TAG + (i * 4), 0);
  104. if (IS_GEN4(dev)) {
  105. u32 fbc_ctl2;
  106. /* Set it up... */
  107. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  108. fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
  109. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  110. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  111. }
  112. /* enable it... */
  113. fbc_ctl = I915_READ(FBC_CONTROL);
  114. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  115. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  116. if (IS_I945GM(dev))
  117. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  118. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  119. fbc_ctl |= obj->fence_reg;
  120. I915_WRITE(FBC_CONTROL, fbc_ctl);
  121. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
  122. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  123. }
  124. static bool i8xx_fbc_enabled(struct drm_device *dev)
  125. {
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  128. }
  129. static void g4x_enable_fbc(struct drm_crtc *crtc)
  130. {
  131. struct drm_device *dev = crtc->dev;
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. struct drm_framebuffer *fb = crtc->primary->fb;
  134. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  135. struct drm_i915_gem_object *obj = intel_fb->obj;
  136. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  137. u32 dpfc_ctl;
  138. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
  139. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  140. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  141. else
  142. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  143. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  144. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  145. /* enable it... */
  146. I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  147. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  148. }
  149. static void g4x_disable_fbc(struct drm_device *dev)
  150. {
  151. struct drm_i915_private *dev_priv = dev->dev_private;
  152. u32 dpfc_ctl;
  153. /* Disable compression */
  154. dpfc_ctl = I915_READ(DPFC_CONTROL);
  155. if (dpfc_ctl & DPFC_CTL_EN) {
  156. dpfc_ctl &= ~DPFC_CTL_EN;
  157. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  158. DRM_DEBUG_KMS("disabled FBC\n");
  159. }
  160. }
  161. static bool g4x_fbc_enabled(struct drm_device *dev)
  162. {
  163. struct drm_i915_private *dev_priv = dev->dev_private;
  164. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  165. }
  166. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  167. {
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. u32 blt_ecoskpd;
  170. /* Make sure blitter notifies FBC of writes */
  171. /* Blitter is part of Media powerwell on VLV. No impact of
  172. * his param in other platforms for now */
  173. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  174. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  175. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  176. GEN6_BLITTER_LOCK_SHIFT;
  177. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  178. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  179. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  180. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  181. GEN6_BLITTER_LOCK_SHIFT);
  182. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  183. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  184. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  185. }
  186. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  187. {
  188. struct drm_device *dev = crtc->dev;
  189. struct drm_i915_private *dev_priv = dev->dev_private;
  190. struct drm_framebuffer *fb = crtc->primary->fb;
  191. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  192. struct drm_i915_gem_object *obj = intel_fb->obj;
  193. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  194. u32 dpfc_ctl;
  195. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
  196. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  197. dev_priv->fbc.threshold++;
  198. switch (dev_priv->fbc.threshold) {
  199. case 4:
  200. case 3:
  201. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  202. break;
  203. case 2:
  204. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  205. break;
  206. case 1:
  207. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  208. break;
  209. }
  210. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  211. if (IS_GEN5(dev))
  212. dpfc_ctl |= obj->fence_reg;
  213. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  214. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  215. /* enable it... */
  216. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  217. if (IS_GEN6(dev)) {
  218. I915_WRITE(SNB_DPFC_CTL_SA,
  219. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  220. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  221. sandybridge_blit_fbc_update(dev);
  222. }
  223. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  224. }
  225. static void ironlake_disable_fbc(struct drm_device *dev)
  226. {
  227. struct drm_i915_private *dev_priv = dev->dev_private;
  228. u32 dpfc_ctl;
  229. /* Disable compression */
  230. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  231. if (dpfc_ctl & DPFC_CTL_EN) {
  232. dpfc_ctl &= ~DPFC_CTL_EN;
  233. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  234. DRM_DEBUG_KMS("disabled FBC\n");
  235. }
  236. }
  237. static bool ironlake_fbc_enabled(struct drm_device *dev)
  238. {
  239. struct drm_i915_private *dev_priv = dev->dev_private;
  240. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  241. }
  242. static void gen7_enable_fbc(struct drm_crtc *crtc)
  243. {
  244. struct drm_device *dev = crtc->dev;
  245. struct drm_i915_private *dev_priv = dev->dev_private;
  246. struct drm_framebuffer *fb = crtc->primary->fb;
  247. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  248. struct drm_i915_gem_object *obj = intel_fb->obj;
  249. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  250. u32 dpfc_ctl;
  251. dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
  252. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  253. dev_priv->fbc.threshold++;
  254. switch (dev_priv->fbc.threshold) {
  255. case 4:
  256. case 3:
  257. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  258. break;
  259. case 2:
  260. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  261. break;
  262. case 1:
  263. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  264. break;
  265. }
  266. dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
  267. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  268. if (IS_IVYBRIDGE(dev)) {
  269. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  270. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  271. I915_READ(ILK_DISPLAY_CHICKEN1) |
  272. ILK_FBCQ_DIS);
  273. } else {
  274. /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
  275. I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
  276. I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
  277. HSW_FBCQ_DIS);
  278. }
  279. I915_WRITE(SNB_DPFC_CTL_SA,
  280. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  281. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  282. sandybridge_blit_fbc_update(dev);
  283. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  284. }
  285. bool intel_fbc_enabled(struct drm_device *dev)
  286. {
  287. struct drm_i915_private *dev_priv = dev->dev_private;
  288. if (!dev_priv->display.fbc_enabled)
  289. return false;
  290. return dev_priv->display.fbc_enabled(dev);
  291. }
  292. static void intel_fbc_work_fn(struct work_struct *__work)
  293. {
  294. struct intel_fbc_work *work =
  295. container_of(to_delayed_work(__work),
  296. struct intel_fbc_work, work);
  297. struct drm_device *dev = work->crtc->dev;
  298. struct drm_i915_private *dev_priv = dev->dev_private;
  299. mutex_lock(&dev->struct_mutex);
  300. if (work == dev_priv->fbc.fbc_work) {
  301. /* Double check that we haven't switched fb without cancelling
  302. * the prior work.
  303. */
  304. if (work->crtc->primary->fb == work->fb) {
  305. dev_priv->display.enable_fbc(work->crtc);
  306. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  307. dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
  308. dev_priv->fbc.y = work->crtc->y;
  309. }
  310. dev_priv->fbc.fbc_work = NULL;
  311. }
  312. mutex_unlock(&dev->struct_mutex);
  313. kfree(work);
  314. }
  315. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  316. {
  317. if (dev_priv->fbc.fbc_work == NULL)
  318. return;
  319. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  320. /* Synchronisation is provided by struct_mutex and checking of
  321. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  322. * entirely asynchronously.
  323. */
  324. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  325. /* tasklet was killed before being run, clean up */
  326. kfree(dev_priv->fbc.fbc_work);
  327. /* Mark the work as no longer wanted so that if it does
  328. * wake-up (because the work was already running and waiting
  329. * for our mutex), it will discover that is no longer
  330. * necessary to run.
  331. */
  332. dev_priv->fbc.fbc_work = NULL;
  333. }
  334. static void intel_enable_fbc(struct drm_crtc *crtc)
  335. {
  336. struct intel_fbc_work *work;
  337. struct drm_device *dev = crtc->dev;
  338. struct drm_i915_private *dev_priv = dev->dev_private;
  339. if (!dev_priv->display.enable_fbc)
  340. return;
  341. intel_cancel_fbc_work(dev_priv);
  342. work = kzalloc(sizeof(*work), GFP_KERNEL);
  343. if (work == NULL) {
  344. DRM_ERROR("Failed to allocate FBC work structure\n");
  345. dev_priv->display.enable_fbc(crtc);
  346. return;
  347. }
  348. work->crtc = crtc;
  349. work->fb = crtc->primary->fb;
  350. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  351. dev_priv->fbc.fbc_work = work;
  352. /* Delay the actual enabling to let pageflipping cease and the
  353. * display to settle before starting the compression. Note that
  354. * this delay also serves a second purpose: it allows for a
  355. * vblank to pass after disabling the FBC before we attempt
  356. * to modify the control registers.
  357. *
  358. * A more complicated solution would involve tracking vblanks
  359. * following the termination of the page-flipping sequence
  360. * and indeed performing the enable as a co-routine and not
  361. * waiting synchronously upon the vblank.
  362. *
  363. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  364. */
  365. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  366. }
  367. void intel_disable_fbc(struct drm_device *dev)
  368. {
  369. struct drm_i915_private *dev_priv = dev->dev_private;
  370. intel_cancel_fbc_work(dev_priv);
  371. if (!dev_priv->display.disable_fbc)
  372. return;
  373. dev_priv->display.disable_fbc(dev);
  374. dev_priv->fbc.plane = -1;
  375. }
  376. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  377. enum no_fbc_reason reason)
  378. {
  379. if (dev_priv->fbc.no_fbc_reason == reason)
  380. return false;
  381. dev_priv->fbc.no_fbc_reason = reason;
  382. return true;
  383. }
  384. /**
  385. * intel_update_fbc - enable/disable FBC as needed
  386. * @dev: the drm_device
  387. *
  388. * Set up the framebuffer compression hardware at mode set time. We
  389. * enable it if possible:
  390. * - plane A only (on pre-965)
  391. * - no pixel mulitply/line duplication
  392. * - no alpha buffer discard
  393. * - no dual wide
  394. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  395. *
  396. * We can't assume that any compression will take place (worst case),
  397. * so the compressed buffer has to be the same size as the uncompressed
  398. * one. It also must reside (along with the line length buffer) in
  399. * stolen memory.
  400. *
  401. * We need to enable/disable FBC on a global basis.
  402. */
  403. void intel_update_fbc(struct drm_device *dev)
  404. {
  405. struct drm_i915_private *dev_priv = dev->dev_private;
  406. struct drm_crtc *crtc = NULL, *tmp_crtc;
  407. struct intel_crtc *intel_crtc;
  408. struct drm_framebuffer *fb;
  409. struct intel_framebuffer *intel_fb;
  410. struct drm_i915_gem_object *obj;
  411. const struct drm_display_mode *adjusted_mode;
  412. unsigned int max_width, max_height;
  413. if (!HAS_FBC(dev)) {
  414. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  415. return;
  416. }
  417. if (!i915.powersave) {
  418. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  419. DRM_DEBUG_KMS("fbc disabled per module param\n");
  420. return;
  421. }
  422. /*
  423. * If FBC is already on, we just have to verify that we can
  424. * keep it that way...
  425. * Need to disable if:
  426. * - more than one pipe is active
  427. * - changing FBC params (stride, fence, mode)
  428. * - new fb is too large to fit in compressed buffer
  429. * - going to an unsupported config (interlace, pixel multiply, etc.)
  430. */
  431. for_each_crtc(dev, tmp_crtc) {
  432. if (intel_crtc_active(tmp_crtc) &&
  433. to_intel_crtc(tmp_crtc)->primary_enabled) {
  434. if (crtc) {
  435. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  436. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  437. goto out_disable;
  438. }
  439. crtc = tmp_crtc;
  440. }
  441. }
  442. if (!crtc || crtc->primary->fb == NULL) {
  443. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  444. DRM_DEBUG_KMS("no output, disabling\n");
  445. goto out_disable;
  446. }
  447. intel_crtc = to_intel_crtc(crtc);
  448. fb = crtc->primary->fb;
  449. intel_fb = to_intel_framebuffer(fb);
  450. obj = intel_fb->obj;
  451. adjusted_mode = &intel_crtc->config.adjusted_mode;
  452. if (i915.enable_fbc < 0) {
  453. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  454. DRM_DEBUG_KMS("disabled per chip default\n");
  455. goto out_disable;
  456. }
  457. if (!i915.enable_fbc) {
  458. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  459. DRM_DEBUG_KMS("fbc disabled per module param\n");
  460. goto out_disable;
  461. }
  462. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  463. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  464. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  465. DRM_DEBUG_KMS("mode incompatible with compression, "
  466. "disabling\n");
  467. goto out_disable;
  468. }
  469. if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
  470. max_width = 4096;
  471. max_height = 4096;
  472. } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  473. max_width = 4096;
  474. max_height = 2048;
  475. } else {
  476. max_width = 2048;
  477. max_height = 1536;
  478. }
  479. if (intel_crtc->config.pipe_src_w > max_width ||
  480. intel_crtc->config.pipe_src_h > max_height) {
  481. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  482. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  483. goto out_disable;
  484. }
  485. if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
  486. intel_crtc->plane != PLANE_A) {
  487. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  488. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  489. goto out_disable;
  490. }
  491. /* The use of a CPU fence is mandatory in order to detect writes
  492. * by the CPU to the scanout and trigger updates to the FBC.
  493. */
  494. if (obj->tiling_mode != I915_TILING_X ||
  495. obj->fence_reg == I915_FENCE_REG_NONE) {
  496. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  497. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  498. goto out_disable;
  499. }
  500. /* If the kernel debugger is active, always disable compression */
  501. if (in_dbg_master())
  502. goto out_disable;
  503. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size,
  504. drm_format_plane_cpp(fb->pixel_format, 0))) {
  505. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  506. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  507. goto out_disable;
  508. }
  509. /* If the scanout has not changed, don't modify the FBC settings.
  510. * Note that we make the fundamental assumption that the fb->obj
  511. * cannot be unpinned (and have its GTT offset and fence revoked)
  512. * without first being decoupled from the scanout and FBC disabled.
  513. */
  514. if (dev_priv->fbc.plane == intel_crtc->plane &&
  515. dev_priv->fbc.fb_id == fb->base.id &&
  516. dev_priv->fbc.y == crtc->y)
  517. return;
  518. if (intel_fbc_enabled(dev)) {
  519. /* We update FBC along two paths, after changing fb/crtc
  520. * configuration (modeswitching) and after page-flipping
  521. * finishes. For the latter, we know that not only did
  522. * we disable the FBC at the start of the page-flip
  523. * sequence, but also more than one vblank has passed.
  524. *
  525. * For the former case of modeswitching, it is possible
  526. * to switch between two FBC valid configurations
  527. * instantaneously so we do need to disable the FBC
  528. * before we can modify its control registers. We also
  529. * have to wait for the next vblank for that to take
  530. * effect. However, since we delay enabling FBC we can
  531. * assume that a vblank has passed since disabling and
  532. * that we can safely alter the registers in the deferred
  533. * callback.
  534. *
  535. * In the scenario that we go from a valid to invalid
  536. * and then back to valid FBC configuration we have
  537. * no strict enforcement that a vblank occurred since
  538. * disabling the FBC. However, along all current pipe
  539. * disabling paths we do need to wait for a vblank at
  540. * some point. And we wait before enabling FBC anyway.
  541. */
  542. DRM_DEBUG_KMS("disabling active FBC for update\n");
  543. intel_disable_fbc(dev);
  544. }
  545. intel_enable_fbc(crtc);
  546. dev_priv->fbc.no_fbc_reason = FBC_OK;
  547. return;
  548. out_disable:
  549. /* Multiple disables should be harmless */
  550. if (intel_fbc_enabled(dev)) {
  551. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  552. intel_disable_fbc(dev);
  553. }
  554. i915_gem_stolen_cleanup_compression(dev);
  555. }
  556. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  557. {
  558. struct drm_i915_private *dev_priv = dev->dev_private;
  559. u32 tmp;
  560. tmp = I915_READ(CLKCFG);
  561. switch (tmp & CLKCFG_FSB_MASK) {
  562. case CLKCFG_FSB_533:
  563. dev_priv->fsb_freq = 533; /* 133*4 */
  564. break;
  565. case CLKCFG_FSB_800:
  566. dev_priv->fsb_freq = 800; /* 200*4 */
  567. break;
  568. case CLKCFG_FSB_667:
  569. dev_priv->fsb_freq = 667; /* 167*4 */
  570. break;
  571. case CLKCFG_FSB_400:
  572. dev_priv->fsb_freq = 400; /* 100*4 */
  573. break;
  574. }
  575. switch (tmp & CLKCFG_MEM_MASK) {
  576. case CLKCFG_MEM_533:
  577. dev_priv->mem_freq = 533;
  578. break;
  579. case CLKCFG_MEM_667:
  580. dev_priv->mem_freq = 667;
  581. break;
  582. case CLKCFG_MEM_800:
  583. dev_priv->mem_freq = 800;
  584. break;
  585. }
  586. /* detect pineview DDR3 setting */
  587. tmp = I915_READ(CSHRDDR3CTL);
  588. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  589. }
  590. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  591. {
  592. struct drm_i915_private *dev_priv = dev->dev_private;
  593. u16 ddrpll, csipll;
  594. ddrpll = I915_READ16(DDRMPLL1);
  595. csipll = I915_READ16(CSIPLL0);
  596. switch (ddrpll & 0xff) {
  597. case 0xc:
  598. dev_priv->mem_freq = 800;
  599. break;
  600. case 0x10:
  601. dev_priv->mem_freq = 1066;
  602. break;
  603. case 0x14:
  604. dev_priv->mem_freq = 1333;
  605. break;
  606. case 0x18:
  607. dev_priv->mem_freq = 1600;
  608. break;
  609. default:
  610. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  611. ddrpll & 0xff);
  612. dev_priv->mem_freq = 0;
  613. break;
  614. }
  615. dev_priv->ips.r_t = dev_priv->mem_freq;
  616. switch (csipll & 0x3ff) {
  617. case 0x00c:
  618. dev_priv->fsb_freq = 3200;
  619. break;
  620. case 0x00e:
  621. dev_priv->fsb_freq = 3733;
  622. break;
  623. case 0x010:
  624. dev_priv->fsb_freq = 4266;
  625. break;
  626. case 0x012:
  627. dev_priv->fsb_freq = 4800;
  628. break;
  629. case 0x014:
  630. dev_priv->fsb_freq = 5333;
  631. break;
  632. case 0x016:
  633. dev_priv->fsb_freq = 5866;
  634. break;
  635. case 0x018:
  636. dev_priv->fsb_freq = 6400;
  637. break;
  638. default:
  639. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  640. csipll & 0x3ff);
  641. dev_priv->fsb_freq = 0;
  642. break;
  643. }
  644. if (dev_priv->fsb_freq == 3200) {
  645. dev_priv->ips.c_m = 0;
  646. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  647. dev_priv->ips.c_m = 1;
  648. } else {
  649. dev_priv->ips.c_m = 2;
  650. }
  651. }
  652. static const struct cxsr_latency cxsr_latency_table[] = {
  653. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  654. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  655. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  656. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  657. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  658. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  659. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  660. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  661. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  662. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  663. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  664. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  665. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  666. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  667. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  668. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  669. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  670. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  671. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  672. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  673. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  674. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  675. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  676. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  677. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  678. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  679. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  680. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  681. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  682. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  683. };
  684. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  685. int is_ddr3,
  686. int fsb,
  687. int mem)
  688. {
  689. const struct cxsr_latency *latency;
  690. int i;
  691. if (fsb == 0 || mem == 0)
  692. return NULL;
  693. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  694. latency = &cxsr_latency_table[i];
  695. if (is_desktop == latency->is_desktop &&
  696. is_ddr3 == latency->is_ddr3 &&
  697. fsb == latency->fsb_freq && mem == latency->mem_freq)
  698. return latency;
  699. }
  700. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  701. return NULL;
  702. }
  703. static void pineview_disable_cxsr(struct drm_device *dev)
  704. {
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. /* deactivate cxsr */
  707. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  708. }
  709. /*
  710. * Latency for FIFO fetches is dependent on several factors:
  711. * - memory configuration (speed, channels)
  712. * - chipset
  713. * - current MCH state
  714. * It can be fairly high in some situations, so here we assume a fairly
  715. * pessimal value. It's a tradeoff between extra memory fetches (if we
  716. * set this value too high, the FIFO will fetch frequently to stay full)
  717. * and power consumption (set it too low to save power and we might see
  718. * FIFO underruns and display "flicker").
  719. *
  720. * A value of 5us seems to be a good balance; safe for very low end
  721. * platforms but not overly aggressive on lower latency configs.
  722. */
  723. static const int latency_ns = 5000;
  724. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  725. {
  726. struct drm_i915_private *dev_priv = dev->dev_private;
  727. uint32_t dsparb = I915_READ(DSPARB);
  728. int size;
  729. size = dsparb & 0x7f;
  730. if (plane)
  731. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  732. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  733. plane ? "B" : "A", size);
  734. return size;
  735. }
  736. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  737. {
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. uint32_t dsparb = I915_READ(DSPARB);
  740. int size;
  741. size = dsparb & 0x1ff;
  742. if (plane)
  743. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  744. size >>= 1; /* Convert to cachelines */
  745. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  746. plane ? "B" : "A", size);
  747. return size;
  748. }
  749. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  750. {
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. uint32_t dsparb = I915_READ(DSPARB);
  753. int size;
  754. size = dsparb & 0x7f;
  755. size >>= 2; /* Convert to cachelines */
  756. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  757. plane ? "B" : "A",
  758. size);
  759. return size;
  760. }
  761. /* Pineview has different values for various configs */
  762. static const struct intel_watermark_params pineview_display_wm = {
  763. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  764. .max_wm = PINEVIEW_MAX_WM,
  765. .default_wm = PINEVIEW_DFT_WM,
  766. .guard_size = PINEVIEW_GUARD_WM,
  767. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  768. };
  769. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  770. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  771. .max_wm = PINEVIEW_MAX_WM,
  772. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  773. .guard_size = PINEVIEW_GUARD_WM,
  774. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  775. };
  776. static const struct intel_watermark_params pineview_cursor_wm = {
  777. .fifo_size = PINEVIEW_CURSOR_FIFO,
  778. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  779. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  780. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  781. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  782. };
  783. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  784. .fifo_size = PINEVIEW_CURSOR_FIFO,
  785. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  786. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  787. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  788. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  789. };
  790. static const struct intel_watermark_params g4x_wm_info = {
  791. .fifo_size = G4X_FIFO_SIZE,
  792. .max_wm = G4X_MAX_WM,
  793. .default_wm = G4X_MAX_WM,
  794. .guard_size = 2,
  795. .cacheline_size = G4X_FIFO_LINE_SIZE,
  796. };
  797. static const struct intel_watermark_params g4x_cursor_wm_info = {
  798. .fifo_size = I965_CURSOR_FIFO,
  799. .max_wm = I965_CURSOR_MAX_WM,
  800. .default_wm = I965_CURSOR_DFT_WM,
  801. .guard_size = 2,
  802. .cacheline_size = G4X_FIFO_LINE_SIZE,
  803. };
  804. static const struct intel_watermark_params valleyview_wm_info = {
  805. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  806. .max_wm = VALLEYVIEW_MAX_WM,
  807. .default_wm = VALLEYVIEW_MAX_WM,
  808. .guard_size = 2,
  809. .cacheline_size = G4X_FIFO_LINE_SIZE,
  810. };
  811. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  812. .fifo_size = I965_CURSOR_FIFO,
  813. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  814. .default_wm = I965_CURSOR_DFT_WM,
  815. .guard_size = 2,
  816. .cacheline_size = G4X_FIFO_LINE_SIZE,
  817. };
  818. static const struct intel_watermark_params i965_cursor_wm_info = {
  819. .fifo_size = I965_CURSOR_FIFO,
  820. .max_wm = I965_CURSOR_MAX_WM,
  821. .default_wm = I965_CURSOR_DFT_WM,
  822. .guard_size = 2,
  823. .cacheline_size = I915_FIFO_LINE_SIZE,
  824. };
  825. static const struct intel_watermark_params i945_wm_info = {
  826. .fifo_size = I945_FIFO_SIZE,
  827. .max_wm = I915_MAX_WM,
  828. .default_wm = 1,
  829. .guard_size = 2,
  830. .cacheline_size = I915_FIFO_LINE_SIZE,
  831. };
  832. static const struct intel_watermark_params i915_wm_info = {
  833. .fifo_size = I915_FIFO_SIZE,
  834. .max_wm = I915_MAX_WM,
  835. .default_wm = 1,
  836. .guard_size = 2,
  837. .cacheline_size = I915_FIFO_LINE_SIZE,
  838. };
  839. static const struct intel_watermark_params i830_wm_info = {
  840. .fifo_size = I855GM_FIFO_SIZE,
  841. .max_wm = I915_MAX_WM,
  842. .default_wm = 1,
  843. .guard_size = 2,
  844. .cacheline_size = I830_FIFO_LINE_SIZE,
  845. };
  846. static const struct intel_watermark_params i845_wm_info = {
  847. .fifo_size = I830_FIFO_SIZE,
  848. .max_wm = I915_MAX_WM,
  849. .default_wm = 1,
  850. .guard_size = 2,
  851. .cacheline_size = I830_FIFO_LINE_SIZE,
  852. };
  853. /**
  854. * intel_calculate_wm - calculate watermark level
  855. * @clock_in_khz: pixel clock
  856. * @wm: chip FIFO params
  857. * @pixel_size: display pixel size
  858. * @latency_ns: memory latency for the platform
  859. *
  860. * Calculate the watermark level (the level at which the display plane will
  861. * start fetching from memory again). Each chip has a different display
  862. * FIFO size and allocation, so the caller needs to figure that out and pass
  863. * in the correct intel_watermark_params structure.
  864. *
  865. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  866. * on the pixel size. When it reaches the watermark level, it'll start
  867. * fetching FIFO line sized based chunks from memory until the FIFO fills
  868. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  869. * will occur, and a display engine hang could result.
  870. */
  871. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  872. const struct intel_watermark_params *wm,
  873. int fifo_size,
  874. int pixel_size,
  875. unsigned long latency_ns)
  876. {
  877. long entries_required, wm_size;
  878. /*
  879. * Note: we need to make sure we don't overflow for various clock &
  880. * latency values.
  881. * clocks go from a few thousand to several hundred thousand.
  882. * latency is usually a few thousand
  883. */
  884. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  885. 1000;
  886. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  887. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  888. wm_size = fifo_size - (entries_required + wm->guard_size);
  889. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  890. /* Don't promote wm_size to unsigned... */
  891. if (wm_size > (long)wm->max_wm)
  892. wm_size = wm->max_wm;
  893. if (wm_size <= 0)
  894. wm_size = wm->default_wm;
  895. return wm_size;
  896. }
  897. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  898. {
  899. struct drm_crtc *crtc, *enabled = NULL;
  900. for_each_crtc(dev, crtc) {
  901. if (intel_crtc_active(crtc)) {
  902. if (enabled)
  903. return NULL;
  904. enabled = crtc;
  905. }
  906. }
  907. return enabled;
  908. }
  909. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  910. {
  911. struct drm_device *dev = unused_crtc->dev;
  912. struct drm_i915_private *dev_priv = dev->dev_private;
  913. struct drm_crtc *crtc;
  914. const struct cxsr_latency *latency;
  915. u32 reg;
  916. unsigned long wm;
  917. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  918. dev_priv->fsb_freq, dev_priv->mem_freq);
  919. if (!latency) {
  920. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  921. pineview_disable_cxsr(dev);
  922. return;
  923. }
  924. crtc = single_enabled_crtc(dev);
  925. if (crtc) {
  926. const struct drm_display_mode *adjusted_mode;
  927. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  928. int clock;
  929. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  930. clock = adjusted_mode->crtc_clock;
  931. /* Display SR */
  932. wm = intel_calculate_wm(clock, &pineview_display_wm,
  933. pineview_display_wm.fifo_size,
  934. pixel_size, latency->display_sr);
  935. reg = I915_READ(DSPFW1);
  936. reg &= ~DSPFW_SR_MASK;
  937. reg |= wm << DSPFW_SR_SHIFT;
  938. I915_WRITE(DSPFW1, reg);
  939. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  940. /* cursor SR */
  941. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  942. pineview_display_wm.fifo_size,
  943. pixel_size, latency->cursor_sr);
  944. reg = I915_READ(DSPFW3);
  945. reg &= ~DSPFW_CURSOR_SR_MASK;
  946. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  947. I915_WRITE(DSPFW3, reg);
  948. /* Display HPLL off SR */
  949. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  950. pineview_display_hplloff_wm.fifo_size,
  951. pixel_size, latency->display_hpll_disable);
  952. reg = I915_READ(DSPFW3);
  953. reg &= ~DSPFW_HPLL_SR_MASK;
  954. reg |= wm & DSPFW_HPLL_SR_MASK;
  955. I915_WRITE(DSPFW3, reg);
  956. /* cursor HPLL off SR */
  957. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  958. pineview_display_hplloff_wm.fifo_size,
  959. pixel_size, latency->cursor_hpll_disable);
  960. reg = I915_READ(DSPFW3);
  961. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  962. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  963. I915_WRITE(DSPFW3, reg);
  964. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  965. /* activate cxsr */
  966. I915_WRITE(DSPFW3,
  967. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  968. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  969. } else {
  970. pineview_disable_cxsr(dev);
  971. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  972. }
  973. }
  974. static bool g4x_compute_wm0(struct drm_device *dev,
  975. int plane,
  976. const struct intel_watermark_params *display,
  977. int display_latency_ns,
  978. const struct intel_watermark_params *cursor,
  979. int cursor_latency_ns,
  980. int *plane_wm,
  981. int *cursor_wm)
  982. {
  983. struct drm_crtc *crtc;
  984. const struct drm_display_mode *adjusted_mode;
  985. int htotal, hdisplay, clock, pixel_size;
  986. int line_time_us, line_count;
  987. int entries, tlb_miss;
  988. crtc = intel_get_crtc_for_plane(dev, plane);
  989. if (!intel_crtc_active(crtc)) {
  990. *cursor_wm = cursor->guard_size;
  991. *plane_wm = display->guard_size;
  992. return false;
  993. }
  994. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  995. clock = adjusted_mode->crtc_clock;
  996. htotal = adjusted_mode->crtc_htotal;
  997. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  998. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  999. /* Use the small buffer method to calculate plane watermark */
  1000. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1001. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1002. if (tlb_miss > 0)
  1003. entries += tlb_miss;
  1004. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1005. *plane_wm = entries + display->guard_size;
  1006. if (*plane_wm > (int)display->max_wm)
  1007. *plane_wm = display->max_wm;
  1008. /* Use the large buffer method to calculate cursor watermark */
  1009. line_time_us = max(htotal * 1000 / clock, 1);
  1010. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1011. entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
  1012. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1013. if (tlb_miss > 0)
  1014. entries += tlb_miss;
  1015. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1016. *cursor_wm = entries + cursor->guard_size;
  1017. if (*cursor_wm > (int)cursor->max_wm)
  1018. *cursor_wm = (int)cursor->max_wm;
  1019. return true;
  1020. }
  1021. /*
  1022. * Check the wm result.
  1023. *
  1024. * If any calculated watermark values is larger than the maximum value that
  1025. * can be programmed into the associated watermark register, that watermark
  1026. * must be disabled.
  1027. */
  1028. static bool g4x_check_srwm(struct drm_device *dev,
  1029. int display_wm, int cursor_wm,
  1030. const struct intel_watermark_params *display,
  1031. const struct intel_watermark_params *cursor)
  1032. {
  1033. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1034. display_wm, cursor_wm);
  1035. if (display_wm > display->max_wm) {
  1036. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1037. display_wm, display->max_wm);
  1038. return false;
  1039. }
  1040. if (cursor_wm > cursor->max_wm) {
  1041. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1042. cursor_wm, cursor->max_wm);
  1043. return false;
  1044. }
  1045. if (!(display_wm || cursor_wm)) {
  1046. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1047. return false;
  1048. }
  1049. return true;
  1050. }
  1051. static bool g4x_compute_srwm(struct drm_device *dev,
  1052. int plane,
  1053. int latency_ns,
  1054. const struct intel_watermark_params *display,
  1055. const struct intel_watermark_params *cursor,
  1056. int *display_wm, int *cursor_wm)
  1057. {
  1058. struct drm_crtc *crtc;
  1059. const struct drm_display_mode *adjusted_mode;
  1060. int hdisplay, htotal, pixel_size, clock;
  1061. unsigned long line_time_us;
  1062. int line_count, line_size;
  1063. int small, large;
  1064. int entries;
  1065. if (!latency_ns) {
  1066. *display_wm = *cursor_wm = 0;
  1067. return false;
  1068. }
  1069. crtc = intel_get_crtc_for_plane(dev, plane);
  1070. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1071. clock = adjusted_mode->crtc_clock;
  1072. htotal = adjusted_mode->crtc_htotal;
  1073. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1074. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1075. line_time_us = max(htotal * 1000 / clock, 1);
  1076. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1077. line_size = hdisplay * pixel_size;
  1078. /* Use the minimum of the small and large buffer method for primary */
  1079. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1080. large = line_count * line_size;
  1081. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1082. *display_wm = entries + display->guard_size;
  1083. /* calculate the self-refresh watermark for display cursor */
  1084. entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
  1085. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1086. *cursor_wm = entries + cursor->guard_size;
  1087. return g4x_check_srwm(dev,
  1088. *display_wm, *cursor_wm,
  1089. display, cursor);
  1090. }
  1091. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1092. int plane,
  1093. int *plane_prec_mult,
  1094. int *plane_dl,
  1095. int *cursor_prec_mult,
  1096. int *cursor_dl)
  1097. {
  1098. struct drm_crtc *crtc;
  1099. int clock, pixel_size;
  1100. int entries;
  1101. crtc = intel_get_crtc_for_plane(dev, plane);
  1102. if (!intel_crtc_active(crtc))
  1103. return false;
  1104. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1105. pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
  1106. entries = (clock / 1000) * pixel_size;
  1107. *plane_prec_mult = (entries > 256) ?
  1108. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1109. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1110. pixel_size);
  1111. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1112. *cursor_prec_mult = (entries > 256) ?
  1113. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1114. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1115. return true;
  1116. }
  1117. /*
  1118. * Update drain latency registers of memory arbiter
  1119. *
  1120. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1121. * to be programmed. Each plane has a drain latency multiplier and a drain
  1122. * latency value.
  1123. */
  1124. static void vlv_update_drain_latency(struct drm_device *dev)
  1125. {
  1126. struct drm_i915_private *dev_priv = dev->dev_private;
  1127. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1128. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1129. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1130. either 16 or 32 */
  1131. /* For plane A, Cursor A */
  1132. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1133. &cursor_prec_mult, &cursora_dl)) {
  1134. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1135. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1136. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1137. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1138. I915_WRITE(VLV_DDL1, cursora_prec |
  1139. (cursora_dl << DDL_CURSORA_SHIFT) |
  1140. planea_prec | planea_dl);
  1141. }
  1142. /* For plane B, Cursor B */
  1143. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1144. &cursor_prec_mult, &cursorb_dl)) {
  1145. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1146. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1147. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1148. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1149. I915_WRITE(VLV_DDL2, cursorb_prec |
  1150. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1151. planeb_prec | planeb_dl);
  1152. }
  1153. }
  1154. #define single_plane_enabled(mask) is_power_of_2(mask)
  1155. static void valleyview_update_wm(struct drm_crtc *crtc)
  1156. {
  1157. struct drm_device *dev = crtc->dev;
  1158. static const int sr_latency_ns = 12000;
  1159. struct drm_i915_private *dev_priv = dev->dev_private;
  1160. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1161. int plane_sr, cursor_sr;
  1162. int ignore_plane_sr, ignore_cursor_sr;
  1163. unsigned int enabled = 0;
  1164. vlv_update_drain_latency(dev);
  1165. if (g4x_compute_wm0(dev, PIPE_A,
  1166. &valleyview_wm_info, latency_ns,
  1167. &valleyview_cursor_wm_info, latency_ns,
  1168. &planea_wm, &cursora_wm))
  1169. enabled |= 1 << PIPE_A;
  1170. if (g4x_compute_wm0(dev, PIPE_B,
  1171. &valleyview_wm_info, latency_ns,
  1172. &valleyview_cursor_wm_info, latency_ns,
  1173. &planeb_wm, &cursorb_wm))
  1174. enabled |= 1 << PIPE_B;
  1175. if (single_plane_enabled(enabled) &&
  1176. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1177. sr_latency_ns,
  1178. &valleyview_wm_info,
  1179. &valleyview_cursor_wm_info,
  1180. &plane_sr, &ignore_cursor_sr) &&
  1181. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1182. 2*sr_latency_ns,
  1183. &valleyview_wm_info,
  1184. &valleyview_cursor_wm_info,
  1185. &ignore_plane_sr, &cursor_sr)) {
  1186. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1187. } else {
  1188. I915_WRITE(FW_BLC_SELF_VLV,
  1189. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1190. plane_sr = cursor_sr = 0;
  1191. }
  1192. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1193. planea_wm, cursora_wm,
  1194. planeb_wm, cursorb_wm,
  1195. plane_sr, cursor_sr);
  1196. I915_WRITE(DSPFW1,
  1197. (plane_sr << DSPFW_SR_SHIFT) |
  1198. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1199. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1200. planea_wm);
  1201. I915_WRITE(DSPFW2,
  1202. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1203. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1204. I915_WRITE(DSPFW3,
  1205. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1206. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1207. }
  1208. static void g4x_update_wm(struct drm_crtc *crtc)
  1209. {
  1210. struct drm_device *dev = crtc->dev;
  1211. static const int sr_latency_ns = 12000;
  1212. struct drm_i915_private *dev_priv = dev->dev_private;
  1213. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1214. int plane_sr, cursor_sr;
  1215. unsigned int enabled = 0;
  1216. if (g4x_compute_wm0(dev, PIPE_A,
  1217. &g4x_wm_info, latency_ns,
  1218. &g4x_cursor_wm_info, latency_ns,
  1219. &planea_wm, &cursora_wm))
  1220. enabled |= 1 << PIPE_A;
  1221. if (g4x_compute_wm0(dev, PIPE_B,
  1222. &g4x_wm_info, latency_ns,
  1223. &g4x_cursor_wm_info, latency_ns,
  1224. &planeb_wm, &cursorb_wm))
  1225. enabled |= 1 << PIPE_B;
  1226. if (single_plane_enabled(enabled) &&
  1227. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1228. sr_latency_ns,
  1229. &g4x_wm_info,
  1230. &g4x_cursor_wm_info,
  1231. &plane_sr, &cursor_sr)) {
  1232. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1233. } else {
  1234. I915_WRITE(FW_BLC_SELF,
  1235. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1236. plane_sr = cursor_sr = 0;
  1237. }
  1238. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1239. planea_wm, cursora_wm,
  1240. planeb_wm, cursorb_wm,
  1241. plane_sr, cursor_sr);
  1242. I915_WRITE(DSPFW1,
  1243. (plane_sr << DSPFW_SR_SHIFT) |
  1244. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1245. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1246. planea_wm);
  1247. I915_WRITE(DSPFW2,
  1248. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1249. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1250. /* HPLL off in SR has some issues on G4x... disable it */
  1251. I915_WRITE(DSPFW3,
  1252. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1253. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1254. }
  1255. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1256. {
  1257. struct drm_device *dev = unused_crtc->dev;
  1258. struct drm_i915_private *dev_priv = dev->dev_private;
  1259. struct drm_crtc *crtc;
  1260. int srwm = 1;
  1261. int cursor_sr = 16;
  1262. /* Calc sr entries for one plane configs */
  1263. crtc = single_enabled_crtc(dev);
  1264. if (crtc) {
  1265. /* self-refresh has much higher latency */
  1266. static const int sr_latency_ns = 12000;
  1267. const struct drm_display_mode *adjusted_mode =
  1268. &to_intel_crtc(crtc)->config.adjusted_mode;
  1269. int clock = adjusted_mode->crtc_clock;
  1270. int htotal = adjusted_mode->crtc_htotal;
  1271. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1272. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1273. unsigned long line_time_us;
  1274. int entries;
  1275. line_time_us = max(htotal * 1000 / clock, 1);
  1276. /* Use ns/us then divide to preserve precision */
  1277. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1278. pixel_size * hdisplay;
  1279. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1280. srwm = I965_FIFO_SIZE - entries;
  1281. if (srwm < 0)
  1282. srwm = 1;
  1283. srwm &= 0x1ff;
  1284. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1285. entries, srwm);
  1286. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1287. pixel_size * to_intel_crtc(crtc)->cursor_width;
  1288. entries = DIV_ROUND_UP(entries,
  1289. i965_cursor_wm_info.cacheline_size);
  1290. cursor_sr = i965_cursor_wm_info.fifo_size -
  1291. (entries + i965_cursor_wm_info.guard_size);
  1292. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1293. cursor_sr = i965_cursor_wm_info.max_wm;
  1294. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1295. "cursor %d\n", srwm, cursor_sr);
  1296. if (IS_CRESTLINE(dev))
  1297. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1298. } else {
  1299. /* Turn off self refresh if both pipes are enabled */
  1300. if (IS_CRESTLINE(dev))
  1301. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1302. & ~FW_BLC_SELF_EN);
  1303. }
  1304. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1305. srwm);
  1306. /* 965 has limitations... */
  1307. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1308. (8 << 16) | (8 << 8) | (8 << 0));
  1309. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1310. /* update cursor SR watermark */
  1311. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1312. }
  1313. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1314. {
  1315. struct drm_device *dev = unused_crtc->dev;
  1316. struct drm_i915_private *dev_priv = dev->dev_private;
  1317. const struct intel_watermark_params *wm_info;
  1318. uint32_t fwater_lo;
  1319. uint32_t fwater_hi;
  1320. int cwm, srwm = 1;
  1321. int fifo_size;
  1322. int planea_wm, planeb_wm;
  1323. struct drm_crtc *crtc, *enabled = NULL;
  1324. if (IS_I945GM(dev))
  1325. wm_info = &i945_wm_info;
  1326. else if (!IS_GEN2(dev))
  1327. wm_info = &i915_wm_info;
  1328. else
  1329. wm_info = &i830_wm_info;
  1330. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1331. crtc = intel_get_crtc_for_plane(dev, 0);
  1332. if (intel_crtc_active(crtc)) {
  1333. const struct drm_display_mode *adjusted_mode;
  1334. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1335. if (IS_GEN2(dev))
  1336. cpp = 4;
  1337. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1338. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1339. wm_info, fifo_size, cpp,
  1340. latency_ns);
  1341. enabled = crtc;
  1342. } else
  1343. planea_wm = fifo_size - wm_info->guard_size;
  1344. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1345. crtc = intel_get_crtc_for_plane(dev, 1);
  1346. if (intel_crtc_active(crtc)) {
  1347. const struct drm_display_mode *adjusted_mode;
  1348. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1349. if (IS_GEN2(dev))
  1350. cpp = 4;
  1351. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1352. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1353. wm_info, fifo_size, cpp,
  1354. latency_ns);
  1355. if (enabled == NULL)
  1356. enabled = crtc;
  1357. else
  1358. enabled = NULL;
  1359. } else
  1360. planeb_wm = fifo_size - wm_info->guard_size;
  1361. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1362. if (IS_I915GM(dev) && enabled) {
  1363. struct intel_framebuffer *fb;
  1364. fb = to_intel_framebuffer(enabled->primary->fb);
  1365. /* self-refresh seems busted with untiled */
  1366. if (fb->obj->tiling_mode == I915_TILING_NONE)
  1367. enabled = NULL;
  1368. }
  1369. /*
  1370. * Overlay gets an aggressive default since video jitter is bad.
  1371. */
  1372. cwm = 2;
  1373. /* Play safe and disable self-refresh before adjusting watermarks. */
  1374. if (IS_I945G(dev) || IS_I945GM(dev))
  1375. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1376. else if (IS_I915GM(dev))
  1377. I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
  1378. /* Calc sr entries for one plane configs */
  1379. if (HAS_FW_BLC(dev) && enabled) {
  1380. /* self-refresh has much higher latency */
  1381. static const int sr_latency_ns = 6000;
  1382. const struct drm_display_mode *adjusted_mode =
  1383. &to_intel_crtc(enabled)->config.adjusted_mode;
  1384. int clock = adjusted_mode->crtc_clock;
  1385. int htotal = adjusted_mode->crtc_htotal;
  1386. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1387. int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
  1388. unsigned long line_time_us;
  1389. int entries;
  1390. line_time_us = max(htotal * 1000 / clock, 1);
  1391. /* Use ns/us then divide to preserve precision */
  1392. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1393. pixel_size * hdisplay;
  1394. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1395. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1396. srwm = wm_info->fifo_size - entries;
  1397. if (srwm < 0)
  1398. srwm = 1;
  1399. if (IS_I945G(dev) || IS_I945GM(dev))
  1400. I915_WRITE(FW_BLC_SELF,
  1401. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1402. else if (IS_I915GM(dev))
  1403. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1404. }
  1405. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1406. planea_wm, planeb_wm, cwm, srwm);
  1407. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1408. fwater_hi = (cwm & 0x1f);
  1409. /* Set request length to 8 cachelines per fetch */
  1410. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1411. fwater_hi = fwater_hi | (1 << 8);
  1412. I915_WRITE(FW_BLC, fwater_lo);
  1413. I915_WRITE(FW_BLC2, fwater_hi);
  1414. if (HAS_FW_BLC(dev)) {
  1415. if (enabled) {
  1416. if (IS_I945G(dev) || IS_I945GM(dev))
  1417. I915_WRITE(FW_BLC_SELF,
  1418. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1419. else if (IS_I915GM(dev))
  1420. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
  1421. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1422. } else
  1423. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1424. }
  1425. }
  1426. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1427. {
  1428. struct drm_device *dev = unused_crtc->dev;
  1429. struct drm_i915_private *dev_priv = dev->dev_private;
  1430. struct drm_crtc *crtc;
  1431. const struct drm_display_mode *adjusted_mode;
  1432. uint32_t fwater_lo;
  1433. int planea_wm;
  1434. crtc = single_enabled_crtc(dev);
  1435. if (crtc == NULL)
  1436. return;
  1437. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1438. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1439. &i845_wm_info,
  1440. dev_priv->display.get_fifo_size(dev, 0),
  1441. 4, latency_ns);
  1442. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1443. fwater_lo |= (3<<8) | planea_wm;
  1444. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1445. I915_WRITE(FW_BLC, fwater_lo);
  1446. }
  1447. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1448. struct drm_crtc *crtc)
  1449. {
  1450. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1451. uint32_t pixel_rate;
  1452. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1453. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1454. * adjust the pixel_rate here. */
  1455. if (intel_crtc->config.pch_pfit.enabled) {
  1456. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1457. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1458. pipe_w = intel_crtc->config.pipe_src_w;
  1459. pipe_h = intel_crtc->config.pipe_src_h;
  1460. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1461. pfit_h = pfit_size & 0xFFFF;
  1462. if (pipe_w < pfit_w)
  1463. pipe_w = pfit_w;
  1464. if (pipe_h < pfit_h)
  1465. pipe_h = pfit_h;
  1466. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1467. pfit_w * pfit_h);
  1468. }
  1469. return pixel_rate;
  1470. }
  1471. /* latency must be in 0.1us units. */
  1472. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1473. uint32_t latency)
  1474. {
  1475. uint64_t ret;
  1476. if (WARN(latency == 0, "Latency value missing\n"))
  1477. return UINT_MAX;
  1478. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1479. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1480. return ret;
  1481. }
  1482. /* latency must be in 0.1us units. */
  1483. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1484. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1485. uint32_t latency)
  1486. {
  1487. uint32_t ret;
  1488. if (WARN(latency == 0, "Latency value missing\n"))
  1489. return UINT_MAX;
  1490. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1491. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1492. ret = DIV_ROUND_UP(ret, 64) + 2;
  1493. return ret;
  1494. }
  1495. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1496. uint8_t bytes_per_pixel)
  1497. {
  1498. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1499. }
  1500. struct ilk_pipe_wm_parameters {
  1501. bool active;
  1502. uint32_t pipe_htotal;
  1503. uint32_t pixel_rate;
  1504. struct intel_plane_wm_parameters pri;
  1505. struct intel_plane_wm_parameters spr;
  1506. struct intel_plane_wm_parameters cur;
  1507. };
  1508. struct ilk_wm_maximums {
  1509. uint16_t pri;
  1510. uint16_t spr;
  1511. uint16_t cur;
  1512. uint16_t fbc;
  1513. };
  1514. /* used in computing the new watermarks state */
  1515. struct intel_wm_config {
  1516. unsigned int num_pipes_active;
  1517. bool sprites_enabled;
  1518. bool sprites_scaled;
  1519. };
  1520. /*
  1521. * For both WM_PIPE and WM_LP.
  1522. * mem_value must be in 0.1us units.
  1523. */
  1524. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1525. uint32_t mem_value,
  1526. bool is_lp)
  1527. {
  1528. uint32_t method1, method2;
  1529. if (!params->active || !params->pri.enabled)
  1530. return 0;
  1531. method1 = ilk_wm_method1(params->pixel_rate,
  1532. params->pri.bytes_per_pixel,
  1533. mem_value);
  1534. if (!is_lp)
  1535. return method1;
  1536. method2 = ilk_wm_method2(params->pixel_rate,
  1537. params->pipe_htotal,
  1538. params->pri.horiz_pixels,
  1539. params->pri.bytes_per_pixel,
  1540. mem_value);
  1541. return min(method1, method2);
  1542. }
  1543. /*
  1544. * For both WM_PIPE and WM_LP.
  1545. * mem_value must be in 0.1us units.
  1546. */
  1547. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1548. uint32_t mem_value)
  1549. {
  1550. uint32_t method1, method2;
  1551. if (!params->active || !params->spr.enabled)
  1552. return 0;
  1553. method1 = ilk_wm_method1(params->pixel_rate,
  1554. params->spr.bytes_per_pixel,
  1555. mem_value);
  1556. method2 = ilk_wm_method2(params->pixel_rate,
  1557. params->pipe_htotal,
  1558. params->spr.horiz_pixels,
  1559. params->spr.bytes_per_pixel,
  1560. mem_value);
  1561. return min(method1, method2);
  1562. }
  1563. /*
  1564. * For both WM_PIPE and WM_LP.
  1565. * mem_value must be in 0.1us units.
  1566. */
  1567. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1568. uint32_t mem_value)
  1569. {
  1570. if (!params->active || !params->cur.enabled)
  1571. return 0;
  1572. return ilk_wm_method2(params->pixel_rate,
  1573. params->pipe_htotal,
  1574. params->cur.horiz_pixels,
  1575. params->cur.bytes_per_pixel,
  1576. mem_value);
  1577. }
  1578. /* Only for WM_LP. */
  1579. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1580. uint32_t pri_val)
  1581. {
  1582. if (!params->active || !params->pri.enabled)
  1583. return 0;
  1584. return ilk_wm_fbc(pri_val,
  1585. params->pri.horiz_pixels,
  1586. params->pri.bytes_per_pixel);
  1587. }
  1588. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1589. {
  1590. if (INTEL_INFO(dev)->gen >= 8)
  1591. return 3072;
  1592. else if (INTEL_INFO(dev)->gen >= 7)
  1593. return 768;
  1594. else
  1595. return 512;
  1596. }
  1597. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1598. int level, bool is_sprite)
  1599. {
  1600. if (INTEL_INFO(dev)->gen >= 8)
  1601. /* BDW primary/sprite plane watermarks */
  1602. return level == 0 ? 255 : 2047;
  1603. else if (INTEL_INFO(dev)->gen >= 7)
  1604. /* IVB/HSW primary/sprite plane watermarks */
  1605. return level == 0 ? 127 : 1023;
  1606. else if (!is_sprite)
  1607. /* ILK/SNB primary plane watermarks */
  1608. return level == 0 ? 127 : 511;
  1609. else
  1610. /* ILK/SNB sprite plane watermarks */
  1611. return level == 0 ? 63 : 255;
  1612. }
  1613. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1614. int level)
  1615. {
  1616. if (INTEL_INFO(dev)->gen >= 7)
  1617. return level == 0 ? 63 : 255;
  1618. else
  1619. return level == 0 ? 31 : 63;
  1620. }
  1621. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1622. {
  1623. if (INTEL_INFO(dev)->gen >= 8)
  1624. return 31;
  1625. else
  1626. return 15;
  1627. }
  1628. /* Calculate the maximum primary/sprite plane watermark */
  1629. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1630. int level,
  1631. const struct intel_wm_config *config,
  1632. enum intel_ddb_partitioning ddb_partitioning,
  1633. bool is_sprite)
  1634. {
  1635. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1636. /* if sprites aren't enabled, sprites get nothing */
  1637. if (is_sprite && !config->sprites_enabled)
  1638. return 0;
  1639. /* HSW allows LP1+ watermarks even with multiple pipes */
  1640. if (level == 0 || config->num_pipes_active > 1) {
  1641. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1642. /*
  1643. * For some reason the non self refresh
  1644. * FIFO size is only half of the self
  1645. * refresh FIFO size on ILK/SNB.
  1646. */
  1647. if (INTEL_INFO(dev)->gen <= 6)
  1648. fifo_size /= 2;
  1649. }
  1650. if (config->sprites_enabled) {
  1651. /* level 0 is always calculated with 1:1 split */
  1652. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1653. if (is_sprite)
  1654. fifo_size *= 5;
  1655. fifo_size /= 6;
  1656. } else {
  1657. fifo_size /= 2;
  1658. }
  1659. }
  1660. /* clamp to max that the registers can hold */
  1661. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1662. }
  1663. /* Calculate the maximum cursor plane watermark */
  1664. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1665. int level,
  1666. const struct intel_wm_config *config)
  1667. {
  1668. /* HSW LP1+ watermarks w/ multiple pipes */
  1669. if (level > 0 && config->num_pipes_active > 1)
  1670. return 64;
  1671. /* otherwise just report max that registers can hold */
  1672. return ilk_cursor_wm_reg_max(dev, level);
  1673. }
  1674. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1675. int level,
  1676. const struct intel_wm_config *config,
  1677. enum intel_ddb_partitioning ddb_partitioning,
  1678. struct ilk_wm_maximums *max)
  1679. {
  1680. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1681. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1682. max->cur = ilk_cursor_wm_max(dev, level, config);
  1683. max->fbc = ilk_fbc_wm_reg_max(dev);
  1684. }
  1685. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1686. int level,
  1687. struct ilk_wm_maximums *max)
  1688. {
  1689. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1690. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1691. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1692. max->fbc = ilk_fbc_wm_reg_max(dev);
  1693. }
  1694. static bool ilk_validate_wm_level(int level,
  1695. const struct ilk_wm_maximums *max,
  1696. struct intel_wm_level *result)
  1697. {
  1698. bool ret;
  1699. /* already determined to be invalid? */
  1700. if (!result->enable)
  1701. return false;
  1702. result->enable = result->pri_val <= max->pri &&
  1703. result->spr_val <= max->spr &&
  1704. result->cur_val <= max->cur;
  1705. ret = result->enable;
  1706. /*
  1707. * HACK until we can pre-compute everything,
  1708. * and thus fail gracefully if LP0 watermarks
  1709. * are exceeded...
  1710. */
  1711. if (level == 0 && !result->enable) {
  1712. if (result->pri_val > max->pri)
  1713. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1714. level, result->pri_val, max->pri);
  1715. if (result->spr_val > max->spr)
  1716. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1717. level, result->spr_val, max->spr);
  1718. if (result->cur_val > max->cur)
  1719. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1720. level, result->cur_val, max->cur);
  1721. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1722. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1723. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1724. result->enable = true;
  1725. }
  1726. return ret;
  1727. }
  1728. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1729. int level,
  1730. const struct ilk_pipe_wm_parameters *p,
  1731. struct intel_wm_level *result)
  1732. {
  1733. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1734. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1735. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1736. /* WM1+ latency values stored in 0.5us units */
  1737. if (level > 0) {
  1738. pri_latency *= 5;
  1739. spr_latency *= 5;
  1740. cur_latency *= 5;
  1741. }
  1742. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1743. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1744. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1745. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1746. result->enable = true;
  1747. }
  1748. static uint32_t
  1749. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1750. {
  1751. struct drm_i915_private *dev_priv = dev->dev_private;
  1752. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1753. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  1754. u32 linetime, ips_linetime;
  1755. if (!intel_crtc_active(crtc))
  1756. return 0;
  1757. /* The WM are computed with base on how long it takes to fill a single
  1758. * row at the given clock rate, multiplied by 8.
  1759. * */
  1760. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1761. mode->crtc_clock);
  1762. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1763. intel_ddi_get_cdclk_freq(dev_priv));
  1764. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1765. PIPE_WM_LINETIME_TIME(linetime);
  1766. }
  1767. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1768. {
  1769. struct drm_i915_private *dev_priv = dev->dev_private;
  1770. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1771. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1772. wm[0] = (sskpd >> 56) & 0xFF;
  1773. if (wm[0] == 0)
  1774. wm[0] = sskpd & 0xF;
  1775. wm[1] = (sskpd >> 4) & 0xFF;
  1776. wm[2] = (sskpd >> 12) & 0xFF;
  1777. wm[3] = (sskpd >> 20) & 0x1FF;
  1778. wm[4] = (sskpd >> 32) & 0x1FF;
  1779. } else if (INTEL_INFO(dev)->gen >= 6) {
  1780. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1781. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1782. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1783. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1784. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1785. } else if (INTEL_INFO(dev)->gen >= 5) {
  1786. uint32_t mltr = I915_READ(MLTR_ILK);
  1787. /* ILK primary LP0 latency is 700 ns */
  1788. wm[0] = 7;
  1789. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1790. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1791. }
  1792. }
  1793. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1794. {
  1795. /* ILK sprite LP0 latency is 1300 ns */
  1796. if (INTEL_INFO(dev)->gen == 5)
  1797. wm[0] = 13;
  1798. }
  1799. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1800. {
  1801. /* ILK cursor LP0 latency is 1300 ns */
  1802. if (INTEL_INFO(dev)->gen == 5)
  1803. wm[0] = 13;
  1804. /* WaDoubleCursorLP3Latency:ivb */
  1805. if (IS_IVYBRIDGE(dev))
  1806. wm[3] *= 2;
  1807. }
  1808. int ilk_wm_max_level(const struct drm_device *dev)
  1809. {
  1810. /* how many WM levels are we expecting */
  1811. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1812. return 4;
  1813. else if (INTEL_INFO(dev)->gen >= 6)
  1814. return 3;
  1815. else
  1816. return 2;
  1817. }
  1818. static void intel_print_wm_latency(struct drm_device *dev,
  1819. const char *name,
  1820. const uint16_t wm[5])
  1821. {
  1822. int level, max_level = ilk_wm_max_level(dev);
  1823. for (level = 0; level <= max_level; level++) {
  1824. unsigned int latency = wm[level];
  1825. if (latency == 0) {
  1826. DRM_ERROR("%s WM%d latency not provided\n",
  1827. name, level);
  1828. continue;
  1829. }
  1830. /* WM1+ latency values in 0.5us units */
  1831. if (level > 0)
  1832. latency *= 5;
  1833. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1834. name, level, wm[level],
  1835. latency / 10, latency % 10);
  1836. }
  1837. }
  1838. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1839. uint16_t wm[5], uint16_t min)
  1840. {
  1841. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1842. if (wm[0] >= min)
  1843. return false;
  1844. wm[0] = max(wm[0], min);
  1845. for (level = 1; level <= max_level; level++)
  1846. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1847. return true;
  1848. }
  1849. static void snb_wm_latency_quirk(struct drm_device *dev)
  1850. {
  1851. struct drm_i915_private *dev_priv = dev->dev_private;
  1852. bool changed;
  1853. /*
  1854. * The BIOS provided WM memory latency values are often
  1855. * inadequate for high resolution displays. Adjust them.
  1856. */
  1857. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1858. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1859. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1860. if (!changed)
  1861. return;
  1862. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1863. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1864. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1865. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1866. }
  1867. static void ilk_setup_wm_latency(struct drm_device *dev)
  1868. {
  1869. struct drm_i915_private *dev_priv = dev->dev_private;
  1870. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1871. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1872. sizeof(dev_priv->wm.pri_latency));
  1873. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1874. sizeof(dev_priv->wm.pri_latency));
  1875. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1876. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1877. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1878. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1879. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1880. if (IS_GEN6(dev))
  1881. snb_wm_latency_quirk(dev);
  1882. }
  1883. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1884. struct ilk_pipe_wm_parameters *p)
  1885. {
  1886. struct drm_device *dev = crtc->dev;
  1887. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1888. enum pipe pipe = intel_crtc->pipe;
  1889. struct drm_plane *plane;
  1890. if (!intel_crtc_active(crtc))
  1891. return;
  1892. p->active = true;
  1893. p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
  1894. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1895. p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
  1896. p->cur.bytes_per_pixel = 4;
  1897. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  1898. p->cur.horiz_pixels = intel_crtc->cursor_width;
  1899. /* TODO: for now, assume primary and cursor planes are always enabled. */
  1900. p->pri.enabled = true;
  1901. p->cur.enabled = true;
  1902. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  1903. struct intel_plane *intel_plane = to_intel_plane(plane);
  1904. if (intel_plane->pipe == pipe) {
  1905. p->spr = intel_plane->wm;
  1906. break;
  1907. }
  1908. }
  1909. }
  1910. static void ilk_compute_wm_config(struct drm_device *dev,
  1911. struct intel_wm_config *config)
  1912. {
  1913. struct intel_crtc *intel_crtc;
  1914. /* Compute the currently _active_ config */
  1915. for_each_intel_crtc(dev, intel_crtc) {
  1916. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1917. if (!wm->pipe_enabled)
  1918. continue;
  1919. config->sprites_enabled |= wm->sprites_enabled;
  1920. config->sprites_scaled |= wm->sprites_scaled;
  1921. config->num_pipes_active++;
  1922. }
  1923. }
  1924. /* Compute new watermarks for the pipe */
  1925. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1926. const struct ilk_pipe_wm_parameters *params,
  1927. struct intel_pipe_wm *pipe_wm)
  1928. {
  1929. struct drm_device *dev = crtc->dev;
  1930. const struct drm_i915_private *dev_priv = dev->dev_private;
  1931. int level, max_level = ilk_wm_max_level(dev);
  1932. /* LP0 watermark maximums depend on this pipe alone */
  1933. struct intel_wm_config config = {
  1934. .num_pipes_active = 1,
  1935. .sprites_enabled = params->spr.enabled,
  1936. .sprites_scaled = params->spr.scaled,
  1937. };
  1938. struct ilk_wm_maximums max;
  1939. pipe_wm->pipe_enabled = params->active;
  1940. pipe_wm->sprites_enabled = params->spr.enabled;
  1941. pipe_wm->sprites_scaled = params->spr.scaled;
  1942. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1943. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1944. max_level = 1;
  1945. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1946. if (params->spr.scaled)
  1947. max_level = 0;
  1948. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  1949. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1950. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1951. /* LP0 watermarks always use 1/2 DDB partitioning */
  1952. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1953. /* At least LP0 must be valid */
  1954. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1955. return false;
  1956. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1957. for (level = 1; level <= max_level; level++) {
  1958. struct intel_wm_level wm = {};
  1959. ilk_compute_wm_level(dev_priv, level, params, &wm);
  1960. /*
  1961. * Disable any watermark level that exceeds the
  1962. * register maximums since such watermarks are
  1963. * always invalid.
  1964. */
  1965. if (!ilk_validate_wm_level(level, &max, &wm))
  1966. break;
  1967. pipe_wm->wm[level] = wm;
  1968. }
  1969. return true;
  1970. }
  1971. /*
  1972. * Merge the watermarks from all active pipes for a specific level.
  1973. */
  1974. static void ilk_merge_wm_level(struct drm_device *dev,
  1975. int level,
  1976. struct intel_wm_level *ret_wm)
  1977. {
  1978. const struct intel_crtc *intel_crtc;
  1979. ret_wm->enable = true;
  1980. for_each_intel_crtc(dev, intel_crtc) {
  1981. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  1982. const struct intel_wm_level *wm = &active->wm[level];
  1983. if (!active->pipe_enabled)
  1984. continue;
  1985. /*
  1986. * The watermark values may have been used in the past,
  1987. * so we must maintain them in the registers for some
  1988. * time even if the level is now disabled.
  1989. */
  1990. if (!wm->enable)
  1991. ret_wm->enable = false;
  1992. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1993. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1994. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1995. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  1996. }
  1997. }
  1998. /*
  1999. * Merge all low power watermarks for all active pipes.
  2000. */
  2001. static void ilk_wm_merge(struct drm_device *dev,
  2002. const struct intel_wm_config *config,
  2003. const struct ilk_wm_maximums *max,
  2004. struct intel_pipe_wm *merged)
  2005. {
  2006. int level, max_level = ilk_wm_max_level(dev);
  2007. int last_enabled_level = max_level;
  2008. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2009. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2010. config->num_pipes_active > 1)
  2011. return;
  2012. /* ILK: FBC WM must be disabled always */
  2013. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2014. /* merge each WM1+ level */
  2015. for (level = 1; level <= max_level; level++) {
  2016. struct intel_wm_level *wm = &merged->wm[level];
  2017. ilk_merge_wm_level(dev, level, wm);
  2018. if (level > last_enabled_level)
  2019. wm->enable = false;
  2020. else if (!ilk_validate_wm_level(level, max, wm))
  2021. /* make sure all following levels get disabled */
  2022. last_enabled_level = level - 1;
  2023. /*
  2024. * The spec says it is preferred to disable
  2025. * FBC WMs instead of disabling a WM level.
  2026. */
  2027. if (wm->fbc_val > max->fbc) {
  2028. if (wm->enable)
  2029. merged->fbc_wm_enabled = false;
  2030. wm->fbc_val = 0;
  2031. }
  2032. }
  2033. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2034. /*
  2035. * FIXME this is racy. FBC might get enabled later.
  2036. * What we should check here is whether FBC can be
  2037. * enabled sometime later.
  2038. */
  2039. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  2040. for (level = 2; level <= max_level; level++) {
  2041. struct intel_wm_level *wm = &merged->wm[level];
  2042. wm->enable = false;
  2043. }
  2044. }
  2045. }
  2046. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2047. {
  2048. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2049. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2050. }
  2051. /* The value we need to program into the WM_LPx latency field */
  2052. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2053. {
  2054. struct drm_i915_private *dev_priv = dev->dev_private;
  2055. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2056. return 2 * level;
  2057. else
  2058. return dev_priv->wm.pri_latency[level];
  2059. }
  2060. static void ilk_compute_wm_results(struct drm_device *dev,
  2061. const struct intel_pipe_wm *merged,
  2062. enum intel_ddb_partitioning partitioning,
  2063. struct ilk_wm_values *results)
  2064. {
  2065. struct intel_crtc *intel_crtc;
  2066. int level, wm_lp;
  2067. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2068. results->partitioning = partitioning;
  2069. /* LP1+ register values */
  2070. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2071. const struct intel_wm_level *r;
  2072. level = ilk_wm_lp_to_level(wm_lp, merged);
  2073. r = &merged->wm[level];
  2074. /*
  2075. * Maintain the watermark values even if the level is
  2076. * disabled. Doing otherwise could cause underruns.
  2077. */
  2078. results->wm_lp[wm_lp - 1] =
  2079. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2080. (r->pri_val << WM1_LP_SR_SHIFT) |
  2081. r->cur_val;
  2082. if (r->enable)
  2083. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2084. if (INTEL_INFO(dev)->gen >= 8)
  2085. results->wm_lp[wm_lp - 1] |=
  2086. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2087. else
  2088. results->wm_lp[wm_lp - 1] |=
  2089. r->fbc_val << WM1_LP_FBC_SHIFT;
  2090. /*
  2091. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2092. * level is disabled. Doing otherwise could cause underruns.
  2093. */
  2094. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2095. WARN_ON(wm_lp != 1);
  2096. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2097. } else
  2098. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2099. }
  2100. /* LP0 register values */
  2101. for_each_intel_crtc(dev, intel_crtc) {
  2102. enum pipe pipe = intel_crtc->pipe;
  2103. const struct intel_wm_level *r =
  2104. &intel_crtc->wm.active.wm[0];
  2105. if (WARN_ON(!r->enable))
  2106. continue;
  2107. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2108. results->wm_pipe[pipe] =
  2109. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2110. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2111. r->cur_val;
  2112. }
  2113. }
  2114. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2115. * case both are at the same level. Prefer r1 in case they're the same. */
  2116. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2117. struct intel_pipe_wm *r1,
  2118. struct intel_pipe_wm *r2)
  2119. {
  2120. int level, max_level = ilk_wm_max_level(dev);
  2121. int level1 = 0, level2 = 0;
  2122. for (level = 1; level <= max_level; level++) {
  2123. if (r1->wm[level].enable)
  2124. level1 = level;
  2125. if (r2->wm[level].enable)
  2126. level2 = level;
  2127. }
  2128. if (level1 == level2) {
  2129. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2130. return r2;
  2131. else
  2132. return r1;
  2133. } else if (level1 > level2) {
  2134. return r1;
  2135. } else {
  2136. return r2;
  2137. }
  2138. }
  2139. /* dirty bits used to track which watermarks need changes */
  2140. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2141. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2142. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2143. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2144. #define WM_DIRTY_FBC (1 << 24)
  2145. #define WM_DIRTY_DDB (1 << 25)
  2146. static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
  2147. const struct ilk_wm_values *old,
  2148. const struct ilk_wm_values *new)
  2149. {
  2150. unsigned int dirty = 0;
  2151. enum pipe pipe;
  2152. int wm_lp;
  2153. for_each_pipe(pipe) {
  2154. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2155. dirty |= WM_DIRTY_LINETIME(pipe);
  2156. /* Must disable LP1+ watermarks too */
  2157. dirty |= WM_DIRTY_LP_ALL;
  2158. }
  2159. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2160. dirty |= WM_DIRTY_PIPE(pipe);
  2161. /* Must disable LP1+ watermarks too */
  2162. dirty |= WM_DIRTY_LP_ALL;
  2163. }
  2164. }
  2165. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2166. dirty |= WM_DIRTY_FBC;
  2167. /* Must disable LP1+ watermarks too */
  2168. dirty |= WM_DIRTY_LP_ALL;
  2169. }
  2170. if (old->partitioning != new->partitioning) {
  2171. dirty |= WM_DIRTY_DDB;
  2172. /* Must disable LP1+ watermarks too */
  2173. dirty |= WM_DIRTY_LP_ALL;
  2174. }
  2175. /* LP1+ watermarks already deemed dirty, no need to continue */
  2176. if (dirty & WM_DIRTY_LP_ALL)
  2177. return dirty;
  2178. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2179. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2180. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2181. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2182. break;
  2183. }
  2184. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2185. for (; wm_lp <= 3; wm_lp++)
  2186. dirty |= WM_DIRTY_LP(wm_lp);
  2187. return dirty;
  2188. }
  2189. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2190. unsigned int dirty)
  2191. {
  2192. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2193. bool changed = false;
  2194. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2195. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2196. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2197. changed = true;
  2198. }
  2199. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2200. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2201. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2202. changed = true;
  2203. }
  2204. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2205. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2206. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2207. changed = true;
  2208. }
  2209. /*
  2210. * Don't touch WM1S_LP_EN here.
  2211. * Doing so could cause underruns.
  2212. */
  2213. return changed;
  2214. }
  2215. /*
  2216. * The spec says we shouldn't write when we don't need, because every write
  2217. * causes WMs to be re-evaluated, expending some power.
  2218. */
  2219. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2220. struct ilk_wm_values *results)
  2221. {
  2222. struct drm_device *dev = dev_priv->dev;
  2223. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2224. unsigned int dirty;
  2225. uint32_t val;
  2226. dirty = ilk_compute_wm_dirty(dev, previous, results);
  2227. if (!dirty)
  2228. return;
  2229. _ilk_disable_lp_wm(dev_priv, dirty);
  2230. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2231. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2232. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2233. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2234. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2235. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2236. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2237. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2238. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2239. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2240. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2241. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2242. if (dirty & WM_DIRTY_DDB) {
  2243. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2244. val = I915_READ(WM_MISC);
  2245. if (results->partitioning == INTEL_DDB_PART_1_2)
  2246. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2247. else
  2248. val |= WM_MISC_DATA_PARTITION_5_6;
  2249. I915_WRITE(WM_MISC, val);
  2250. } else {
  2251. val = I915_READ(DISP_ARB_CTL2);
  2252. if (results->partitioning == INTEL_DDB_PART_1_2)
  2253. val &= ~DISP_DATA_PARTITION_5_6;
  2254. else
  2255. val |= DISP_DATA_PARTITION_5_6;
  2256. I915_WRITE(DISP_ARB_CTL2, val);
  2257. }
  2258. }
  2259. if (dirty & WM_DIRTY_FBC) {
  2260. val = I915_READ(DISP_ARB_CTL);
  2261. if (results->enable_fbc_wm)
  2262. val &= ~DISP_FBC_WM_DIS;
  2263. else
  2264. val |= DISP_FBC_WM_DIS;
  2265. I915_WRITE(DISP_ARB_CTL, val);
  2266. }
  2267. if (dirty & WM_DIRTY_LP(1) &&
  2268. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2269. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2270. if (INTEL_INFO(dev)->gen >= 7) {
  2271. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2272. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2273. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2274. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2275. }
  2276. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2277. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2278. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2279. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2280. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2281. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2282. dev_priv->wm.hw = *results;
  2283. }
  2284. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2285. {
  2286. struct drm_i915_private *dev_priv = dev->dev_private;
  2287. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2288. }
  2289. static void ilk_update_wm(struct drm_crtc *crtc)
  2290. {
  2291. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2292. struct drm_device *dev = crtc->dev;
  2293. struct drm_i915_private *dev_priv = dev->dev_private;
  2294. struct ilk_wm_maximums max;
  2295. struct ilk_pipe_wm_parameters params = {};
  2296. struct ilk_wm_values results = {};
  2297. enum intel_ddb_partitioning partitioning;
  2298. struct intel_pipe_wm pipe_wm = {};
  2299. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2300. struct intel_wm_config config = {};
  2301. ilk_compute_wm_parameters(crtc, &params);
  2302. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2303. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2304. return;
  2305. intel_crtc->wm.active = pipe_wm;
  2306. ilk_compute_wm_config(dev, &config);
  2307. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2308. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2309. /* 5/6 split only in single pipe config on IVB+ */
  2310. if (INTEL_INFO(dev)->gen >= 7 &&
  2311. config.num_pipes_active == 1 && config.sprites_enabled) {
  2312. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2313. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2314. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2315. } else {
  2316. best_lp_wm = &lp_wm_1_2;
  2317. }
  2318. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2319. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2320. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2321. ilk_write_wm_values(dev_priv, &results);
  2322. }
  2323. static void ilk_update_sprite_wm(struct drm_plane *plane,
  2324. struct drm_crtc *crtc,
  2325. uint32_t sprite_width, int pixel_size,
  2326. bool enabled, bool scaled)
  2327. {
  2328. struct drm_device *dev = plane->dev;
  2329. struct intel_plane *intel_plane = to_intel_plane(plane);
  2330. intel_plane->wm.enabled = enabled;
  2331. intel_plane->wm.scaled = scaled;
  2332. intel_plane->wm.horiz_pixels = sprite_width;
  2333. intel_plane->wm.bytes_per_pixel = pixel_size;
  2334. /*
  2335. * IVB workaround: must disable low power watermarks for at least
  2336. * one frame before enabling scaling. LP watermarks can be re-enabled
  2337. * when scaling is disabled.
  2338. *
  2339. * WaCxSRDisabledForSpriteScaling:ivb
  2340. */
  2341. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2342. intel_wait_for_vblank(dev, intel_plane->pipe);
  2343. ilk_update_wm(crtc);
  2344. }
  2345. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2346. {
  2347. struct drm_device *dev = crtc->dev;
  2348. struct drm_i915_private *dev_priv = dev->dev_private;
  2349. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2350. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2351. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2352. enum pipe pipe = intel_crtc->pipe;
  2353. static const unsigned int wm0_pipe_reg[] = {
  2354. [PIPE_A] = WM0_PIPEA_ILK,
  2355. [PIPE_B] = WM0_PIPEB_ILK,
  2356. [PIPE_C] = WM0_PIPEC_IVB,
  2357. };
  2358. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2359. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2360. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2361. active->pipe_enabled = intel_crtc_active(crtc);
  2362. if (active->pipe_enabled) {
  2363. u32 tmp = hw->wm_pipe[pipe];
  2364. /*
  2365. * For active pipes LP0 watermark is marked as
  2366. * enabled, and LP1+ watermaks as disabled since
  2367. * we can't really reverse compute them in case
  2368. * multiple pipes are active.
  2369. */
  2370. active->wm[0].enable = true;
  2371. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2372. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2373. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2374. active->linetime = hw->wm_linetime[pipe];
  2375. } else {
  2376. int level, max_level = ilk_wm_max_level(dev);
  2377. /*
  2378. * For inactive pipes, all watermark levels
  2379. * should be marked as enabled but zeroed,
  2380. * which is what we'd compute them to.
  2381. */
  2382. for (level = 0; level <= max_level; level++)
  2383. active->wm[level].enable = true;
  2384. }
  2385. }
  2386. void ilk_wm_get_hw_state(struct drm_device *dev)
  2387. {
  2388. struct drm_i915_private *dev_priv = dev->dev_private;
  2389. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2390. struct drm_crtc *crtc;
  2391. for_each_crtc(dev, crtc)
  2392. ilk_pipe_wm_get_hw_state(crtc);
  2393. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2394. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2395. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2396. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2397. if (INTEL_INFO(dev)->gen >= 7) {
  2398. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2399. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2400. }
  2401. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2402. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2403. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2404. else if (IS_IVYBRIDGE(dev))
  2405. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2406. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2407. hw->enable_fbc_wm =
  2408. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2409. }
  2410. /**
  2411. * intel_update_watermarks - update FIFO watermark values based on current modes
  2412. *
  2413. * Calculate watermark values for the various WM regs based on current mode
  2414. * and plane configuration.
  2415. *
  2416. * There are several cases to deal with here:
  2417. * - normal (i.e. non-self-refresh)
  2418. * - self-refresh (SR) mode
  2419. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2420. * - lines are small relative to FIFO size (buffer can hold more than 2
  2421. * lines), so need to account for TLB latency
  2422. *
  2423. * The normal calculation is:
  2424. * watermark = dotclock * bytes per pixel * latency
  2425. * where latency is platform & configuration dependent (we assume pessimal
  2426. * values here).
  2427. *
  2428. * The SR calculation is:
  2429. * watermark = (trunc(latency/line time)+1) * surface width *
  2430. * bytes per pixel
  2431. * where
  2432. * line time = htotal / dotclock
  2433. * surface width = hdisplay for normal plane and 64 for cursor
  2434. * and latency is assumed to be high, as above.
  2435. *
  2436. * The final value programmed to the register should always be rounded up,
  2437. * and include an extra 2 entries to account for clock crossings.
  2438. *
  2439. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2440. * to set the non-SR watermarks to 8.
  2441. */
  2442. void intel_update_watermarks(struct drm_crtc *crtc)
  2443. {
  2444. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2445. if (dev_priv->display.update_wm)
  2446. dev_priv->display.update_wm(crtc);
  2447. }
  2448. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2449. struct drm_crtc *crtc,
  2450. uint32_t sprite_width, int pixel_size,
  2451. bool enabled, bool scaled)
  2452. {
  2453. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2454. if (dev_priv->display.update_sprite_wm)
  2455. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2456. pixel_size, enabled, scaled);
  2457. }
  2458. static struct drm_i915_gem_object *
  2459. intel_alloc_context_page(struct drm_device *dev)
  2460. {
  2461. struct drm_i915_gem_object *ctx;
  2462. int ret;
  2463. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2464. ctx = i915_gem_alloc_object(dev, 4096);
  2465. if (!ctx) {
  2466. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2467. return NULL;
  2468. }
  2469. ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
  2470. if (ret) {
  2471. DRM_ERROR("failed to pin power context: %d\n", ret);
  2472. goto err_unref;
  2473. }
  2474. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2475. if (ret) {
  2476. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2477. goto err_unpin;
  2478. }
  2479. return ctx;
  2480. err_unpin:
  2481. i915_gem_object_ggtt_unpin(ctx);
  2482. err_unref:
  2483. drm_gem_object_unreference(&ctx->base);
  2484. return NULL;
  2485. }
  2486. /**
  2487. * Lock protecting IPS related data structures
  2488. */
  2489. DEFINE_SPINLOCK(mchdev_lock);
  2490. /* Global for IPS driver to get at the current i915 device. Protected by
  2491. * mchdev_lock. */
  2492. static struct drm_i915_private *i915_mch_dev;
  2493. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2494. {
  2495. struct drm_i915_private *dev_priv = dev->dev_private;
  2496. u16 rgvswctl;
  2497. assert_spin_locked(&mchdev_lock);
  2498. rgvswctl = I915_READ16(MEMSWCTL);
  2499. if (rgvswctl & MEMCTL_CMD_STS) {
  2500. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2501. return false; /* still busy with another command */
  2502. }
  2503. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2504. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2505. I915_WRITE16(MEMSWCTL, rgvswctl);
  2506. POSTING_READ16(MEMSWCTL);
  2507. rgvswctl |= MEMCTL_CMD_STS;
  2508. I915_WRITE16(MEMSWCTL, rgvswctl);
  2509. return true;
  2510. }
  2511. static void ironlake_enable_drps(struct drm_device *dev)
  2512. {
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2515. u8 fmax, fmin, fstart, vstart;
  2516. spin_lock_irq(&mchdev_lock);
  2517. /* Enable temp reporting */
  2518. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2519. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2520. /* 100ms RC evaluation intervals */
  2521. I915_WRITE(RCUPEI, 100000);
  2522. I915_WRITE(RCDNEI, 100000);
  2523. /* Set max/min thresholds to 90ms and 80ms respectively */
  2524. I915_WRITE(RCBMAXAVG, 90000);
  2525. I915_WRITE(RCBMINAVG, 80000);
  2526. I915_WRITE(MEMIHYST, 1);
  2527. /* Set up min, max, and cur for interrupt handling */
  2528. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2529. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2530. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2531. MEMMODE_FSTART_SHIFT;
  2532. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2533. PXVFREQ_PX_SHIFT;
  2534. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2535. dev_priv->ips.fstart = fstart;
  2536. dev_priv->ips.max_delay = fstart;
  2537. dev_priv->ips.min_delay = fmin;
  2538. dev_priv->ips.cur_delay = fstart;
  2539. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2540. fmax, fmin, fstart);
  2541. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2542. /*
  2543. * Interrupts will be enabled in ironlake_irq_postinstall
  2544. */
  2545. I915_WRITE(VIDSTART, vstart);
  2546. POSTING_READ(VIDSTART);
  2547. rgvmodectl |= MEMMODE_SWMODE_EN;
  2548. I915_WRITE(MEMMODECTL, rgvmodectl);
  2549. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2550. DRM_ERROR("stuck trying to change perf mode\n");
  2551. mdelay(1);
  2552. ironlake_set_drps(dev, fstart);
  2553. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2554. I915_READ(0x112e0);
  2555. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2556. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2557. getrawmonotonic(&dev_priv->ips.last_time2);
  2558. spin_unlock_irq(&mchdev_lock);
  2559. }
  2560. static void ironlake_disable_drps(struct drm_device *dev)
  2561. {
  2562. struct drm_i915_private *dev_priv = dev->dev_private;
  2563. u16 rgvswctl;
  2564. spin_lock_irq(&mchdev_lock);
  2565. rgvswctl = I915_READ16(MEMSWCTL);
  2566. /* Ack interrupts, disable EFC interrupt */
  2567. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2568. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2569. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2570. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2571. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2572. /* Go back to the starting frequency */
  2573. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2574. mdelay(1);
  2575. rgvswctl |= MEMCTL_CMD_STS;
  2576. I915_WRITE(MEMSWCTL, rgvswctl);
  2577. mdelay(1);
  2578. spin_unlock_irq(&mchdev_lock);
  2579. }
  2580. /* There's a funny hw issue where the hw returns all 0 when reading from
  2581. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2582. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2583. * all limits and the gpu stuck at whatever frequency it is at atm).
  2584. */
  2585. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2586. {
  2587. u32 limits;
  2588. /* Only set the down limit when we've reached the lowest level to avoid
  2589. * getting more interrupts, otherwise leave this clear. This prevents a
  2590. * race in the hw when coming out of rc6: There's a tiny window where
  2591. * the hw runs at the minimal clock before selecting the desired
  2592. * frequency, if the down threshold expires in that window we will not
  2593. * receive a down interrupt. */
  2594. limits = dev_priv->rps.max_freq_softlimit << 24;
  2595. if (val <= dev_priv->rps.min_freq_softlimit)
  2596. limits |= dev_priv->rps.min_freq_softlimit << 16;
  2597. return limits;
  2598. }
  2599. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2600. {
  2601. int new_power;
  2602. new_power = dev_priv->rps.power;
  2603. switch (dev_priv->rps.power) {
  2604. case LOW_POWER:
  2605. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  2606. new_power = BETWEEN;
  2607. break;
  2608. case BETWEEN:
  2609. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  2610. new_power = LOW_POWER;
  2611. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  2612. new_power = HIGH_POWER;
  2613. break;
  2614. case HIGH_POWER:
  2615. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  2616. new_power = BETWEEN;
  2617. break;
  2618. }
  2619. /* Max/min bins are special */
  2620. if (val == dev_priv->rps.min_freq_softlimit)
  2621. new_power = LOW_POWER;
  2622. if (val == dev_priv->rps.max_freq_softlimit)
  2623. new_power = HIGH_POWER;
  2624. if (new_power == dev_priv->rps.power)
  2625. return;
  2626. /* Note the units here are not exactly 1us, but 1280ns. */
  2627. switch (new_power) {
  2628. case LOW_POWER:
  2629. /* Upclock if more than 95% busy over 16ms */
  2630. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2631. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2632. /* Downclock if less than 85% busy over 32ms */
  2633. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2634. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2635. I915_WRITE(GEN6_RP_CONTROL,
  2636. GEN6_RP_MEDIA_TURBO |
  2637. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2638. GEN6_RP_MEDIA_IS_GFX |
  2639. GEN6_RP_ENABLE |
  2640. GEN6_RP_UP_BUSY_AVG |
  2641. GEN6_RP_DOWN_IDLE_AVG);
  2642. break;
  2643. case BETWEEN:
  2644. /* Upclock if more than 90% busy over 13ms */
  2645. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2646. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2647. /* Downclock if less than 75% busy over 32ms */
  2648. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2649. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2650. I915_WRITE(GEN6_RP_CONTROL,
  2651. GEN6_RP_MEDIA_TURBO |
  2652. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2653. GEN6_RP_MEDIA_IS_GFX |
  2654. GEN6_RP_ENABLE |
  2655. GEN6_RP_UP_BUSY_AVG |
  2656. GEN6_RP_DOWN_IDLE_AVG);
  2657. break;
  2658. case HIGH_POWER:
  2659. /* Upclock if more than 85% busy over 10ms */
  2660. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2661. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2662. /* Downclock if less than 60% busy over 32ms */
  2663. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2664. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2665. I915_WRITE(GEN6_RP_CONTROL,
  2666. GEN6_RP_MEDIA_TURBO |
  2667. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2668. GEN6_RP_MEDIA_IS_GFX |
  2669. GEN6_RP_ENABLE |
  2670. GEN6_RP_UP_BUSY_AVG |
  2671. GEN6_RP_DOWN_IDLE_AVG);
  2672. break;
  2673. }
  2674. dev_priv->rps.power = new_power;
  2675. dev_priv->rps.last_adj = 0;
  2676. }
  2677. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  2678. {
  2679. u32 mask = 0;
  2680. if (val > dev_priv->rps.min_freq_softlimit)
  2681. mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  2682. if (val < dev_priv->rps.max_freq_softlimit)
  2683. mask |= GEN6_PM_RP_UP_THRESHOLD;
  2684. /* IVB and SNB hard hangs on looping batchbuffer
  2685. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2686. */
  2687. if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
  2688. mask |= GEN6_PM_RP_UP_EI_EXPIRED;
  2689. if (IS_GEN8(dev_priv->dev))
  2690. mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  2691. return ~mask;
  2692. }
  2693. /* gen6_set_rps is called to update the frequency request, but should also be
  2694. * called when the range (min_delay and max_delay) is modified so that we can
  2695. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  2696. void gen6_set_rps(struct drm_device *dev, u8 val)
  2697. {
  2698. struct drm_i915_private *dev_priv = dev->dev_private;
  2699. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2700. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2701. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2702. /* min/max delay may still have been modified so be sure to
  2703. * write the limits value.
  2704. */
  2705. if (val != dev_priv->rps.cur_freq) {
  2706. gen6_set_rps_thresholds(dev_priv, val);
  2707. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2708. I915_WRITE(GEN6_RPNSWREQ,
  2709. HSW_FREQUENCY(val));
  2710. else
  2711. I915_WRITE(GEN6_RPNSWREQ,
  2712. GEN6_FREQUENCY(val) |
  2713. GEN6_OFFSET(0) |
  2714. GEN6_AGGRESSIVE_TURBO);
  2715. }
  2716. /* Make sure we continue to get interrupts
  2717. * until we hit the minimum or maximum frequencies.
  2718. */
  2719. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
  2720. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2721. POSTING_READ(GEN6_RPNSWREQ);
  2722. dev_priv->rps.cur_freq = val;
  2723. trace_intel_gpu_freq_change(val * 50);
  2724. }
  2725. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  2726. *
  2727. * * If Gfx is Idle, then
  2728. * 1. Mask Turbo interrupts
  2729. * 2. Bring up Gfx clock
  2730. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  2731. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  2732. * 5. Unmask Turbo interrupts
  2733. */
  2734. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  2735. {
  2736. struct drm_device *dev = dev_priv->dev;
  2737. /* Latest VLV doesn't need to force the gfx clock */
  2738. if (dev->pdev->revision >= 0xd) {
  2739. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2740. return;
  2741. }
  2742. /*
  2743. * When we are idle. Drop to min voltage state.
  2744. */
  2745. if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
  2746. return;
  2747. /* Mask turbo interrupt so that they will not come in between */
  2748. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2749. vlv_force_gfx_clock(dev_priv, true);
  2750. dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
  2751. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
  2752. dev_priv->rps.min_freq_softlimit);
  2753. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  2754. & GENFREQSTATUS) == 0, 5))
  2755. DRM_ERROR("timed out waiting for Punit\n");
  2756. vlv_force_gfx_clock(dev_priv, false);
  2757. I915_WRITE(GEN6_PMINTRMSK,
  2758. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  2759. }
  2760. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2761. {
  2762. struct drm_device *dev = dev_priv->dev;
  2763. mutex_lock(&dev_priv->rps.hw_lock);
  2764. if (dev_priv->rps.enabled) {
  2765. if (IS_VALLEYVIEW(dev))
  2766. vlv_set_rps_idle(dev_priv);
  2767. else
  2768. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2769. dev_priv->rps.last_adj = 0;
  2770. }
  2771. mutex_unlock(&dev_priv->rps.hw_lock);
  2772. }
  2773. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2774. {
  2775. struct drm_device *dev = dev_priv->dev;
  2776. mutex_lock(&dev_priv->rps.hw_lock);
  2777. if (dev_priv->rps.enabled) {
  2778. if (IS_VALLEYVIEW(dev))
  2779. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2780. else
  2781. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2782. dev_priv->rps.last_adj = 0;
  2783. }
  2784. mutex_unlock(&dev_priv->rps.hw_lock);
  2785. }
  2786. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2787. {
  2788. struct drm_i915_private *dev_priv = dev->dev_private;
  2789. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2790. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2791. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2792. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2793. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2794. dev_priv->rps.cur_freq,
  2795. vlv_gpu_freq(dev_priv, val), val);
  2796. if (val != dev_priv->rps.cur_freq)
  2797. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2798. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2799. dev_priv->rps.cur_freq = val;
  2800. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  2801. }
  2802. static void gen8_disable_rps_interrupts(struct drm_device *dev)
  2803. {
  2804. struct drm_i915_private *dev_priv = dev->dev_private;
  2805. I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
  2806. I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
  2807. ~dev_priv->pm_rps_events);
  2808. /* Complete PM interrupt masking here doesn't race with the rps work
  2809. * item again unmasking PM interrupts because that is using a different
  2810. * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
  2811. * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
  2812. * gen8_enable_rps will clean up. */
  2813. spin_lock_irq(&dev_priv->irq_lock);
  2814. dev_priv->rps.pm_iir = 0;
  2815. spin_unlock_irq(&dev_priv->irq_lock);
  2816. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2817. }
  2818. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  2819. {
  2820. struct drm_i915_private *dev_priv = dev->dev_private;
  2821. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2822. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
  2823. ~dev_priv->pm_rps_events);
  2824. /* Complete PM interrupt masking here doesn't race with the rps work
  2825. * item again unmasking PM interrupts because that is using a different
  2826. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2827. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2828. spin_lock_irq(&dev_priv->irq_lock);
  2829. dev_priv->rps.pm_iir = 0;
  2830. spin_unlock_irq(&dev_priv->irq_lock);
  2831. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2832. }
  2833. static void gen6_disable_rps(struct drm_device *dev)
  2834. {
  2835. struct drm_i915_private *dev_priv = dev->dev_private;
  2836. I915_WRITE(GEN6_RC_CONTROL, 0);
  2837. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2838. if (IS_BROADWELL(dev))
  2839. gen8_disable_rps_interrupts(dev);
  2840. else
  2841. gen6_disable_rps_interrupts(dev);
  2842. }
  2843. static void cherryview_disable_rps(struct drm_device *dev)
  2844. {
  2845. struct drm_i915_private *dev_priv = dev->dev_private;
  2846. I915_WRITE(GEN6_RC_CONTROL, 0);
  2847. }
  2848. static void valleyview_disable_rps(struct drm_device *dev)
  2849. {
  2850. struct drm_i915_private *dev_priv = dev->dev_private;
  2851. I915_WRITE(GEN6_RC_CONTROL, 0);
  2852. gen6_disable_rps_interrupts(dev);
  2853. }
  2854. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  2855. {
  2856. if (IS_VALLEYVIEW(dev)) {
  2857. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  2858. mode = GEN6_RC_CTL_RC6_ENABLE;
  2859. else
  2860. mode = 0;
  2861. }
  2862. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2863. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2864. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2865. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2866. }
  2867. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  2868. {
  2869. /* No RC6 before Ironlake */
  2870. if (INTEL_INFO(dev)->gen < 5)
  2871. return 0;
  2872. /* RC6 is only on Ironlake mobile not on desktop */
  2873. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  2874. return 0;
  2875. /* Respect the kernel parameter if it is set */
  2876. if (enable_rc6 >= 0) {
  2877. int mask;
  2878. if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
  2879. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  2880. INTEL_RC6pp_ENABLE;
  2881. else
  2882. mask = INTEL_RC6_ENABLE;
  2883. if ((enable_rc6 & mask) != enable_rc6)
  2884. DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  2885. enable_rc6 & mask, enable_rc6, mask);
  2886. return enable_rc6 & mask;
  2887. }
  2888. /* Disable RC6 on Ironlake */
  2889. if (INTEL_INFO(dev)->gen == 5)
  2890. return 0;
  2891. if (IS_IVYBRIDGE(dev))
  2892. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2893. return INTEL_RC6_ENABLE;
  2894. }
  2895. int intel_enable_rc6(const struct drm_device *dev)
  2896. {
  2897. return i915.enable_rc6;
  2898. }
  2899. static void gen8_enable_rps_interrupts(struct drm_device *dev)
  2900. {
  2901. struct drm_i915_private *dev_priv = dev->dev_private;
  2902. spin_lock_irq(&dev_priv->irq_lock);
  2903. WARN_ON(dev_priv->rps.pm_iir);
  2904. bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  2905. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2906. spin_unlock_irq(&dev_priv->irq_lock);
  2907. }
  2908. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  2909. {
  2910. struct drm_i915_private *dev_priv = dev->dev_private;
  2911. spin_lock_irq(&dev_priv->irq_lock);
  2912. WARN_ON(dev_priv->rps.pm_iir);
  2913. snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  2914. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  2915. spin_unlock_irq(&dev_priv->irq_lock);
  2916. }
  2917. static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
  2918. {
  2919. /* All of these values are in units of 50MHz */
  2920. dev_priv->rps.cur_freq = 0;
  2921. /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
  2922. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  2923. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  2924. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  2925. /* XXX: only BYT has a special efficient freq */
  2926. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  2927. /* hw_max = RP0 until we check for overclocking */
  2928. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  2929. /* Preserve min/max settings in case of re-init */
  2930. if (dev_priv->rps.max_freq_softlimit == 0)
  2931. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  2932. if (dev_priv->rps.min_freq_softlimit == 0)
  2933. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  2934. }
  2935. static void gen8_enable_rps(struct drm_device *dev)
  2936. {
  2937. struct drm_i915_private *dev_priv = dev->dev_private;
  2938. struct intel_engine_cs *ring;
  2939. uint32_t rc6_mask = 0, rp_state_cap;
  2940. int unused;
  2941. /* 1a: Software RC state - RC0 */
  2942. I915_WRITE(GEN6_RC_STATE, 0);
  2943. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  2944. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  2945. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  2946. /* 2a: Disable RC states. */
  2947. I915_WRITE(GEN6_RC_CONTROL, 0);
  2948. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2949. parse_rp_state_cap(dev_priv, rp_state_cap);
  2950. /* 2b: Program RC6 thresholds.*/
  2951. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  2952. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  2953. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  2954. for_each_ring(ring, dev_priv, unused)
  2955. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2956. I915_WRITE(GEN6_RC_SLEEP, 0);
  2957. if (IS_BROADWELL(dev))
  2958. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  2959. else
  2960. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  2961. /* 3: Enable RC6 */
  2962. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  2963. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  2964. intel_print_rc6_info(dev, rc6_mask);
  2965. if (IS_BROADWELL(dev))
  2966. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  2967. GEN7_RC_CTL_TO_MODE |
  2968. rc6_mask);
  2969. else
  2970. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  2971. GEN6_RC_CTL_EI_MODE(1) |
  2972. rc6_mask);
  2973. /* 4 Program defaults and thresholds for RPS*/
  2974. I915_WRITE(GEN6_RPNSWREQ,
  2975. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  2976. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2977. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  2978. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  2979. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  2980. /* Docs recommend 900MHz, and 300 MHz respectively */
  2981. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2982. dev_priv->rps.max_freq_softlimit << 24 |
  2983. dev_priv->rps.min_freq_softlimit << 16);
  2984. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  2985. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  2986. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  2987. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  2988. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2989. /* 5: Enable RPS */
  2990. I915_WRITE(GEN6_RP_CONTROL,
  2991. GEN6_RP_MEDIA_TURBO |
  2992. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2993. GEN6_RP_MEDIA_IS_GFX |
  2994. GEN6_RP_ENABLE |
  2995. GEN6_RP_UP_BUSY_AVG |
  2996. GEN6_RP_DOWN_IDLE_AVG);
  2997. /* 6: Ring frequency + overclocking (our driver does this later */
  2998. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  2999. gen8_enable_rps_interrupts(dev);
  3000. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3001. }
  3002. static void gen6_enable_rps(struct drm_device *dev)
  3003. {
  3004. struct drm_i915_private *dev_priv = dev->dev_private;
  3005. struct intel_engine_cs *ring;
  3006. u32 rp_state_cap;
  3007. u32 gt_perf_status;
  3008. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3009. u32 gtfifodbg;
  3010. int rc6_mode;
  3011. int i, ret;
  3012. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3013. /* Here begins a magic sequence of register writes to enable
  3014. * auto-downclocking.
  3015. *
  3016. * Perhaps there might be some value in exposing these to
  3017. * userspace...
  3018. */
  3019. I915_WRITE(GEN6_RC_STATE, 0);
  3020. /* Clear the DBG now so we don't confuse earlier errors */
  3021. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3022. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3023. I915_WRITE(GTFIFODBG, gtfifodbg);
  3024. }
  3025. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3026. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3027. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3028. parse_rp_state_cap(dev_priv, rp_state_cap);
  3029. /* disable the counters and set deterministic thresholds */
  3030. I915_WRITE(GEN6_RC_CONTROL, 0);
  3031. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3032. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3033. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3034. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3035. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3036. for_each_ring(ring, dev_priv, i)
  3037. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3038. I915_WRITE(GEN6_RC_SLEEP, 0);
  3039. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3040. if (IS_IVYBRIDGE(dev))
  3041. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3042. else
  3043. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3044. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3045. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3046. /* Check if we are enabling RC6 */
  3047. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3048. if (rc6_mode & INTEL_RC6_ENABLE)
  3049. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3050. /* We don't use those on Haswell */
  3051. if (!IS_HASWELL(dev)) {
  3052. if (rc6_mode & INTEL_RC6p_ENABLE)
  3053. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3054. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3055. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3056. }
  3057. intel_print_rc6_info(dev, rc6_mask);
  3058. I915_WRITE(GEN6_RC_CONTROL,
  3059. rc6_mask |
  3060. GEN6_RC_CTL_EI_MODE(1) |
  3061. GEN6_RC_CTL_HW_ENABLE);
  3062. /* Power down if completely idle for over 50ms */
  3063. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3064. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3065. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3066. if (ret)
  3067. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3068. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3069. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3070. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3071. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3072. (pcu_mbox & 0xff) * 50);
  3073. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3074. }
  3075. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3076. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3077. gen6_enable_rps_interrupts(dev);
  3078. rc6vids = 0;
  3079. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3080. if (IS_GEN6(dev) && ret) {
  3081. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3082. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3083. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3084. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3085. rc6vids &= 0xffff00;
  3086. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3087. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3088. if (ret)
  3089. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3090. }
  3091. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3092. }
  3093. static void __gen6_update_ring_freq(struct drm_device *dev)
  3094. {
  3095. struct drm_i915_private *dev_priv = dev->dev_private;
  3096. int min_freq = 15;
  3097. unsigned int gpu_freq;
  3098. unsigned int max_ia_freq, min_ring_freq;
  3099. int scaling_factor = 180;
  3100. struct cpufreq_policy *policy;
  3101. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3102. policy = cpufreq_cpu_get(0);
  3103. if (policy) {
  3104. max_ia_freq = policy->cpuinfo.max_freq;
  3105. cpufreq_cpu_put(policy);
  3106. } else {
  3107. /*
  3108. * Default to measured freq if none found, PCU will ensure we
  3109. * don't go over
  3110. */
  3111. max_ia_freq = tsc_khz;
  3112. }
  3113. /* Convert from kHz to MHz */
  3114. max_ia_freq /= 1000;
  3115. min_ring_freq = I915_READ(DCLK) & 0xf;
  3116. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3117. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3118. /*
  3119. * For each potential GPU frequency, load a ring frequency we'd like
  3120. * to use for memory access. We do this by specifying the IA frequency
  3121. * the PCU should use as a reference to determine the ring frequency.
  3122. */
  3123. for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
  3124. gpu_freq--) {
  3125. int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
  3126. unsigned int ia_freq = 0, ring_freq = 0;
  3127. if (INTEL_INFO(dev)->gen >= 8) {
  3128. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3129. ring_freq = max(min_ring_freq, gpu_freq);
  3130. } else if (IS_HASWELL(dev)) {
  3131. ring_freq = mult_frac(gpu_freq, 5, 4);
  3132. ring_freq = max(min_ring_freq, ring_freq);
  3133. /* leave ia_freq as the default, chosen by cpufreq */
  3134. } else {
  3135. /* On older processors, there is no separate ring
  3136. * clock domain, so in order to boost the bandwidth
  3137. * of the ring, we need to upclock the CPU (ia_freq).
  3138. *
  3139. * For GPU frequencies less than 750MHz,
  3140. * just use the lowest ring freq.
  3141. */
  3142. if (gpu_freq < min_freq)
  3143. ia_freq = 800;
  3144. else
  3145. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3146. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3147. }
  3148. sandybridge_pcode_write(dev_priv,
  3149. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3150. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3151. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3152. gpu_freq);
  3153. }
  3154. }
  3155. void gen6_update_ring_freq(struct drm_device *dev)
  3156. {
  3157. struct drm_i915_private *dev_priv = dev->dev_private;
  3158. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3159. return;
  3160. mutex_lock(&dev_priv->rps.hw_lock);
  3161. __gen6_update_ring_freq(dev);
  3162. mutex_unlock(&dev_priv->rps.hw_lock);
  3163. }
  3164. int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3165. {
  3166. u32 val, rp0;
  3167. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3168. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3169. return rp0;
  3170. }
  3171. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3172. {
  3173. u32 val, rpe;
  3174. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3175. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3176. return rpe;
  3177. }
  3178. int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3179. {
  3180. u32 val, rpn;
  3181. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3182. rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
  3183. return rpn;
  3184. }
  3185. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3186. {
  3187. u32 val, rp0;
  3188. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3189. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3190. /* Clamp to max */
  3191. rp0 = min_t(u32, rp0, 0xea);
  3192. return rp0;
  3193. }
  3194. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3195. {
  3196. u32 val, rpe;
  3197. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3198. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3199. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3200. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3201. return rpe;
  3202. }
  3203. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3204. {
  3205. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3206. }
  3207. /* Check that the pctx buffer wasn't move under us. */
  3208. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3209. {
  3210. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3211. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3212. dev_priv->vlv_pctx->stolen->start);
  3213. }
  3214. /* Check that the pcbr address is not empty. */
  3215. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3216. {
  3217. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3218. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3219. }
  3220. static void cherryview_setup_pctx(struct drm_device *dev)
  3221. {
  3222. struct drm_i915_private *dev_priv = dev->dev_private;
  3223. unsigned long pctx_paddr, paddr;
  3224. struct i915_gtt *gtt = &dev_priv->gtt;
  3225. u32 pcbr;
  3226. int pctx_size = 32*1024;
  3227. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3228. pcbr = I915_READ(VLV_PCBR);
  3229. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3230. paddr = (dev_priv->mm.stolen_base +
  3231. (gtt->stolen_size - pctx_size));
  3232. pctx_paddr = (paddr & (~4095));
  3233. I915_WRITE(VLV_PCBR, pctx_paddr);
  3234. }
  3235. }
  3236. static void valleyview_setup_pctx(struct drm_device *dev)
  3237. {
  3238. struct drm_i915_private *dev_priv = dev->dev_private;
  3239. struct drm_i915_gem_object *pctx;
  3240. unsigned long pctx_paddr;
  3241. u32 pcbr;
  3242. int pctx_size = 24*1024;
  3243. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3244. pcbr = I915_READ(VLV_PCBR);
  3245. if (pcbr) {
  3246. /* BIOS set it up already, grab the pre-alloc'd space */
  3247. int pcbr_offset;
  3248. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3249. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3250. pcbr_offset,
  3251. I915_GTT_OFFSET_NONE,
  3252. pctx_size);
  3253. goto out;
  3254. }
  3255. /*
  3256. * From the Gunit register HAS:
  3257. * The Gfx driver is expected to program this register and ensure
  3258. * proper allocation within Gfx stolen memory. For example, this
  3259. * register should be programmed such than the PCBR range does not
  3260. * overlap with other ranges, such as the frame buffer, protected
  3261. * memory, or any other relevant ranges.
  3262. */
  3263. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3264. if (!pctx) {
  3265. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3266. return;
  3267. }
  3268. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3269. I915_WRITE(VLV_PCBR, pctx_paddr);
  3270. out:
  3271. dev_priv->vlv_pctx = pctx;
  3272. }
  3273. static void valleyview_cleanup_pctx(struct drm_device *dev)
  3274. {
  3275. struct drm_i915_private *dev_priv = dev->dev_private;
  3276. if (WARN_ON(!dev_priv->vlv_pctx))
  3277. return;
  3278. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3279. dev_priv->vlv_pctx = NULL;
  3280. }
  3281. static void valleyview_init_gt_powersave(struct drm_device *dev)
  3282. {
  3283. struct drm_i915_private *dev_priv = dev->dev_private;
  3284. valleyview_setup_pctx(dev);
  3285. mutex_lock(&dev_priv->rps.hw_lock);
  3286. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  3287. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3288. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3289. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3290. dev_priv->rps.max_freq);
  3291. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  3292. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3293. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3294. dev_priv->rps.efficient_freq);
  3295. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  3296. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3297. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3298. dev_priv->rps.min_freq);
  3299. /* Preserve min/max settings in case of re-init */
  3300. if (dev_priv->rps.max_freq_softlimit == 0)
  3301. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3302. if (dev_priv->rps.min_freq_softlimit == 0)
  3303. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3304. mutex_unlock(&dev_priv->rps.hw_lock);
  3305. }
  3306. static void cherryview_init_gt_powersave(struct drm_device *dev)
  3307. {
  3308. struct drm_i915_private *dev_priv = dev->dev_private;
  3309. cherryview_setup_pctx(dev);
  3310. mutex_lock(&dev_priv->rps.hw_lock);
  3311. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  3312. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3313. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3314. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3315. dev_priv->rps.max_freq);
  3316. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  3317. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3318. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3319. dev_priv->rps.efficient_freq);
  3320. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  3321. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3322. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3323. dev_priv->rps.min_freq);
  3324. /* Preserve min/max settings in case of re-init */
  3325. if (dev_priv->rps.max_freq_softlimit == 0)
  3326. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3327. if (dev_priv->rps.min_freq_softlimit == 0)
  3328. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3329. mutex_unlock(&dev_priv->rps.hw_lock);
  3330. }
  3331. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  3332. {
  3333. valleyview_cleanup_pctx(dev);
  3334. }
  3335. static void cherryview_enable_rps(struct drm_device *dev)
  3336. {
  3337. struct drm_i915_private *dev_priv = dev->dev_private;
  3338. struct intel_engine_cs *ring;
  3339. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  3340. int i;
  3341. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3342. gtfifodbg = I915_READ(GTFIFODBG);
  3343. if (gtfifodbg) {
  3344. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3345. gtfifodbg);
  3346. I915_WRITE(GTFIFODBG, gtfifodbg);
  3347. }
  3348. cherryview_check_pctx(dev_priv);
  3349. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  3350. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3351. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3352. /* 2a: Program RC6 thresholds.*/
  3353. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3354. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3355. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3356. for_each_ring(ring, dev_priv, i)
  3357. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3358. I915_WRITE(GEN6_RC_SLEEP, 0);
  3359. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3360. /* allows RC6 residency counter to work */
  3361. I915_WRITE(VLV_COUNTER_CONTROL,
  3362. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3363. VLV_MEDIA_RC6_COUNT_EN |
  3364. VLV_RENDER_RC6_COUNT_EN));
  3365. /* For now we assume BIOS is allocating and populating the PCBR */
  3366. pcbr = I915_READ(VLV_PCBR);
  3367. DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
  3368. /* 3: Enable RC6 */
  3369. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  3370. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  3371. rc6_mode = GEN6_RC_CTL_EI_MODE(1);
  3372. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3373. /* 4 Program defaults and thresholds for RPS*/
  3374. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3375. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3376. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3377. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3378. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3379. /* WaDisablePwrmtrEvent:chv (pre-production hw) */
  3380. I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
  3381. I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
  3382. /* 5: Enable RPS */
  3383. I915_WRITE(GEN6_RP_CONTROL,
  3384. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3385. GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
  3386. GEN6_RP_ENABLE |
  3387. GEN6_RP_UP_BUSY_AVG |
  3388. GEN6_RP_DOWN_IDLE_AVG);
  3389. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3390. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3391. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3392. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3393. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3394. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3395. dev_priv->rps.cur_freq);
  3396. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3397. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3398. dev_priv->rps.efficient_freq);
  3399. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3400. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3401. }
  3402. static void valleyview_enable_rps(struct drm_device *dev)
  3403. {
  3404. struct drm_i915_private *dev_priv = dev->dev_private;
  3405. struct intel_engine_cs *ring;
  3406. u32 gtfifodbg, val, rc6_mode = 0;
  3407. int i;
  3408. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3409. valleyview_check_pctx(dev_priv);
  3410. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3411. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3412. gtfifodbg);
  3413. I915_WRITE(GTFIFODBG, gtfifodbg);
  3414. }
  3415. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3416. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3417. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3418. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3419. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3420. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3421. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3422. I915_WRITE(GEN6_RP_CONTROL,
  3423. GEN6_RP_MEDIA_TURBO |
  3424. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3425. GEN6_RP_MEDIA_IS_GFX |
  3426. GEN6_RP_ENABLE |
  3427. GEN6_RP_UP_BUSY_AVG |
  3428. GEN6_RP_DOWN_IDLE_CONT);
  3429. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3430. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3431. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3432. for_each_ring(ring, dev_priv, i)
  3433. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3434. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3435. /* allows RC6 residency counter to work */
  3436. I915_WRITE(VLV_COUNTER_CONTROL,
  3437. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3438. VLV_MEDIA_RC6_COUNT_EN |
  3439. VLV_RENDER_RC6_COUNT_EN));
  3440. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3441. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3442. intel_print_rc6_info(dev, rc6_mode);
  3443. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3444. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3445. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3446. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3447. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3448. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3449. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3450. dev_priv->rps.cur_freq);
  3451. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3452. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3453. dev_priv->rps.efficient_freq);
  3454. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3455. gen6_enable_rps_interrupts(dev);
  3456. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3457. }
  3458. void ironlake_teardown_rc6(struct drm_device *dev)
  3459. {
  3460. struct drm_i915_private *dev_priv = dev->dev_private;
  3461. if (dev_priv->ips.renderctx) {
  3462. i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
  3463. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3464. dev_priv->ips.renderctx = NULL;
  3465. }
  3466. if (dev_priv->ips.pwrctx) {
  3467. i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
  3468. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3469. dev_priv->ips.pwrctx = NULL;
  3470. }
  3471. }
  3472. static void ironlake_disable_rc6(struct drm_device *dev)
  3473. {
  3474. struct drm_i915_private *dev_priv = dev->dev_private;
  3475. if (I915_READ(PWRCTXA)) {
  3476. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3477. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3478. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3479. 50);
  3480. I915_WRITE(PWRCTXA, 0);
  3481. POSTING_READ(PWRCTXA);
  3482. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3483. POSTING_READ(RSTDBYCTL);
  3484. }
  3485. }
  3486. static int ironlake_setup_rc6(struct drm_device *dev)
  3487. {
  3488. struct drm_i915_private *dev_priv = dev->dev_private;
  3489. if (dev_priv->ips.renderctx == NULL)
  3490. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3491. if (!dev_priv->ips.renderctx)
  3492. return -ENOMEM;
  3493. if (dev_priv->ips.pwrctx == NULL)
  3494. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3495. if (!dev_priv->ips.pwrctx) {
  3496. ironlake_teardown_rc6(dev);
  3497. return -ENOMEM;
  3498. }
  3499. return 0;
  3500. }
  3501. static void ironlake_enable_rc6(struct drm_device *dev)
  3502. {
  3503. struct drm_i915_private *dev_priv = dev->dev_private;
  3504. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  3505. bool was_interruptible;
  3506. int ret;
  3507. /* rc6 disabled by default due to repeated reports of hanging during
  3508. * boot and resume.
  3509. */
  3510. if (!intel_enable_rc6(dev))
  3511. return;
  3512. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3513. ret = ironlake_setup_rc6(dev);
  3514. if (ret)
  3515. return;
  3516. was_interruptible = dev_priv->mm.interruptible;
  3517. dev_priv->mm.interruptible = false;
  3518. /*
  3519. * GPU can automatically power down the render unit if given a page
  3520. * to save state.
  3521. */
  3522. ret = intel_ring_begin(ring, 6);
  3523. if (ret) {
  3524. ironlake_teardown_rc6(dev);
  3525. dev_priv->mm.interruptible = was_interruptible;
  3526. return;
  3527. }
  3528. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3529. intel_ring_emit(ring, MI_SET_CONTEXT);
  3530. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3531. MI_MM_SPACE_GTT |
  3532. MI_SAVE_EXT_STATE_EN |
  3533. MI_RESTORE_EXT_STATE_EN |
  3534. MI_RESTORE_INHIBIT);
  3535. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3536. intel_ring_emit(ring, MI_NOOP);
  3537. intel_ring_emit(ring, MI_FLUSH);
  3538. intel_ring_advance(ring);
  3539. /*
  3540. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3541. * does an implicit flush, combined with MI_FLUSH above, it should be
  3542. * safe to assume that renderctx is valid
  3543. */
  3544. ret = intel_ring_idle(ring);
  3545. dev_priv->mm.interruptible = was_interruptible;
  3546. if (ret) {
  3547. DRM_ERROR("failed to enable ironlake power savings\n");
  3548. ironlake_teardown_rc6(dev);
  3549. return;
  3550. }
  3551. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3552. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3553. intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
  3554. }
  3555. static unsigned long intel_pxfreq(u32 vidfreq)
  3556. {
  3557. unsigned long freq;
  3558. int div = (vidfreq & 0x3f0000) >> 16;
  3559. int post = (vidfreq & 0x3000) >> 12;
  3560. int pre = (vidfreq & 0x7);
  3561. if (!pre)
  3562. return 0;
  3563. freq = ((div * 133333) / ((1<<post) * pre));
  3564. return freq;
  3565. }
  3566. static const struct cparams {
  3567. u16 i;
  3568. u16 t;
  3569. u16 m;
  3570. u16 c;
  3571. } cparams[] = {
  3572. { 1, 1333, 301, 28664 },
  3573. { 1, 1066, 294, 24460 },
  3574. { 1, 800, 294, 25192 },
  3575. { 0, 1333, 276, 27605 },
  3576. { 0, 1066, 276, 27605 },
  3577. { 0, 800, 231, 23784 },
  3578. };
  3579. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3580. {
  3581. u64 total_count, diff, ret;
  3582. u32 count1, count2, count3, m = 0, c = 0;
  3583. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3584. int i;
  3585. assert_spin_locked(&mchdev_lock);
  3586. diff1 = now - dev_priv->ips.last_time1;
  3587. /* Prevent division-by-zero if we are asking too fast.
  3588. * Also, we don't get interesting results if we are polling
  3589. * faster than once in 10ms, so just return the saved value
  3590. * in such cases.
  3591. */
  3592. if (diff1 <= 10)
  3593. return dev_priv->ips.chipset_power;
  3594. count1 = I915_READ(DMIEC);
  3595. count2 = I915_READ(DDREC);
  3596. count3 = I915_READ(CSIEC);
  3597. total_count = count1 + count2 + count3;
  3598. /* FIXME: handle per-counter overflow */
  3599. if (total_count < dev_priv->ips.last_count1) {
  3600. diff = ~0UL - dev_priv->ips.last_count1;
  3601. diff += total_count;
  3602. } else {
  3603. diff = total_count - dev_priv->ips.last_count1;
  3604. }
  3605. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3606. if (cparams[i].i == dev_priv->ips.c_m &&
  3607. cparams[i].t == dev_priv->ips.r_t) {
  3608. m = cparams[i].m;
  3609. c = cparams[i].c;
  3610. break;
  3611. }
  3612. }
  3613. diff = div_u64(diff, diff1);
  3614. ret = ((m * diff) + c);
  3615. ret = div_u64(ret, 10);
  3616. dev_priv->ips.last_count1 = total_count;
  3617. dev_priv->ips.last_time1 = now;
  3618. dev_priv->ips.chipset_power = ret;
  3619. return ret;
  3620. }
  3621. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3622. {
  3623. struct drm_device *dev = dev_priv->dev;
  3624. unsigned long val;
  3625. if (INTEL_INFO(dev)->gen != 5)
  3626. return 0;
  3627. spin_lock_irq(&mchdev_lock);
  3628. val = __i915_chipset_val(dev_priv);
  3629. spin_unlock_irq(&mchdev_lock);
  3630. return val;
  3631. }
  3632. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3633. {
  3634. unsigned long m, x, b;
  3635. u32 tsfs;
  3636. tsfs = I915_READ(TSFS);
  3637. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3638. x = I915_READ8(TR1);
  3639. b = tsfs & TSFS_INTR_MASK;
  3640. return ((m * x) / 127) - b;
  3641. }
  3642. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3643. {
  3644. struct drm_device *dev = dev_priv->dev;
  3645. static const struct v_table {
  3646. u16 vd; /* in .1 mil */
  3647. u16 vm; /* in .1 mil */
  3648. } v_table[] = {
  3649. { 0, 0, },
  3650. { 375, 0, },
  3651. { 500, 0, },
  3652. { 625, 0, },
  3653. { 750, 0, },
  3654. { 875, 0, },
  3655. { 1000, 0, },
  3656. { 1125, 0, },
  3657. { 4125, 3000, },
  3658. { 4125, 3000, },
  3659. { 4125, 3000, },
  3660. { 4125, 3000, },
  3661. { 4125, 3000, },
  3662. { 4125, 3000, },
  3663. { 4125, 3000, },
  3664. { 4125, 3000, },
  3665. { 4125, 3000, },
  3666. { 4125, 3000, },
  3667. { 4125, 3000, },
  3668. { 4125, 3000, },
  3669. { 4125, 3000, },
  3670. { 4125, 3000, },
  3671. { 4125, 3000, },
  3672. { 4125, 3000, },
  3673. { 4125, 3000, },
  3674. { 4125, 3000, },
  3675. { 4125, 3000, },
  3676. { 4125, 3000, },
  3677. { 4125, 3000, },
  3678. { 4125, 3000, },
  3679. { 4125, 3000, },
  3680. { 4125, 3000, },
  3681. { 4250, 3125, },
  3682. { 4375, 3250, },
  3683. { 4500, 3375, },
  3684. { 4625, 3500, },
  3685. { 4750, 3625, },
  3686. { 4875, 3750, },
  3687. { 5000, 3875, },
  3688. { 5125, 4000, },
  3689. { 5250, 4125, },
  3690. { 5375, 4250, },
  3691. { 5500, 4375, },
  3692. { 5625, 4500, },
  3693. { 5750, 4625, },
  3694. { 5875, 4750, },
  3695. { 6000, 4875, },
  3696. { 6125, 5000, },
  3697. { 6250, 5125, },
  3698. { 6375, 5250, },
  3699. { 6500, 5375, },
  3700. { 6625, 5500, },
  3701. { 6750, 5625, },
  3702. { 6875, 5750, },
  3703. { 7000, 5875, },
  3704. { 7125, 6000, },
  3705. { 7250, 6125, },
  3706. { 7375, 6250, },
  3707. { 7500, 6375, },
  3708. { 7625, 6500, },
  3709. { 7750, 6625, },
  3710. { 7875, 6750, },
  3711. { 8000, 6875, },
  3712. { 8125, 7000, },
  3713. { 8250, 7125, },
  3714. { 8375, 7250, },
  3715. { 8500, 7375, },
  3716. { 8625, 7500, },
  3717. { 8750, 7625, },
  3718. { 8875, 7750, },
  3719. { 9000, 7875, },
  3720. { 9125, 8000, },
  3721. { 9250, 8125, },
  3722. { 9375, 8250, },
  3723. { 9500, 8375, },
  3724. { 9625, 8500, },
  3725. { 9750, 8625, },
  3726. { 9875, 8750, },
  3727. { 10000, 8875, },
  3728. { 10125, 9000, },
  3729. { 10250, 9125, },
  3730. { 10375, 9250, },
  3731. { 10500, 9375, },
  3732. { 10625, 9500, },
  3733. { 10750, 9625, },
  3734. { 10875, 9750, },
  3735. { 11000, 9875, },
  3736. { 11125, 10000, },
  3737. { 11250, 10125, },
  3738. { 11375, 10250, },
  3739. { 11500, 10375, },
  3740. { 11625, 10500, },
  3741. { 11750, 10625, },
  3742. { 11875, 10750, },
  3743. { 12000, 10875, },
  3744. { 12125, 11000, },
  3745. { 12250, 11125, },
  3746. { 12375, 11250, },
  3747. { 12500, 11375, },
  3748. { 12625, 11500, },
  3749. { 12750, 11625, },
  3750. { 12875, 11750, },
  3751. { 13000, 11875, },
  3752. { 13125, 12000, },
  3753. { 13250, 12125, },
  3754. { 13375, 12250, },
  3755. { 13500, 12375, },
  3756. { 13625, 12500, },
  3757. { 13750, 12625, },
  3758. { 13875, 12750, },
  3759. { 14000, 12875, },
  3760. { 14125, 13000, },
  3761. { 14250, 13125, },
  3762. { 14375, 13250, },
  3763. { 14500, 13375, },
  3764. { 14625, 13500, },
  3765. { 14750, 13625, },
  3766. { 14875, 13750, },
  3767. { 15000, 13875, },
  3768. { 15125, 14000, },
  3769. { 15250, 14125, },
  3770. { 15375, 14250, },
  3771. { 15500, 14375, },
  3772. { 15625, 14500, },
  3773. { 15750, 14625, },
  3774. { 15875, 14750, },
  3775. { 16000, 14875, },
  3776. { 16125, 15000, },
  3777. };
  3778. if (INTEL_INFO(dev)->is_mobile)
  3779. return v_table[pxvid].vm;
  3780. else
  3781. return v_table[pxvid].vd;
  3782. }
  3783. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3784. {
  3785. struct timespec now, diff1;
  3786. u64 diff;
  3787. unsigned long diffms;
  3788. u32 count;
  3789. assert_spin_locked(&mchdev_lock);
  3790. getrawmonotonic(&now);
  3791. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3792. /* Don't divide by 0 */
  3793. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3794. if (!diffms)
  3795. return;
  3796. count = I915_READ(GFXEC);
  3797. if (count < dev_priv->ips.last_count2) {
  3798. diff = ~0UL - dev_priv->ips.last_count2;
  3799. diff += count;
  3800. } else {
  3801. diff = count - dev_priv->ips.last_count2;
  3802. }
  3803. dev_priv->ips.last_count2 = count;
  3804. dev_priv->ips.last_time2 = now;
  3805. /* More magic constants... */
  3806. diff = diff * 1181;
  3807. diff = div_u64(diff, diffms * 10);
  3808. dev_priv->ips.gfx_power = diff;
  3809. }
  3810. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3811. {
  3812. struct drm_device *dev = dev_priv->dev;
  3813. if (INTEL_INFO(dev)->gen != 5)
  3814. return;
  3815. spin_lock_irq(&mchdev_lock);
  3816. __i915_update_gfx_val(dev_priv);
  3817. spin_unlock_irq(&mchdev_lock);
  3818. }
  3819. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3820. {
  3821. unsigned long t, corr, state1, corr2, state2;
  3822. u32 pxvid, ext_v;
  3823. assert_spin_locked(&mchdev_lock);
  3824. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  3825. pxvid = (pxvid >> 24) & 0x7f;
  3826. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3827. state1 = ext_v;
  3828. t = i915_mch_val(dev_priv);
  3829. /* Revel in the empirically derived constants */
  3830. /* Correction factor in 1/100000 units */
  3831. if (t > 80)
  3832. corr = ((t * 2349) + 135940);
  3833. else if (t >= 50)
  3834. corr = ((t * 964) + 29317);
  3835. else /* < 50 */
  3836. corr = ((t * 301) + 1004);
  3837. corr = corr * ((150142 * state1) / 10000 - 78642);
  3838. corr /= 100000;
  3839. corr2 = (corr * dev_priv->ips.corr);
  3840. state2 = (corr2 * state1) / 10000;
  3841. state2 /= 100; /* convert to mW */
  3842. __i915_update_gfx_val(dev_priv);
  3843. return dev_priv->ips.gfx_power + state2;
  3844. }
  3845. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3846. {
  3847. struct drm_device *dev = dev_priv->dev;
  3848. unsigned long val;
  3849. if (INTEL_INFO(dev)->gen != 5)
  3850. return 0;
  3851. spin_lock_irq(&mchdev_lock);
  3852. val = __i915_gfx_val(dev_priv);
  3853. spin_unlock_irq(&mchdev_lock);
  3854. return val;
  3855. }
  3856. /**
  3857. * i915_read_mch_val - return value for IPS use
  3858. *
  3859. * Calculate and return a value for the IPS driver to use when deciding whether
  3860. * we have thermal and power headroom to increase CPU or GPU power budget.
  3861. */
  3862. unsigned long i915_read_mch_val(void)
  3863. {
  3864. struct drm_i915_private *dev_priv;
  3865. unsigned long chipset_val, graphics_val, ret = 0;
  3866. spin_lock_irq(&mchdev_lock);
  3867. if (!i915_mch_dev)
  3868. goto out_unlock;
  3869. dev_priv = i915_mch_dev;
  3870. chipset_val = __i915_chipset_val(dev_priv);
  3871. graphics_val = __i915_gfx_val(dev_priv);
  3872. ret = chipset_val + graphics_val;
  3873. out_unlock:
  3874. spin_unlock_irq(&mchdev_lock);
  3875. return ret;
  3876. }
  3877. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3878. /**
  3879. * i915_gpu_raise - raise GPU frequency limit
  3880. *
  3881. * Raise the limit; IPS indicates we have thermal headroom.
  3882. */
  3883. bool i915_gpu_raise(void)
  3884. {
  3885. struct drm_i915_private *dev_priv;
  3886. bool ret = true;
  3887. spin_lock_irq(&mchdev_lock);
  3888. if (!i915_mch_dev) {
  3889. ret = false;
  3890. goto out_unlock;
  3891. }
  3892. dev_priv = i915_mch_dev;
  3893. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3894. dev_priv->ips.max_delay--;
  3895. out_unlock:
  3896. spin_unlock_irq(&mchdev_lock);
  3897. return ret;
  3898. }
  3899. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3900. /**
  3901. * i915_gpu_lower - lower GPU frequency limit
  3902. *
  3903. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3904. * frequency maximum.
  3905. */
  3906. bool i915_gpu_lower(void)
  3907. {
  3908. struct drm_i915_private *dev_priv;
  3909. bool ret = true;
  3910. spin_lock_irq(&mchdev_lock);
  3911. if (!i915_mch_dev) {
  3912. ret = false;
  3913. goto out_unlock;
  3914. }
  3915. dev_priv = i915_mch_dev;
  3916. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3917. dev_priv->ips.max_delay++;
  3918. out_unlock:
  3919. spin_unlock_irq(&mchdev_lock);
  3920. return ret;
  3921. }
  3922. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3923. /**
  3924. * i915_gpu_busy - indicate GPU business to IPS
  3925. *
  3926. * Tell the IPS driver whether or not the GPU is busy.
  3927. */
  3928. bool i915_gpu_busy(void)
  3929. {
  3930. struct drm_i915_private *dev_priv;
  3931. struct intel_engine_cs *ring;
  3932. bool ret = false;
  3933. int i;
  3934. spin_lock_irq(&mchdev_lock);
  3935. if (!i915_mch_dev)
  3936. goto out_unlock;
  3937. dev_priv = i915_mch_dev;
  3938. for_each_ring(ring, dev_priv, i)
  3939. ret |= !list_empty(&ring->request_list);
  3940. out_unlock:
  3941. spin_unlock_irq(&mchdev_lock);
  3942. return ret;
  3943. }
  3944. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3945. /**
  3946. * i915_gpu_turbo_disable - disable graphics turbo
  3947. *
  3948. * Disable graphics turbo by resetting the max frequency and setting the
  3949. * current frequency to the default.
  3950. */
  3951. bool i915_gpu_turbo_disable(void)
  3952. {
  3953. struct drm_i915_private *dev_priv;
  3954. bool ret = true;
  3955. spin_lock_irq(&mchdev_lock);
  3956. if (!i915_mch_dev) {
  3957. ret = false;
  3958. goto out_unlock;
  3959. }
  3960. dev_priv = i915_mch_dev;
  3961. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3962. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3963. ret = false;
  3964. out_unlock:
  3965. spin_unlock_irq(&mchdev_lock);
  3966. return ret;
  3967. }
  3968. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3969. /**
  3970. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3971. * IPS got loaded first.
  3972. *
  3973. * This awkward dance is so that neither module has to depend on the
  3974. * other in order for IPS to do the appropriate communication of
  3975. * GPU turbo limits to i915.
  3976. */
  3977. static void
  3978. ips_ping_for_i915_load(void)
  3979. {
  3980. void (*link)(void);
  3981. link = symbol_get(ips_link_to_i915_driver);
  3982. if (link) {
  3983. link();
  3984. symbol_put(ips_link_to_i915_driver);
  3985. }
  3986. }
  3987. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3988. {
  3989. /* We only register the i915 ips part with intel-ips once everything is
  3990. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3991. spin_lock_irq(&mchdev_lock);
  3992. i915_mch_dev = dev_priv;
  3993. spin_unlock_irq(&mchdev_lock);
  3994. ips_ping_for_i915_load();
  3995. }
  3996. void intel_gpu_ips_teardown(void)
  3997. {
  3998. spin_lock_irq(&mchdev_lock);
  3999. i915_mch_dev = NULL;
  4000. spin_unlock_irq(&mchdev_lock);
  4001. }
  4002. static void intel_init_emon(struct drm_device *dev)
  4003. {
  4004. struct drm_i915_private *dev_priv = dev->dev_private;
  4005. u32 lcfuse;
  4006. u8 pxw[16];
  4007. int i;
  4008. /* Disable to program */
  4009. I915_WRITE(ECR, 0);
  4010. POSTING_READ(ECR);
  4011. /* Program energy weights for various events */
  4012. I915_WRITE(SDEW, 0x15040d00);
  4013. I915_WRITE(CSIEW0, 0x007f0000);
  4014. I915_WRITE(CSIEW1, 0x1e220004);
  4015. I915_WRITE(CSIEW2, 0x04000004);
  4016. for (i = 0; i < 5; i++)
  4017. I915_WRITE(PEW + (i * 4), 0);
  4018. for (i = 0; i < 3; i++)
  4019. I915_WRITE(DEW + (i * 4), 0);
  4020. /* Program P-state weights to account for frequency power adjustment */
  4021. for (i = 0; i < 16; i++) {
  4022. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4023. unsigned long freq = intel_pxfreq(pxvidfreq);
  4024. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4025. PXVFREQ_PX_SHIFT;
  4026. unsigned long val;
  4027. val = vid * vid;
  4028. val *= (freq / 1000);
  4029. val *= 255;
  4030. val /= (127*127*900);
  4031. if (val > 0xff)
  4032. DRM_ERROR("bad pxval: %ld\n", val);
  4033. pxw[i] = val;
  4034. }
  4035. /* Render standby states get 0 weight */
  4036. pxw[14] = 0;
  4037. pxw[15] = 0;
  4038. for (i = 0; i < 4; i++) {
  4039. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4040. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4041. I915_WRITE(PXW + (i * 4), val);
  4042. }
  4043. /* Adjust magic regs to magic values (more experimental results) */
  4044. I915_WRITE(OGW0, 0);
  4045. I915_WRITE(OGW1, 0);
  4046. I915_WRITE(EG0, 0x00007f00);
  4047. I915_WRITE(EG1, 0x0000000e);
  4048. I915_WRITE(EG2, 0x000e0000);
  4049. I915_WRITE(EG3, 0x68000300);
  4050. I915_WRITE(EG4, 0x42000000);
  4051. I915_WRITE(EG5, 0x00140031);
  4052. I915_WRITE(EG6, 0);
  4053. I915_WRITE(EG7, 0);
  4054. for (i = 0; i < 8; i++)
  4055. I915_WRITE(PXWL + (i * 4), 0);
  4056. /* Enable PMON + select events */
  4057. I915_WRITE(ECR, 0x80000019);
  4058. lcfuse = I915_READ(LCFUSE02);
  4059. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4060. }
  4061. void intel_init_gt_powersave(struct drm_device *dev)
  4062. {
  4063. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4064. if (IS_CHERRYVIEW(dev))
  4065. cherryview_init_gt_powersave(dev);
  4066. else if (IS_VALLEYVIEW(dev))
  4067. valleyview_init_gt_powersave(dev);
  4068. }
  4069. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4070. {
  4071. if (IS_CHERRYVIEW(dev))
  4072. return;
  4073. else if (IS_VALLEYVIEW(dev))
  4074. valleyview_cleanup_gt_powersave(dev);
  4075. }
  4076. /**
  4077. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4078. * @dev: drm device
  4079. *
  4080. * We don't want to disable RC6 or other features here, we just want
  4081. * to make sure any work we've queued has finished and won't bother
  4082. * us while we're suspended.
  4083. */
  4084. void intel_suspend_gt_powersave(struct drm_device *dev)
  4085. {
  4086. struct drm_i915_private *dev_priv = dev->dev_private;
  4087. /* Interrupts should be disabled already to avoid re-arming. */
  4088. WARN_ON(dev->irq_enabled && !dev_priv->pm.irqs_disabled);
  4089. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4090. cancel_work_sync(&dev_priv->rps.work);
  4091. }
  4092. void intel_disable_gt_powersave(struct drm_device *dev)
  4093. {
  4094. struct drm_i915_private *dev_priv = dev->dev_private;
  4095. /* Interrupts should be disabled already to avoid re-arming. */
  4096. WARN_ON(dev->irq_enabled && !dev_priv->pm.irqs_disabled);
  4097. if (IS_IRONLAKE_M(dev)) {
  4098. ironlake_disable_drps(dev);
  4099. ironlake_disable_rc6(dev);
  4100. } else if (INTEL_INFO(dev)->gen >= 6) {
  4101. intel_suspend_gt_powersave(dev);
  4102. mutex_lock(&dev_priv->rps.hw_lock);
  4103. if (IS_CHERRYVIEW(dev))
  4104. cherryview_disable_rps(dev);
  4105. else if (IS_VALLEYVIEW(dev))
  4106. valleyview_disable_rps(dev);
  4107. else
  4108. gen6_disable_rps(dev);
  4109. dev_priv->rps.enabled = false;
  4110. mutex_unlock(&dev_priv->rps.hw_lock);
  4111. }
  4112. }
  4113. static void intel_gen6_powersave_work(struct work_struct *work)
  4114. {
  4115. struct drm_i915_private *dev_priv =
  4116. container_of(work, struct drm_i915_private,
  4117. rps.delayed_resume_work.work);
  4118. struct drm_device *dev = dev_priv->dev;
  4119. mutex_lock(&dev_priv->rps.hw_lock);
  4120. if (IS_CHERRYVIEW(dev)) {
  4121. cherryview_enable_rps(dev);
  4122. } else if (IS_VALLEYVIEW(dev)) {
  4123. valleyview_enable_rps(dev);
  4124. } else if (IS_BROADWELL(dev)) {
  4125. gen8_enable_rps(dev);
  4126. __gen6_update_ring_freq(dev);
  4127. } else {
  4128. gen6_enable_rps(dev);
  4129. __gen6_update_ring_freq(dev);
  4130. }
  4131. dev_priv->rps.enabled = true;
  4132. mutex_unlock(&dev_priv->rps.hw_lock);
  4133. intel_runtime_pm_put(dev_priv);
  4134. }
  4135. void intel_enable_gt_powersave(struct drm_device *dev)
  4136. {
  4137. struct drm_i915_private *dev_priv = dev->dev_private;
  4138. if (IS_IRONLAKE_M(dev)) {
  4139. mutex_lock(&dev->struct_mutex);
  4140. ironlake_enable_drps(dev);
  4141. ironlake_enable_rc6(dev);
  4142. intel_init_emon(dev);
  4143. mutex_unlock(&dev->struct_mutex);
  4144. } else if (INTEL_INFO(dev)->gen >= 6) {
  4145. /*
  4146. * PCU communication is slow and this doesn't need to be
  4147. * done at any specific time, so do this out of our fast path
  4148. * to make resume and init faster.
  4149. *
  4150. * We depend on the HW RC6 power context save/restore
  4151. * mechanism when entering D3 through runtime PM suspend. So
  4152. * disable RPM until RPS/RC6 is properly setup. We can only
  4153. * get here via the driver load/system resume/runtime resume
  4154. * paths, so the _noresume version is enough (and in case of
  4155. * runtime resume it's necessary).
  4156. */
  4157. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4158. round_jiffies_up_relative(HZ)))
  4159. intel_runtime_pm_get_noresume(dev_priv);
  4160. }
  4161. }
  4162. void intel_reset_gt_powersave(struct drm_device *dev)
  4163. {
  4164. struct drm_i915_private *dev_priv = dev->dev_private;
  4165. dev_priv->rps.enabled = false;
  4166. intel_enable_gt_powersave(dev);
  4167. }
  4168. static void ibx_init_clock_gating(struct drm_device *dev)
  4169. {
  4170. struct drm_i915_private *dev_priv = dev->dev_private;
  4171. /*
  4172. * On Ibex Peak and Cougar Point, we need to disable clock
  4173. * gating for the panel power sequencer or it will fail to
  4174. * start up when no ports are active.
  4175. */
  4176. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4177. }
  4178. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4179. {
  4180. struct drm_i915_private *dev_priv = dev->dev_private;
  4181. int pipe;
  4182. for_each_pipe(pipe) {
  4183. I915_WRITE(DSPCNTR(pipe),
  4184. I915_READ(DSPCNTR(pipe)) |
  4185. DISPPLANE_TRICKLE_FEED_DISABLE);
  4186. intel_flush_primary_plane(dev_priv, pipe);
  4187. }
  4188. }
  4189. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4190. {
  4191. struct drm_i915_private *dev_priv = dev->dev_private;
  4192. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4193. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4194. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4195. /*
  4196. * Don't touch WM1S_LP_EN here.
  4197. * Doing so could cause underruns.
  4198. */
  4199. }
  4200. static void ironlake_init_clock_gating(struct drm_device *dev)
  4201. {
  4202. struct drm_i915_private *dev_priv = dev->dev_private;
  4203. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4204. /*
  4205. * Required for FBC
  4206. * WaFbcDisableDpfcClockGating:ilk
  4207. */
  4208. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4209. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4210. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4211. I915_WRITE(PCH_3DCGDIS0,
  4212. MARIUNIT_CLOCK_GATE_DISABLE |
  4213. SVSMUNIT_CLOCK_GATE_DISABLE);
  4214. I915_WRITE(PCH_3DCGDIS1,
  4215. VFMUNIT_CLOCK_GATE_DISABLE);
  4216. /*
  4217. * According to the spec the following bits should be set in
  4218. * order to enable memory self-refresh
  4219. * The bit 22/21 of 0x42004
  4220. * The bit 5 of 0x42020
  4221. * The bit 15 of 0x45000
  4222. */
  4223. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4224. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4225. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4226. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4227. I915_WRITE(DISP_ARB_CTL,
  4228. (I915_READ(DISP_ARB_CTL) |
  4229. DISP_FBC_WM_DIS));
  4230. ilk_init_lp_watermarks(dev);
  4231. /*
  4232. * Based on the document from hardware guys the following bits
  4233. * should be set unconditionally in order to enable FBC.
  4234. * The bit 22 of 0x42000
  4235. * The bit 22 of 0x42004
  4236. * The bit 7,8,9 of 0x42020.
  4237. */
  4238. if (IS_IRONLAKE_M(dev)) {
  4239. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4240. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4241. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4242. ILK_FBCQ_DIS);
  4243. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4244. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4245. ILK_DPARB_GATE);
  4246. }
  4247. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4248. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4249. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4250. ILK_ELPIN_409_SELECT);
  4251. I915_WRITE(_3D_CHICKEN2,
  4252. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4253. _3D_CHICKEN2_WM_READ_PIPELINED);
  4254. /* WaDisableRenderCachePipelinedFlush:ilk */
  4255. I915_WRITE(CACHE_MODE_0,
  4256. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4257. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4258. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4259. g4x_disable_trickle_feed(dev);
  4260. ibx_init_clock_gating(dev);
  4261. }
  4262. static void cpt_init_clock_gating(struct drm_device *dev)
  4263. {
  4264. struct drm_i915_private *dev_priv = dev->dev_private;
  4265. int pipe;
  4266. uint32_t val;
  4267. /*
  4268. * On Ibex Peak and Cougar Point, we need to disable clock
  4269. * gating for the panel power sequencer or it will fail to
  4270. * start up when no ports are active.
  4271. */
  4272. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4273. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4274. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4275. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4276. DPLS_EDP_PPS_FIX_DIS);
  4277. /* The below fixes the weird display corruption, a few pixels shifted
  4278. * downward, on (only) LVDS of some HP laptops with IVY.
  4279. */
  4280. for_each_pipe(pipe) {
  4281. val = I915_READ(TRANS_CHICKEN2(pipe));
  4282. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4283. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4284. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4285. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4286. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4287. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4288. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4289. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4290. }
  4291. /* WADP0ClockGatingDisable */
  4292. for_each_pipe(pipe) {
  4293. I915_WRITE(TRANS_CHICKEN1(pipe),
  4294. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4295. }
  4296. }
  4297. static void gen6_check_mch_setup(struct drm_device *dev)
  4298. {
  4299. struct drm_i915_private *dev_priv = dev->dev_private;
  4300. uint32_t tmp;
  4301. tmp = I915_READ(MCH_SSKPD);
  4302. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4303. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4304. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4305. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4306. }
  4307. }
  4308. static void gen6_init_clock_gating(struct drm_device *dev)
  4309. {
  4310. struct drm_i915_private *dev_priv = dev->dev_private;
  4311. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4312. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4313. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4314. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4315. ILK_ELPIN_409_SELECT);
  4316. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4317. I915_WRITE(_3D_CHICKEN,
  4318. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4319. /* WaSetupGtModeTdRowDispatch:snb */
  4320. if (IS_SNB_GT1(dev))
  4321. I915_WRITE(GEN6_GT_MODE,
  4322. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4323. /* WaDisable_RenderCache_OperationalFlush:snb */
  4324. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4325. /*
  4326. * BSpec recoomends 8x4 when MSAA is used,
  4327. * however in practice 16x4 seems fastest.
  4328. *
  4329. * Note that PS/WM thread counts depend on the WIZ hashing
  4330. * disable bit, which we don't touch here, but it's good
  4331. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4332. */
  4333. I915_WRITE(GEN6_GT_MODE,
  4334. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4335. ilk_init_lp_watermarks(dev);
  4336. I915_WRITE(CACHE_MODE_0,
  4337. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4338. I915_WRITE(GEN6_UCGCTL1,
  4339. I915_READ(GEN6_UCGCTL1) |
  4340. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4341. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4342. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4343. * gating disable must be set. Failure to set it results in
  4344. * flickering pixels due to Z write ordering failures after
  4345. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4346. * Sanctuary and Tropics, and apparently anything else with
  4347. * alpha test or pixel discard.
  4348. *
  4349. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4350. * but we didn't debug actual testcases to find it out.
  4351. *
  4352. * WaDisableRCCUnitClockGating:snb
  4353. * WaDisableRCPBUnitClockGating:snb
  4354. */
  4355. I915_WRITE(GEN6_UCGCTL2,
  4356. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4357. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4358. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4359. I915_WRITE(_3D_CHICKEN3,
  4360. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4361. /*
  4362. * Bspec says:
  4363. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4364. * 3DSTATE_SF number of SF output attributes is more than 16."
  4365. */
  4366. I915_WRITE(_3D_CHICKEN3,
  4367. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4368. /*
  4369. * According to the spec the following bits should be
  4370. * set in order to enable memory self-refresh and fbc:
  4371. * The bit21 and bit22 of 0x42000
  4372. * The bit21 and bit22 of 0x42004
  4373. * The bit5 and bit7 of 0x42020
  4374. * The bit14 of 0x70180
  4375. * The bit14 of 0x71180
  4376. *
  4377. * WaFbcAsynchFlipDisableFbcQueue:snb
  4378. */
  4379. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4380. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4381. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4382. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4383. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4384. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4385. I915_WRITE(ILK_DSPCLK_GATE_D,
  4386. I915_READ(ILK_DSPCLK_GATE_D) |
  4387. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4388. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4389. g4x_disable_trickle_feed(dev);
  4390. cpt_init_clock_gating(dev);
  4391. gen6_check_mch_setup(dev);
  4392. }
  4393. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4394. {
  4395. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4396. /*
  4397. * WaVSThreadDispatchOverride:ivb,vlv
  4398. *
  4399. * This actually overrides the dispatch
  4400. * mode for all thread types.
  4401. */
  4402. reg &= ~GEN7_FF_SCHED_MASK;
  4403. reg |= GEN7_FF_TS_SCHED_HW;
  4404. reg |= GEN7_FF_VS_SCHED_HW;
  4405. reg |= GEN7_FF_DS_SCHED_HW;
  4406. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4407. }
  4408. static void lpt_init_clock_gating(struct drm_device *dev)
  4409. {
  4410. struct drm_i915_private *dev_priv = dev->dev_private;
  4411. /*
  4412. * TODO: this bit should only be enabled when really needed, then
  4413. * disabled when not needed anymore in order to save power.
  4414. */
  4415. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4416. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4417. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4418. PCH_LP_PARTITION_LEVEL_DISABLE);
  4419. /* WADPOClockGatingDisable:hsw */
  4420. I915_WRITE(_TRANSA_CHICKEN1,
  4421. I915_READ(_TRANSA_CHICKEN1) |
  4422. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4423. }
  4424. static void lpt_suspend_hw(struct drm_device *dev)
  4425. {
  4426. struct drm_i915_private *dev_priv = dev->dev_private;
  4427. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4428. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4429. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4430. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4431. }
  4432. }
  4433. static void gen8_init_clock_gating(struct drm_device *dev)
  4434. {
  4435. struct drm_i915_private *dev_priv = dev->dev_private;
  4436. enum pipe pipe;
  4437. I915_WRITE(WM3_LP_ILK, 0);
  4438. I915_WRITE(WM2_LP_ILK, 0);
  4439. I915_WRITE(WM1_LP_ILK, 0);
  4440. /* FIXME(BDW): Check all the w/a, some might only apply to
  4441. * pre-production hw. */
  4442. /* WaDisablePartialInstShootdown:bdw */
  4443. I915_WRITE(GEN8_ROW_CHICKEN,
  4444. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  4445. /* WaDisableThreadStallDopClockGating:bdw */
  4446. /* FIXME: Unclear whether we really need this on production bdw. */
  4447. I915_WRITE(GEN8_ROW_CHICKEN,
  4448. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  4449. /*
  4450. * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
  4451. * pre-production hardware
  4452. */
  4453. I915_WRITE(HALF_SLICE_CHICKEN3,
  4454. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
  4455. I915_WRITE(HALF_SLICE_CHICKEN3,
  4456. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4457. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4458. I915_WRITE(_3D_CHICKEN3,
  4459. _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
  4460. I915_WRITE(COMMON_SLICE_CHICKEN2,
  4461. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  4462. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4463. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  4464. /* WaDisableDopClockGating:bdw May not be needed for production */
  4465. I915_WRITE(GEN7_ROW_CHICKEN2,
  4466. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4467. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4468. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4469. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4470. I915_WRITE(CHICKEN_PAR1_1,
  4471. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4472. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4473. for_each_pipe(pipe) {
  4474. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  4475. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  4476. BDW_DPRS_MASK_VBLANK_SRD);
  4477. }
  4478. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  4479. * workaround for for a possible hang in the unlikely event a TLB
  4480. * invalidation occurs during a PSD flush.
  4481. */
  4482. I915_WRITE(HDC_CHICKEN0,
  4483. I915_READ(HDC_CHICKEN0) |
  4484. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
  4485. /* WaVSRefCountFullforceMissDisable:bdw */
  4486. /* WaDSRefCountFullforceMissDisable:bdw */
  4487. I915_WRITE(GEN7_FF_THREAD_MODE,
  4488. I915_READ(GEN7_FF_THREAD_MODE) &
  4489. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4490. /*
  4491. * BSpec recommends 8x4 when MSAA is used,
  4492. * however in practice 16x4 seems fastest.
  4493. *
  4494. * Note that PS/WM thread counts depend on the WIZ hashing
  4495. * disable bit, which we don't touch here, but it's good
  4496. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4497. */
  4498. I915_WRITE(GEN7_GT_MODE,
  4499. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4500. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4501. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4502. /* WaDisableSDEUnitClockGating:bdw */
  4503. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4504. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4505. /* Wa4x4STCOptimizationDisable:bdw */
  4506. I915_WRITE(CACHE_MODE_1,
  4507. _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  4508. }
  4509. static void haswell_init_clock_gating(struct drm_device *dev)
  4510. {
  4511. struct drm_i915_private *dev_priv = dev->dev_private;
  4512. ilk_init_lp_watermarks(dev);
  4513. /* L3 caching of data atomics doesn't work -- disable it. */
  4514. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4515. I915_WRITE(HSW_ROW_CHICKEN3,
  4516. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4517. /* This is required by WaCatErrorRejectionIssue:hsw */
  4518. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4519. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4520. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4521. /* WaVSRefCountFullforceMissDisable:hsw */
  4522. I915_WRITE(GEN7_FF_THREAD_MODE,
  4523. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  4524. /* WaDisable_RenderCache_OperationalFlush:hsw */
  4525. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4526. /* enable HiZ Raw Stall Optimization */
  4527. I915_WRITE(CACHE_MODE_0_GEN7,
  4528. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4529. /* WaDisable4x2SubspanOptimization:hsw */
  4530. I915_WRITE(CACHE_MODE_1,
  4531. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4532. /*
  4533. * BSpec recommends 8x4 when MSAA is used,
  4534. * however in practice 16x4 seems fastest.
  4535. *
  4536. * Note that PS/WM thread counts depend on the WIZ hashing
  4537. * disable bit, which we don't touch here, but it's good
  4538. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4539. */
  4540. I915_WRITE(GEN7_GT_MODE,
  4541. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4542. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4543. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4544. /* WaRsPkgCStateDisplayPMReq:hsw */
  4545. I915_WRITE(CHICKEN_PAR1_1,
  4546. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4547. lpt_init_clock_gating(dev);
  4548. }
  4549. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4550. {
  4551. struct drm_i915_private *dev_priv = dev->dev_private;
  4552. uint32_t snpcr;
  4553. ilk_init_lp_watermarks(dev);
  4554. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4555. /* WaDisableEarlyCull:ivb */
  4556. I915_WRITE(_3D_CHICKEN3,
  4557. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4558. /* WaDisableBackToBackFlipFix:ivb */
  4559. I915_WRITE(IVB_CHICKEN3,
  4560. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4561. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4562. /* WaDisablePSDDualDispatchEnable:ivb */
  4563. if (IS_IVB_GT1(dev))
  4564. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4565. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4566. /* WaDisable_RenderCache_OperationalFlush:ivb */
  4567. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4568. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4569. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4570. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4571. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4572. I915_WRITE(GEN7_L3CNTLREG1,
  4573. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4574. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4575. GEN7_WA_L3_CHICKEN_MODE);
  4576. if (IS_IVB_GT1(dev))
  4577. I915_WRITE(GEN7_ROW_CHICKEN2,
  4578. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4579. else {
  4580. /* must write both registers */
  4581. I915_WRITE(GEN7_ROW_CHICKEN2,
  4582. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4583. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4584. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4585. }
  4586. /* WaForceL3Serialization:ivb */
  4587. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4588. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4589. /*
  4590. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4591. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4592. */
  4593. I915_WRITE(GEN6_UCGCTL2,
  4594. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4595. /* This is required by WaCatErrorRejectionIssue:ivb */
  4596. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4597. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4598. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4599. g4x_disable_trickle_feed(dev);
  4600. gen7_setup_fixed_func_scheduler(dev_priv);
  4601. if (0) { /* causes HiZ corruption on ivb:gt1 */
  4602. /* enable HiZ Raw Stall Optimization */
  4603. I915_WRITE(CACHE_MODE_0_GEN7,
  4604. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4605. }
  4606. /* WaDisable4x2SubspanOptimization:ivb */
  4607. I915_WRITE(CACHE_MODE_1,
  4608. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4609. /*
  4610. * BSpec recommends 8x4 when MSAA is used,
  4611. * however in practice 16x4 seems fastest.
  4612. *
  4613. * Note that PS/WM thread counts depend on the WIZ hashing
  4614. * disable bit, which we don't touch here, but it's good
  4615. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4616. */
  4617. I915_WRITE(GEN7_GT_MODE,
  4618. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4619. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4620. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4621. snpcr |= GEN6_MBC_SNPCR_MED;
  4622. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4623. if (!HAS_PCH_NOP(dev))
  4624. cpt_init_clock_gating(dev);
  4625. gen6_check_mch_setup(dev);
  4626. }
  4627. static void valleyview_init_clock_gating(struct drm_device *dev)
  4628. {
  4629. struct drm_i915_private *dev_priv = dev->dev_private;
  4630. u32 val;
  4631. mutex_lock(&dev_priv->rps.hw_lock);
  4632. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4633. mutex_unlock(&dev_priv->rps.hw_lock);
  4634. switch ((val >> 6) & 3) {
  4635. case 0:
  4636. case 1:
  4637. dev_priv->mem_freq = 800;
  4638. break;
  4639. case 2:
  4640. dev_priv->mem_freq = 1066;
  4641. break;
  4642. case 3:
  4643. dev_priv->mem_freq = 1333;
  4644. break;
  4645. }
  4646. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  4647. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4648. /* WaDisableEarlyCull:vlv */
  4649. I915_WRITE(_3D_CHICKEN3,
  4650. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4651. /* WaDisableBackToBackFlipFix:vlv */
  4652. I915_WRITE(IVB_CHICKEN3,
  4653. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4654. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4655. /* WaPsdDispatchEnable:vlv */
  4656. /* WaDisablePSDDualDispatchEnable:vlv */
  4657. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4658. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4659. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4660. /* WaDisable_RenderCache_OperationalFlush:vlv */
  4661. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4662. /* WaForceL3Serialization:vlv */
  4663. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4664. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4665. /* WaDisableDopClockGating:vlv */
  4666. I915_WRITE(GEN7_ROW_CHICKEN2,
  4667. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4668. /* This is required by WaCatErrorRejectionIssue:vlv */
  4669. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4670. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4671. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4672. gen7_setup_fixed_func_scheduler(dev_priv);
  4673. /*
  4674. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4675. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4676. */
  4677. I915_WRITE(GEN6_UCGCTL2,
  4678. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4679. /* WaDisableL3Bank2xClockGate:vlv
  4680. * Disabling L3 clock gating- MMIO 940c[25] = 1
  4681. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  4682. I915_WRITE(GEN7_UCGCTL4,
  4683. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4684. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4685. /*
  4686. * BSpec says this must be set, even though
  4687. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  4688. */
  4689. I915_WRITE(CACHE_MODE_1,
  4690. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4691. /*
  4692. * WaIncreaseL3CreditsForVLVB0:vlv
  4693. * This is the hardware default actually.
  4694. */
  4695. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  4696. /*
  4697. * WaDisableVLVClockGating_VBIIssue:vlv
  4698. * Disable clock gating on th GCFG unit to prevent a delay
  4699. * in the reporting of vblank events.
  4700. */
  4701. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  4702. }
  4703. static void cherryview_init_clock_gating(struct drm_device *dev)
  4704. {
  4705. struct drm_i915_private *dev_priv = dev->dev_private;
  4706. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4707. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4708. /* WaDisablePartialInstShootdown:chv */
  4709. I915_WRITE(GEN8_ROW_CHICKEN,
  4710. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  4711. /* WaDisableThreadStallDopClockGating:chv */
  4712. I915_WRITE(GEN8_ROW_CHICKEN,
  4713. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  4714. /* WaVSRefCountFullforceMissDisable:chv */
  4715. /* WaDSRefCountFullforceMissDisable:chv */
  4716. I915_WRITE(GEN7_FF_THREAD_MODE,
  4717. I915_READ(GEN7_FF_THREAD_MODE) &
  4718. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4719. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  4720. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4721. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4722. /* WaDisableCSUnitClockGating:chv */
  4723. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  4724. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4725. /* WaDisableSDEUnitClockGating:chv */
  4726. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4727. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4728. /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
  4729. I915_WRITE(HALF_SLICE_CHICKEN3,
  4730. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  4731. /* WaDisableGunitClockGating:chv (pre-production hw) */
  4732. I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
  4733. GINT_DIS);
  4734. /* WaDisableFfDopClockGating:chv (pre-production hw) */
  4735. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4736. _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
  4737. /* WaDisableDopClockGating:chv (pre-production hw) */
  4738. I915_WRITE(GEN7_ROW_CHICKEN2,
  4739. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4740. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  4741. GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  4742. }
  4743. static void g4x_init_clock_gating(struct drm_device *dev)
  4744. {
  4745. struct drm_i915_private *dev_priv = dev->dev_private;
  4746. uint32_t dspclk_gate;
  4747. I915_WRITE(RENCLK_GATE_D1, 0);
  4748. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4749. GS_UNIT_CLOCK_GATE_DISABLE |
  4750. CL_UNIT_CLOCK_GATE_DISABLE);
  4751. I915_WRITE(RAMCLK_GATE_D, 0);
  4752. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4753. OVRUNIT_CLOCK_GATE_DISABLE |
  4754. OVCUNIT_CLOCK_GATE_DISABLE;
  4755. if (IS_GM45(dev))
  4756. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4757. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4758. /* WaDisableRenderCachePipelinedFlush */
  4759. I915_WRITE(CACHE_MODE_0,
  4760. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4761. /* WaDisable_RenderCache_OperationalFlush:g4x */
  4762. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4763. g4x_disable_trickle_feed(dev);
  4764. }
  4765. static void crestline_init_clock_gating(struct drm_device *dev)
  4766. {
  4767. struct drm_i915_private *dev_priv = dev->dev_private;
  4768. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4769. I915_WRITE(RENCLK_GATE_D2, 0);
  4770. I915_WRITE(DSPCLK_GATE_D, 0);
  4771. I915_WRITE(RAMCLK_GATE_D, 0);
  4772. I915_WRITE16(DEUC, 0);
  4773. I915_WRITE(MI_ARB_STATE,
  4774. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4775. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  4776. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4777. }
  4778. static void broadwater_init_clock_gating(struct drm_device *dev)
  4779. {
  4780. struct drm_i915_private *dev_priv = dev->dev_private;
  4781. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4782. I965_RCC_CLOCK_GATE_DISABLE |
  4783. I965_RCPB_CLOCK_GATE_DISABLE |
  4784. I965_ISC_CLOCK_GATE_DISABLE |
  4785. I965_FBC_CLOCK_GATE_DISABLE);
  4786. I915_WRITE(RENCLK_GATE_D2, 0);
  4787. I915_WRITE(MI_ARB_STATE,
  4788. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4789. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  4790. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4791. }
  4792. static void gen3_init_clock_gating(struct drm_device *dev)
  4793. {
  4794. struct drm_i915_private *dev_priv = dev->dev_private;
  4795. u32 dstate = I915_READ(D_STATE);
  4796. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4797. DSTATE_DOT_CLOCK_GATING;
  4798. I915_WRITE(D_STATE, dstate);
  4799. if (IS_PINEVIEW(dev))
  4800. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4801. /* IIR "flip pending" means done if this bit is set */
  4802. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4803. /* interrupts should cause a wake up from C3 */
  4804. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  4805. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4806. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  4807. }
  4808. static void i85x_init_clock_gating(struct drm_device *dev)
  4809. {
  4810. struct drm_i915_private *dev_priv = dev->dev_private;
  4811. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4812. /* interrupts should cause a wake up from C3 */
  4813. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  4814. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  4815. }
  4816. static void i830_init_clock_gating(struct drm_device *dev)
  4817. {
  4818. struct drm_i915_private *dev_priv = dev->dev_private;
  4819. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4820. }
  4821. void intel_init_clock_gating(struct drm_device *dev)
  4822. {
  4823. struct drm_i915_private *dev_priv = dev->dev_private;
  4824. dev_priv->display.init_clock_gating(dev);
  4825. }
  4826. void intel_suspend_hw(struct drm_device *dev)
  4827. {
  4828. if (HAS_PCH_LPT(dev))
  4829. lpt_suspend_hw(dev);
  4830. }
  4831. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  4832. for (i = 0; \
  4833. i < (power_domains)->power_well_count && \
  4834. ((power_well) = &(power_domains)->power_wells[i]); \
  4835. i++) \
  4836. if ((power_well)->domains & (domain_mask))
  4837. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  4838. for (i = (power_domains)->power_well_count - 1; \
  4839. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  4840. i--) \
  4841. if ((power_well)->domains & (domain_mask))
  4842. /**
  4843. * We should only use the power well if we explicitly asked the hardware to
  4844. * enable it, so check if it's enabled and also check if we've requested it to
  4845. * be enabled.
  4846. */
  4847. static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
  4848. struct i915_power_well *power_well)
  4849. {
  4850. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4851. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4852. }
  4853. bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
  4854. enum intel_display_power_domain domain)
  4855. {
  4856. struct i915_power_domains *power_domains;
  4857. struct i915_power_well *power_well;
  4858. bool is_enabled;
  4859. int i;
  4860. if (dev_priv->pm.suspended)
  4861. return false;
  4862. power_domains = &dev_priv->power_domains;
  4863. is_enabled = true;
  4864. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  4865. if (power_well->always_on)
  4866. continue;
  4867. if (!power_well->hw_enabled) {
  4868. is_enabled = false;
  4869. break;
  4870. }
  4871. }
  4872. return is_enabled;
  4873. }
  4874. bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
  4875. enum intel_display_power_domain domain)
  4876. {
  4877. struct i915_power_domains *power_domains;
  4878. bool ret;
  4879. power_domains = &dev_priv->power_domains;
  4880. mutex_lock(&power_domains->lock);
  4881. ret = intel_display_power_enabled_unlocked(dev_priv, domain);
  4882. mutex_unlock(&power_domains->lock);
  4883. return ret;
  4884. }
  4885. /*
  4886. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4887. * when not needed anymore. We have 4 registers that can request the power well
  4888. * to be enabled, and it will only be disabled if none of the registers is
  4889. * requesting it to be enabled.
  4890. */
  4891. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  4892. {
  4893. struct drm_device *dev = dev_priv->dev;
  4894. unsigned long irqflags;
  4895. /*
  4896. * After we re-enable the power well, if we touch VGA register 0x3d5
  4897. * we'll get unclaimed register interrupts. This stops after we write
  4898. * anything to the VGA MSR register. The vgacon module uses this
  4899. * register all the time, so if we unbind our driver and, as a
  4900. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  4901. * console_unlock(). So make here we touch the VGA MSR register, making
  4902. * sure vgacon can keep working normally without triggering interrupts
  4903. * and error messages.
  4904. */
  4905. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  4906. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  4907. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  4908. if (IS_BROADWELL(dev)) {
  4909. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  4910. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
  4911. dev_priv->de_irq_mask[PIPE_B]);
  4912. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
  4913. ~dev_priv->de_irq_mask[PIPE_B] |
  4914. GEN8_PIPE_VBLANK);
  4915. I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
  4916. dev_priv->de_irq_mask[PIPE_C]);
  4917. I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
  4918. ~dev_priv->de_irq_mask[PIPE_C] |
  4919. GEN8_PIPE_VBLANK);
  4920. POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
  4921. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  4922. }
  4923. }
  4924. static void hsw_set_power_well(struct drm_i915_private *dev_priv,
  4925. struct i915_power_well *power_well, bool enable)
  4926. {
  4927. bool is_enabled, enable_requested;
  4928. uint32_t tmp;
  4929. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4930. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4931. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4932. if (enable) {
  4933. if (!enable_requested)
  4934. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4935. HSW_PWR_WELL_ENABLE_REQUEST);
  4936. if (!is_enabled) {
  4937. DRM_DEBUG_KMS("Enabling power well\n");
  4938. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4939. HSW_PWR_WELL_STATE_ENABLED), 20))
  4940. DRM_ERROR("Timeout enabling power well\n");
  4941. }
  4942. hsw_power_well_post_enable(dev_priv);
  4943. } else {
  4944. if (enable_requested) {
  4945. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4946. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4947. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4948. }
  4949. }
  4950. }
  4951. static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
  4952. struct i915_power_well *power_well)
  4953. {
  4954. hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
  4955. /*
  4956. * We're taking over the BIOS, so clear any requests made by it since
  4957. * the driver is in charge now.
  4958. */
  4959. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4960. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4961. }
  4962. static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
  4963. struct i915_power_well *power_well)
  4964. {
  4965. hsw_set_power_well(dev_priv, power_well, true);
  4966. }
  4967. static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
  4968. struct i915_power_well *power_well)
  4969. {
  4970. hsw_set_power_well(dev_priv, power_well, false);
  4971. }
  4972. static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
  4973. struct i915_power_well *power_well)
  4974. {
  4975. }
  4976. static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
  4977. struct i915_power_well *power_well)
  4978. {
  4979. return true;
  4980. }
  4981. void __vlv_set_power_well(struct drm_i915_private *dev_priv,
  4982. enum punit_power_well power_well_id, bool enable)
  4983. {
  4984. u32 mask;
  4985. u32 state;
  4986. u32 ctrl;
  4987. mask = PUNIT_PWRGT_MASK(power_well_id);
  4988. state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
  4989. PUNIT_PWRGT_PWR_GATE(power_well_id);
  4990. mutex_lock(&dev_priv->rps.hw_lock);
  4991. #define COND \
  4992. ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
  4993. if (COND)
  4994. goto out;
  4995. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
  4996. ctrl &= ~mask;
  4997. ctrl |= state;
  4998. vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
  4999. if (wait_for(COND, 100))
  5000. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5001. state,
  5002. vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
  5003. #undef COND
  5004. out:
  5005. mutex_unlock(&dev_priv->rps.hw_lock);
  5006. }
  5007. static void vlv_set_power_well(struct drm_i915_private *dev_priv,
  5008. struct i915_power_well *power_well, bool enable)
  5009. {
  5010. enum punit_power_well power_well_id = power_well->data;
  5011. __vlv_set_power_well(dev_priv, power_well_id, enable);
  5012. }
  5013. static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5014. struct i915_power_well *power_well)
  5015. {
  5016. vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
  5017. }
  5018. static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
  5019. struct i915_power_well *power_well)
  5020. {
  5021. vlv_set_power_well(dev_priv, power_well, true);
  5022. }
  5023. static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
  5024. struct i915_power_well *power_well)
  5025. {
  5026. vlv_set_power_well(dev_priv, power_well, false);
  5027. }
  5028. static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
  5029. struct i915_power_well *power_well)
  5030. {
  5031. int power_well_id = power_well->data;
  5032. bool enabled = false;
  5033. u32 mask;
  5034. u32 state;
  5035. u32 ctrl;
  5036. mask = PUNIT_PWRGT_MASK(power_well_id);
  5037. ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
  5038. mutex_lock(&dev_priv->rps.hw_lock);
  5039. state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
  5040. /*
  5041. * We only ever set the power-on and power-gate states, anything
  5042. * else is unexpected.
  5043. */
  5044. WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
  5045. state != PUNIT_PWRGT_PWR_GATE(power_well_id));
  5046. if (state == ctrl)
  5047. enabled = true;
  5048. /*
  5049. * A transient state at this point would mean some unexpected party
  5050. * is poking at the power controls too.
  5051. */
  5052. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
  5053. WARN_ON(ctrl != state);
  5054. mutex_unlock(&dev_priv->rps.hw_lock);
  5055. return enabled;
  5056. }
  5057. static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
  5058. struct i915_power_well *power_well)
  5059. {
  5060. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5061. vlv_set_power_well(dev_priv, power_well, true);
  5062. spin_lock_irq(&dev_priv->irq_lock);
  5063. valleyview_enable_display_irqs(dev_priv);
  5064. spin_unlock_irq(&dev_priv->irq_lock);
  5065. /*
  5066. * During driver initialization/resume we can avoid restoring the
  5067. * part of the HW/SW state that will be inited anyway explicitly.
  5068. */
  5069. if (dev_priv->power_domains.initializing)
  5070. return;
  5071. intel_hpd_init(dev_priv->dev);
  5072. i915_redisable_vga_power_on(dev_priv->dev);
  5073. }
  5074. static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
  5075. struct i915_power_well *power_well)
  5076. {
  5077. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5078. spin_lock_irq(&dev_priv->irq_lock);
  5079. valleyview_disable_display_irqs(dev_priv);
  5080. spin_unlock_irq(&dev_priv->irq_lock);
  5081. vlv_set_power_well(dev_priv, power_well, false);
  5082. }
  5083. static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
  5084. struct i915_power_well *power_well)
  5085. {
  5086. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5087. /*
  5088. * Enable the CRI clock source so we can get at the
  5089. * display and the reference clock for VGA
  5090. * hotplug / manual detection.
  5091. */
  5092. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5093. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5094. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  5095. vlv_set_power_well(dev_priv, power_well, true);
  5096. /*
  5097. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  5098. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  5099. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  5100. * b. The other bits such as sfr settings / modesel may all
  5101. * be set to 0.
  5102. *
  5103. * This should only be done on init and resume from S3 with
  5104. * both PLLs disabled, or we risk losing DPIO and PLL
  5105. * synchronization.
  5106. */
  5107. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  5108. }
  5109. static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
  5110. struct i915_power_well *power_well)
  5111. {
  5112. struct drm_device *dev = dev_priv->dev;
  5113. enum pipe pipe;
  5114. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5115. for_each_pipe(pipe)
  5116. assert_pll_disabled(dev_priv, pipe);
  5117. /* Assert common reset */
  5118. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
  5119. vlv_set_power_well(dev_priv, power_well, false);
  5120. }
  5121. static void check_power_well_state(struct drm_i915_private *dev_priv,
  5122. struct i915_power_well *power_well)
  5123. {
  5124. bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
  5125. if (power_well->always_on || !i915.disable_power_well) {
  5126. if (!enabled)
  5127. goto mismatch;
  5128. return;
  5129. }
  5130. if (enabled != (power_well->count > 0))
  5131. goto mismatch;
  5132. return;
  5133. mismatch:
  5134. WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
  5135. power_well->name, power_well->always_on, enabled,
  5136. power_well->count, i915.disable_power_well);
  5137. }
  5138. void intel_display_power_get(struct drm_i915_private *dev_priv,
  5139. enum intel_display_power_domain domain)
  5140. {
  5141. struct i915_power_domains *power_domains;
  5142. struct i915_power_well *power_well;
  5143. int i;
  5144. intel_runtime_pm_get(dev_priv);
  5145. power_domains = &dev_priv->power_domains;
  5146. mutex_lock(&power_domains->lock);
  5147. for_each_power_well(i, power_well, BIT(domain), power_domains) {
  5148. if (!power_well->count++) {
  5149. DRM_DEBUG_KMS("enabling %s\n", power_well->name);
  5150. power_well->ops->enable(dev_priv, power_well);
  5151. power_well->hw_enabled = true;
  5152. }
  5153. check_power_well_state(dev_priv, power_well);
  5154. }
  5155. power_domains->domain_use_count[domain]++;
  5156. mutex_unlock(&power_domains->lock);
  5157. }
  5158. void intel_display_power_put(struct drm_i915_private *dev_priv,
  5159. enum intel_display_power_domain domain)
  5160. {
  5161. struct i915_power_domains *power_domains;
  5162. struct i915_power_well *power_well;
  5163. int i;
  5164. power_domains = &dev_priv->power_domains;
  5165. mutex_lock(&power_domains->lock);
  5166. WARN_ON(!power_domains->domain_use_count[domain]);
  5167. power_domains->domain_use_count[domain]--;
  5168. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5169. WARN_ON(!power_well->count);
  5170. if (!--power_well->count && i915.disable_power_well) {
  5171. DRM_DEBUG_KMS("disabling %s\n", power_well->name);
  5172. power_well->hw_enabled = false;
  5173. power_well->ops->disable(dev_priv, power_well);
  5174. }
  5175. check_power_well_state(dev_priv, power_well);
  5176. }
  5177. mutex_unlock(&power_domains->lock);
  5178. intel_runtime_pm_put(dev_priv);
  5179. }
  5180. static struct i915_power_domains *hsw_pwr;
  5181. /* Display audio driver power well request */
  5182. int i915_request_power_well(void)
  5183. {
  5184. struct drm_i915_private *dev_priv;
  5185. if (!hsw_pwr)
  5186. return -ENODEV;
  5187. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5188. power_domains);
  5189. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  5190. return 0;
  5191. }
  5192. EXPORT_SYMBOL_GPL(i915_request_power_well);
  5193. /* Display audio driver power well release */
  5194. int i915_release_power_well(void)
  5195. {
  5196. struct drm_i915_private *dev_priv;
  5197. if (!hsw_pwr)
  5198. return -ENODEV;
  5199. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5200. power_domains);
  5201. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  5202. return 0;
  5203. }
  5204. EXPORT_SYMBOL_GPL(i915_release_power_well);
  5205. /*
  5206. * Private interface for the audio driver to get CDCLK in kHz.
  5207. *
  5208. * Caller must request power well using i915_request_power_well() prior to
  5209. * making the call.
  5210. */
  5211. int i915_get_cdclk_freq(void)
  5212. {
  5213. struct drm_i915_private *dev_priv;
  5214. if (!hsw_pwr)
  5215. return -ENODEV;
  5216. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5217. power_domains);
  5218. return intel_ddi_get_cdclk_freq(dev_priv);
  5219. }
  5220. EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
  5221. #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
  5222. #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
  5223. BIT(POWER_DOMAIN_PIPE_A) | \
  5224. BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
  5225. BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
  5226. BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
  5227. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5228. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5229. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5230. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5231. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5232. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5233. BIT(POWER_DOMAIN_PORT_CRT) | \
  5234. BIT(POWER_DOMAIN_INIT))
  5235. #define HSW_DISPLAY_POWER_DOMAINS ( \
  5236. (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
  5237. BIT(POWER_DOMAIN_INIT))
  5238. #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
  5239. HSW_ALWAYS_ON_POWER_DOMAINS | \
  5240. BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
  5241. #define BDW_DISPLAY_POWER_DOMAINS ( \
  5242. (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
  5243. BIT(POWER_DOMAIN_INIT))
  5244. #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
  5245. #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
  5246. #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5247. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5248. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5249. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5250. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5251. BIT(POWER_DOMAIN_PORT_CRT) | \
  5252. BIT(POWER_DOMAIN_INIT))
  5253. #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
  5254. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5255. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5256. BIT(POWER_DOMAIN_INIT))
  5257. #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
  5258. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5259. BIT(POWER_DOMAIN_INIT))
  5260. #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
  5261. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5262. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5263. BIT(POWER_DOMAIN_INIT))
  5264. #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
  5265. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5266. BIT(POWER_DOMAIN_INIT))
  5267. static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
  5268. .sync_hw = i9xx_always_on_power_well_noop,
  5269. .enable = i9xx_always_on_power_well_noop,
  5270. .disable = i9xx_always_on_power_well_noop,
  5271. .is_enabled = i9xx_always_on_power_well_enabled,
  5272. };
  5273. static struct i915_power_well i9xx_always_on_power_well[] = {
  5274. {
  5275. .name = "always-on",
  5276. .always_on = 1,
  5277. .domains = POWER_DOMAIN_MASK,
  5278. .ops = &i9xx_always_on_power_well_ops,
  5279. },
  5280. };
  5281. static const struct i915_power_well_ops hsw_power_well_ops = {
  5282. .sync_hw = hsw_power_well_sync_hw,
  5283. .enable = hsw_power_well_enable,
  5284. .disable = hsw_power_well_disable,
  5285. .is_enabled = hsw_power_well_enabled,
  5286. };
  5287. static struct i915_power_well hsw_power_wells[] = {
  5288. {
  5289. .name = "always-on",
  5290. .always_on = 1,
  5291. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  5292. .ops = &i9xx_always_on_power_well_ops,
  5293. },
  5294. {
  5295. .name = "display",
  5296. .domains = HSW_DISPLAY_POWER_DOMAINS,
  5297. .ops = &hsw_power_well_ops,
  5298. },
  5299. };
  5300. static struct i915_power_well bdw_power_wells[] = {
  5301. {
  5302. .name = "always-on",
  5303. .always_on = 1,
  5304. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  5305. .ops = &i9xx_always_on_power_well_ops,
  5306. },
  5307. {
  5308. .name = "display",
  5309. .domains = BDW_DISPLAY_POWER_DOMAINS,
  5310. .ops = &hsw_power_well_ops,
  5311. },
  5312. };
  5313. static const struct i915_power_well_ops vlv_display_power_well_ops = {
  5314. .sync_hw = vlv_power_well_sync_hw,
  5315. .enable = vlv_display_power_well_enable,
  5316. .disable = vlv_display_power_well_disable,
  5317. .is_enabled = vlv_power_well_enabled,
  5318. };
  5319. static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
  5320. .sync_hw = vlv_power_well_sync_hw,
  5321. .enable = vlv_dpio_cmn_power_well_enable,
  5322. .disable = vlv_dpio_cmn_power_well_disable,
  5323. .is_enabled = vlv_power_well_enabled,
  5324. };
  5325. static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
  5326. .sync_hw = vlv_power_well_sync_hw,
  5327. .enable = vlv_power_well_enable,
  5328. .disable = vlv_power_well_disable,
  5329. .is_enabled = vlv_power_well_enabled,
  5330. };
  5331. static struct i915_power_well vlv_power_wells[] = {
  5332. {
  5333. .name = "always-on",
  5334. .always_on = 1,
  5335. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5336. .ops = &i9xx_always_on_power_well_ops,
  5337. },
  5338. {
  5339. .name = "display",
  5340. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5341. .data = PUNIT_POWER_WELL_DISP2D,
  5342. .ops = &vlv_display_power_well_ops,
  5343. },
  5344. {
  5345. .name = "dpio-tx-b-01",
  5346. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5347. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5348. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5349. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5350. .ops = &vlv_dpio_power_well_ops,
  5351. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5352. },
  5353. {
  5354. .name = "dpio-tx-b-23",
  5355. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5356. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5357. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5358. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5359. .ops = &vlv_dpio_power_well_ops,
  5360. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5361. },
  5362. {
  5363. .name = "dpio-tx-c-01",
  5364. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5365. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5366. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5367. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5368. .ops = &vlv_dpio_power_well_ops,
  5369. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5370. },
  5371. {
  5372. .name = "dpio-tx-c-23",
  5373. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5374. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5375. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5376. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5377. .ops = &vlv_dpio_power_well_ops,
  5378. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5379. },
  5380. {
  5381. .name = "dpio-common",
  5382. .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
  5383. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5384. .ops = &vlv_dpio_cmn_power_well_ops,
  5385. },
  5386. };
  5387. #define set_power_wells(power_domains, __power_wells) ({ \
  5388. (power_domains)->power_wells = (__power_wells); \
  5389. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  5390. })
  5391. int intel_power_domains_init(struct drm_i915_private *dev_priv)
  5392. {
  5393. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5394. mutex_init(&power_domains->lock);
  5395. /*
  5396. * The enabling order will be from lower to higher indexed wells,
  5397. * the disabling order is reversed.
  5398. */
  5399. if (IS_HASWELL(dev_priv->dev)) {
  5400. set_power_wells(power_domains, hsw_power_wells);
  5401. hsw_pwr = power_domains;
  5402. } else if (IS_BROADWELL(dev_priv->dev)) {
  5403. set_power_wells(power_domains, bdw_power_wells);
  5404. hsw_pwr = power_domains;
  5405. } else if (IS_VALLEYVIEW(dev_priv->dev)) {
  5406. set_power_wells(power_domains, vlv_power_wells);
  5407. } else {
  5408. set_power_wells(power_domains, i9xx_always_on_power_well);
  5409. }
  5410. return 0;
  5411. }
  5412. void intel_power_domains_remove(struct drm_i915_private *dev_priv)
  5413. {
  5414. hsw_pwr = NULL;
  5415. }
  5416. static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
  5417. {
  5418. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5419. struct i915_power_well *power_well;
  5420. int i;
  5421. mutex_lock(&power_domains->lock);
  5422. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5423. power_well->ops->sync_hw(dev_priv, power_well);
  5424. power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
  5425. power_well);
  5426. }
  5427. mutex_unlock(&power_domains->lock);
  5428. }
  5429. void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
  5430. {
  5431. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5432. power_domains->initializing = true;
  5433. /* For now, we need the power well to be always enabled. */
  5434. intel_display_set_init_power(dev_priv, true);
  5435. intel_power_domains_resume(dev_priv);
  5436. power_domains->initializing = false;
  5437. }
  5438. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  5439. {
  5440. intel_runtime_pm_get(dev_priv);
  5441. }
  5442. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  5443. {
  5444. intel_runtime_pm_put(dev_priv);
  5445. }
  5446. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  5447. {
  5448. struct drm_device *dev = dev_priv->dev;
  5449. struct device *device = &dev->pdev->dev;
  5450. if (!HAS_RUNTIME_PM(dev))
  5451. return;
  5452. pm_runtime_get_sync(device);
  5453. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  5454. }
  5455. void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
  5456. {
  5457. struct drm_device *dev = dev_priv->dev;
  5458. struct device *device = &dev->pdev->dev;
  5459. if (!HAS_RUNTIME_PM(dev))
  5460. return;
  5461. WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
  5462. pm_runtime_get_noresume(device);
  5463. }
  5464. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  5465. {
  5466. struct drm_device *dev = dev_priv->dev;
  5467. struct device *device = &dev->pdev->dev;
  5468. if (!HAS_RUNTIME_PM(dev))
  5469. return;
  5470. pm_runtime_mark_last_busy(device);
  5471. pm_runtime_put_autosuspend(device);
  5472. }
  5473. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  5474. {
  5475. struct drm_device *dev = dev_priv->dev;
  5476. struct device *device = &dev->pdev->dev;
  5477. if (!HAS_RUNTIME_PM(dev))
  5478. return;
  5479. pm_runtime_set_active(device);
  5480. /*
  5481. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  5482. * requirement.
  5483. */
  5484. if (!intel_enable_rc6(dev)) {
  5485. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5486. return;
  5487. }
  5488. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  5489. pm_runtime_mark_last_busy(device);
  5490. pm_runtime_use_autosuspend(device);
  5491. pm_runtime_put_autosuspend(device);
  5492. }
  5493. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  5494. {
  5495. struct drm_device *dev = dev_priv->dev;
  5496. struct device *device = &dev->pdev->dev;
  5497. if (!HAS_RUNTIME_PM(dev))
  5498. return;
  5499. if (!intel_enable_rc6(dev))
  5500. return;
  5501. /* Make sure we're not suspended first. */
  5502. pm_runtime_get_sync(device);
  5503. pm_runtime_disable(device);
  5504. }
  5505. /* Set up chip specific power management-related functions */
  5506. void intel_init_pm(struct drm_device *dev)
  5507. {
  5508. struct drm_i915_private *dev_priv = dev->dev_private;
  5509. if (HAS_FBC(dev)) {
  5510. if (INTEL_INFO(dev)->gen >= 7) {
  5511. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5512. dev_priv->display.enable_fbc = gen7_enable_fbc;
  5513. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5514. } else if (INTEL_INFO(dev)->gen >= 5) {
  5515. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  5516. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  5517. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  5518. } else if (IS_GM45(dev)) {
  5519. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  5520. dev_priv->display.enable_fbc = g4x_enable_fbc;
  5521. dev_priv->display.disable_fbc = g4x_disable_fbc;
  5522. } else {
  5523. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  5524. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  5525. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  5526. /* This value was pulled out of someone's hat */
  5527. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  5528. }
  5529. }
  5530. /* For cxsr */
  5531. if (IS_PINEVIEW(dev))
  5532. i915_pineview_get_mem_freq(dev);
  5533. else if (IS_GEN5(dev))
  5534. i915_ironlake_get_mem_freq(dev);
  5535. /* For FIFO watermark updates */
  5536. if (HAS_PCH_SPLIT(dev)) {
  5537. ilk_setup_wm_latency(dev);
  5538. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5539. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5540. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5541. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5542. dev_priv->display.update_wm = ilk_update_wm;
  5543. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5544. } else {
  5545. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5546. "Disable CxSR\n");
  5547. }
  5548. if (IS_GEN5(dev))
  5549. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5550. else if (IS_GEN6(dev))
  5551. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5552. else if (IS_IVYBRIDGE(dev))
  5553. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5554. else if (IS_HASWELL(dev))
  5555. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5556. else if (INTEL_INFO(dev)->gen == 8)
  5557. dev_priv->display.init_clock_gating = gen8_init_clock_gating;
  5558. } else if (IS_CHERRYVIEW(dev)) {
  5559. dev_priv->display.update_wm = valleyview_update_wm;
  5560. dev_priv->display.init_clock_gating =
  5561. cherryview_init_clock_gating;
  5562. } else if (IS_VALLEYVIEW(dev)) {
  5563. dev_priv->display.update_wm = valleyview_update_wm;
  5564. dev_priv->display.init_clock_gating =
  5565. valleyview_init_clock_gating;
  5566. } else if (IS_PINEVIEW(dev)) {
  5567. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5568. dev_priv->is_ddr3,
  5569. dev_priv->fsb_freq,
  5570. dev_priv->mem_freq)) {
  5571. DRM_INFO("failed to find known CxSR latency "
  5572. "(found ddr%s fsb freq %d, mem freq %d), "
  5573. "disabling CxSR\n",
  5574. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5575. dev_priv->fsb_freq, dev_priv->mem_freq);
  5576. /* Disable CxSR and never update its watermark again */
  5577. pineview_disable_cxsr(dev);
  5578. dev_priv->display.update_wm = NULL;
  5579. } else
  5580. dev_priv->display.update_wm = pineview_update_wm;
  5581. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5582. } else if (IS_G4X(dev)) {
  5583. dev_priv->display.update_wm = g4x_update_wm;
  5584. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5585. } else if (IS_GEN4(dev)) {
  5586. dev_priv->display.update_wm = i965_update_wm;
  5587. if (IS_CRESTLINE(dev))
  5588. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5589. else if (IS_BROADWATER(dev))
  5590. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5591. } else if (IS_GEN3(dev)) {
  5592. dev_priv->display.update_wm = i9xx_update_wm;
  5593. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5594. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5595. } else if (IS_GEN2(dev)) {
  5596. if (INTEL_INFO(dev)->num_pipes == 1) {
  5597. dev_priv->display.update_wm = i845_update_wm;
  5598. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5599. } else {
  5600. dev_priv->display.update_wm = i9xx_update_wm;
  5601. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5602. }
  5603. if (IS_I85X(dev) || IS_I865G(dev))
  5604. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5605. else
  5606. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5607. } else {
  5608. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5609. }
  5610. }
  5611. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  5612. {
  5613. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5614. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5615. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5616. return -EAGAIN;
  5617. }
  5618. I915_WRITE(GEN6_PCODE_DATA, *val);
  5619. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5620. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5621. 500)) {
  5622. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5623. return -ETIMEDOUT;
  5624. }
  5625. *val = I915_READ(GEN6_PCODE_DATA);
  5626. I915_WRITE(GEN6_PCODE_DATA, 0);
  5627. return 0;
  5628. }
  5629. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  5630. {
  5631. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5632. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5633. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5634. return -EAGAIN;
  5635. }
  5636. I915_WRITE(GEN6_PCODE_DATA, val);
  5637. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5638. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5639. 500)) {
  5640. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5641. return -ETIMEDOUT;
  5642. }
  5643. I915_WRITE(GEN6_PCODE_DATA, 0);
  5644. return 0;
  5645. }
  5646. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5647. {
  5648. int div;
  5649. /* 4 x czclk */
  5650. switch (dev_priv->mem_freq) {
  5651. case 800:
  5652. div = 10;
  5653. break;
  5654. case 1066:
  5655. div = 12;
  5656. break;
  5657. case 1333:
  5658. div = 16;
  5659. break;
  5660. default:
  5661. return -1;
  5662. }
  5663. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  5664. }
  5665. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5666. {
  5667. int mul;
  5668. /* 4 x czclk */
  5669. switch (dev_priv->mem_freq) {
  5670. case 800:
  5671. mul = 10;
  5672. break;
  5673. case 1066:
  5674. mul = 12;
  5675. break;
  5676. case 1333:
  5677. mul = 16;
  5678. break;
  5679. default:
  5680. return -1;
  5681. }
  5682. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  5683. }
  5684. void intel_pm_setup(struct drm_device *dev)
  5685. {
  5686. struct drm_i915_private *dev_priv = dev->dev_private;
  5687. mutex_init(&dev_priv->rps.hw_lock);
  5688. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5689. intel_gen6_powersave_work);
  5690. dev_priv->pm.suspended = false;
  5691. dev_priv->pm.irqs_disabled = false;
  5692. }