slab.h 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. #ifndef MM_SLAB_H
  2. #define MM_SLAB_H
  3. /*
  4. * Internal slab definitions
  5. */
  6. /*
  7. * State of the slab allocator.
  8. *
  9. * This is used to describe the states of the allocator during bootup.
  10. * Allocators use this to gradually bootstrap themselves. Most allocators
  11. * have the problem that the structures used for managing slab caches are
  12. * allocated from slab caches themselves.
  13. */
  14. enum slab_state {
  15. DOWN, /* No slab functionality yet */
  16. PARTIAL, /* SLUB: kmem_cache_node available */
  17. PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
  18. PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
  19. UP, /* Slab caches usable but not all extras yet */
  20. FULL /* Everything is working */
  21. };
  22. extern enum slab_state slab_state;
  23. /* The slab cache mutex protects the management structures during changes */
  24. extern struct mutex slab_mutex;
  25. /* The list of all slab caches on the system */
  26. extern struct list_head slab_caches;
  27. /* The slab cache that manages slab cache information */
  28. extern struct kmem_cache *kmem_cache;
  29. unsigned long calculate_alignment(unsigned long flags,
  30. unsigned long align, unsigned long size);
  31. #ifndef CONFIG_SLOB
  32. /* Kmalloc array related functions */
  33. void create_kmalloc_caches(unsigned long);
  34. /* Find the kmalloc slab corresponding for a certain size */
  35. struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  36. #endif
  37. /* Functions provided by the slab allocators */
  38. extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  39. extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  40. unsigned long flags);
  41. extern void create_boot_cache(struct kmem_cache *, const char *name,
  42. size_t size, unsigned long flags);
  43. struct mem_cgroup;
  44. #ifdef CONFIG_SLUB
  45. struct kmem_cache *
  46. __kmem_cache_alias(const char *name, size_t size, size_t align,
  47. unsigned long flags, void (*ctor)(void *));
  48. #else
  49. static inline struct kmem_cache *
  50. __kmem_cache_alias(const char *name, size_t size, size_t align,
  51. unsigned long flags, void (*ctor)(void *))
  52. { return NULL; }
  53. #endif
  54. /* Legal flag mask for kmem_cache_create(), for various configurations */
  55. #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
  56. SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
  57. #if defined(CONFIG_DEBUG_SLAB)
  58. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  59. #elif defined(CONFIG_SLUB_DEBUG)
  60. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  61. SLAB_TRACE | SLAB_DEBUG_FREE)
  62. #else
  63. #define SLAB_DEBUG_FLAGS (0)
  64. #endif
  65. #if defined(CONFIG_SLAB)
  66. #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
  67. SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
  68. #elif defined(CONFIG_SLUB)
  69. #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
  70. SLAB_TEMPORARY | SLAB_NOTRACK)
  71. #else
  72. #define SLAB_CACHE_FLAGS (0)
  73. #endif
  74. #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
  75. int __kmem_cache_shutdown(struct kmem_cache *);
  76. struct seq_file;
  77. struct file;
  78. struct slabinfo {
  79. unsigned long active_objs;
  80. unsigned long num_objs;
  81. unsigned long active_slabs;
  82. unsigned long num_slabs;
  83. unsigned long shared_avail;
  84. unsigned int limit;
  85. unsigned int batchcount;
  86. unsigned int shared;
  87. unsigned int objects_per_slab;
  88. unsigned int cache_order;
  89. };
  90. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
  91. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
  92. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  93. size_t count, loff_t *ppos);
  94. #ifdef CONFIG_MEMCG_KMEM
  95. static inline bool is_root_cache(struct kmem_cache *s)
  96. {
  97. return !s->memcg_params || s->memcg_params->is_root_cache;
  98. }
  99. static inline void memcg_bind_pages(struct kmem_cache *s, int order)
  100. {
  101. if (!is_root_cache(s))
  102. atomic_add(1 << order, &s->memcg_params->nr_pages);
  103. }
  104. static inline void memcg_release_pages(struct kmem_cache *s, int order)
  105. {
  106. if (is_root_cache(s))
  107. return;
  108. if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
  109. mem_cgroup_destroy_cache(s);
  110. }
  111. static inline bool slab_equal_or_root(struct kmem_cache *s,
  112. struct kmem_cache *p)
  113. {
  114. return (p == s) ||
  115. (s->memcg_params && (p == s->memcg_params->root_cache));
  116. }
  117. /*
  118. * We use suffixes to the name in memcg because we can't have caches
  119. * created in the system with the same name. But when we print them
  120. * locally, better refer to them with the base name
  121. */
  122. static inline const char *cache_name(struct kmem_cache *s)
  123. {
  124. if (!is_root_cache(s))
  125. return s->memcg_params->root_cache->name;
  126. return s->name;
  127. }
  128. /*
  129. * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
  130. * That said the caller must assure the memcg's cache won't go away. Since once
  131. * created a memcg's cache is destroyed only along with the root cache, it is
  132. * true if we are going to allocate from the cache or hold a reference to the
  133. * root cache by other means. Otherwise, we should hold either the slab_mutex
  134. * or the memcg's slab_caches_mutex while calling this function and accessing
  135. * the returned value.
  136. */
  137. static inline struct kmem_cache *
  138. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  139. {
  140. struct kmem_cache *cachep;
  141. struct memcg_cache_params *params;
  142. if (!s->memcg_params)
  143. return NULL;
  144. rcu_read_lock();
  145. params = rcu_dereference(s->memcg_params);
  146. cachep = params->memcg_caches[idx];
  147. rcu_read_unlock();
  148. /*
  149. * Make sure we will access the up-to-date value. The code updating
  150. * memcg_caches issues a write barrier to match this (see
  151. * memcg_register_cache()).
  152. */
  153. smp_read_barrier_depends();
  154. return cachep;
  155. }
  156. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  157. {
  158. if (is_root_cache(s))
  159. return s;
  160. return s->memcg_params->root_cache;
  161. }
  162. #else
  163. static inline bool is_root_cache(struct kmem_cache *s)
  164. {
  165. return true;
  166. }
  167. static inline void memcg_bind_pages(struct kmem_cache *s, int order)
  168. {
  169. }
  170. static inline void memcg_release_pages(struct kmem_cache *s, int order)
  171. {
  172. }
  173. static inline bool slab_equal_or_root(struct kmem_cache *s,
  174. struct kmem_cache *p)
  175. {
  176. return true;
  177. }
  178. static inline const char *cache_name(struct kmem_cache *s)
  179. {
  180. return s->name;
  181. }
  182. static inline struct kmem_cache *
  183. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  184. {
  185. return NULL;
  186. }
  187. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  188. {
  189. return s;
  190. }
  191. #endif
  192. static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
  193. {
  194. struct kmem_cache *cachep;
  195. struct page *page;
  196. /*
  197. * When kmemcg is not being used, both assignments should return the
  198. * same value. but we don't want to pay the assignment price in that
  199. * case. If it is not compiled in, the compiler should be smart enough
  200. * to not do even the assignment. In that case, slab_equal_or_root
  201. * will also be a constant.
  202. */
  203. if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
  204. return s;
  205. page = virt_to_head_page(x);
  206. cachep = page->slab_cache;
  207. if (slab_equal_or_root(cachep, s))
  208. return cachep;
  209. pr_err("%s: Wrong slab cache. %s but object is from %s\n",
  210. __FUNCTION__, cachep->name, s->name);
  211. WARN_ON_ONCE(1);
  212. return s;
  213. }
  214. #endif
  215. /*
  216. * The slab lists for all objects.
  217. */
  218. struct kmem_cache_node {
  219. spinlock_t list_lock;
  220. #ifdef CONFIG_SLAB
  221. struct list_head slabs_partial; /* partial list first, better asm code */
  222. struct list_head slabs_full;
  223. struct list_head slabs_free;
  224. unsigned long free_objects;
  225. unsigned int free_limit;
  226. unsigned int colour_next; /* Per-node cache coloring */
  227. struct array_cache *shared; /* shared per node */
  228. struct array_cache **alien; /* on other nodes */
  229. unsigned long next_reap; /* updated without locking */
  230. int free_touched; /* updated without locking */
  231. #endif
  232. #ifdef CONFIG_SLUB
  233. unsigned long nr_partial;
  234. struct list_head partial;
  235. #ifdef CONFIG_SLUB_DEBUG
  236. atomic_long_t nr_slabs;
  237. atomic_long_t total_objects;
  238. struct list_head full;
  239. #endif
  240. #endif
  241. };
  242. void *slab_next(struct seq_file *m, void *p, loff_t *pos);
  243. void slab_stop(struct seq_file *m, void *p);