sched_clock.c 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. /*
  2. * sched_clock.c: support for extending counters to full 64-bit ns counter
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clocksource.h>
  9. #include <linux/init.h>
  10. #include <linux/jiffies.h>
  11. #include <linux/ktime.h>
  12. #include <linux/kernel.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/sched.h>
  15. #include <linux/syscore_ops.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/sched_clock.h>
  18. #include <linux/seqlock.h>
  19. #include <linux/bitops.h>
  20. struct clock_data {
  21. ktime_t wrap_kt;
  22. u64 epoch_ns;
  23. u64 epoch_cyc;
  24. seqcount_t seq;
  25. unsigned long rate;
  26. u32 mult;
  27. u32 shift;
  28. bool suspended;
  29. };
  30. static struct hrtimer sched_clock_timer;
  31. static int irqtime = -1;
  32. core_param(irqtime, irqtime, int, 0400);
  33. static struct clock_data cd = {
  34. .mult = NSEC_PER_SEC / HZ,
  35. };
  36. static u64 __read_mostly sched_clock_mask;
  37. static u64 notrace jiffy_sched_clock_read(void)
  38. {
  39. /*
  40. * We don't need to use get_jiffies_64 on 32-bit arches here
  41. * because we register with BITS_PER_LONG
  42. */
  43. return (u64)(jiffies - INITIAL_JIFFIES);
  44. }
  45. static u32 __read_mostly (*read_sched_clock_32)(void);
  46. static u64 notrace read_sched_clock_32_wrapper(void)
  47. {
  48. return read_sched_clock_32();
  49. }
  50. static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
  51. static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
  52. {
  53. return (cyc * mult) >> shift;
  54. }
  55. unsigned long long notrace sched_clock(void)
  56. {
  57. u64 epoch_ns;
  58. u64 epoch_cyc;
  59. u64 cyc;
  60. unsigned long seq;
  61. if (cd.suspended)
  62. return cd.epoch_ns;
  63. do {
  64. seq = raw_read_seqcount_begin(&cd.seq);
  65. epoch_cyc = cd.epoch_cyc;
  66. epoch_ns = cd.epoch_ns;
  67. } while (read_seqcount_retry(&cd.seq, seq));
  68. cyc = read_sched_clock();
  69. cyc = (cyc - epoch_cyc) & sched_clock_mask;
  70. return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
  71. }
  72. /*
  73. * Atomically update the sched_clock epoch.
  74. */
  75. static void notrace update_sched_clock(void)
  76. {
  77. unsigned long flags;
  78. u64 cyc;
  79. u64 ns;
  80. cyc = read_sched_clock();
  81. ns = cd.epoch_ns +
  82. cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
  83. cd.mult, cd.shift);
  84. raw_local_irq_save(flags);
  85. raw_write_seqcount_begin(&cd.seq);
  86. cd.epoch_ns = ns;
  87. cd.epoch_cyc = cyc;
  88. raw_write_seqcount_end(&cd.seq);
  89. raw_local_irq_restore(flags);
  90. }
  91. static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
  92. {
  93. update_sched_clock();
  94. hrtimer_forward_now(hrt, cd.wrap_kt);
  95. return HRTIMER_RESTART;
  96. }
  97. void __init sched_clock_register(u64 (*read)(void), int bits,
  98. unsigned long rate)
  99. {
  100. u64 res, wrap, new_mask, new_epoch, cyc, ns;
  101. u32 new_mult, new_shift;
  102. ktime_t new_wrap_kt;
  103. unsigned long r;
  104. char r_unit;
  105. if (cd.rate > rate)
  106. return;
  107. WARN_ON(!irqs_disabled());
  108. /* calculate the mult/shift to convert counter ticks to ns. */
  109. clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
  110. new_mask = CLOCKSOURCE_MASK(bits);
  111. /* calculate how many ns until we wrap */
  112. wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
  113. new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
  114. /* update epoch for new counter and update epoch_ns from old counter*/
  115. new_epoch = read();
  116. cyc = read_sched_clock();
  117. ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
  118. cd.mult, cd.shift);
  119. raw_write_seqcount_begin(&cd.seq);
  120. read_sched_clock = read;
  121. sched_clock_mask = new_mask;
  122. cd.rate = rate;
  123. cd.wrap_kt = new_wrap_kt;
  124. cd.mult = new_mult;
  125. cd.shift = new_shift;
  126. cd.epoch_cyc = new_epoch;
  127. cd.epoch_ns = ns;
  128. raw_write_seqcount_end(&cd.seq);
  129. r = rate;
  130. if (r >= 4000000) {
  131. r /= 1000000;
  132. r_unit = 'M';
  133. } else if (r >= 1000) {
  134. r /= 1000;
  135. r_unit = 'k';
  136. } else
  137. r_unit = ' ';
  138. /* calculate the ns resolution of this counter */
  139. res = cyc_to_ns(1ULL, new_mult, new_shift);
  140. pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
  141. bits, r, r_unit, res, wrap);
  142. /* Enable IRQ time accounting if we have a fast enough sched_clock */
  143. if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
  144. enable_sched_clock_irqtime();
  145. pr_debug("Registered %pF as sched_clock source\n", read);
  146. }
  147. void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
  148. {
  149. read_sched_clock_32 = read;
  150. sched_clock_register(read_sched_clock_32_wrapper, bits, rate);
  151. }
  152. void __init sched_clock_postinit(void)
  153. {
  154. /*
  155. * If no sched_clock function has been provided at that point,
  156. * make it the final one one.
  157. */
  158. if (read_sched_clock == jiffy_sched_clock_read)
  159. sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
  160. update_sched_clock();
  161. /*
  162. * Start the timer to keep sched_clock() properly updated and
  163. * sets the initial epoch.
  164. */
  165. hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  166. sched_clock_timer.function = sched_clock_poll;
  167. hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
  168. }
  169. static int sched_clock_suspend(void)
  170. {
  171. sched_clock_poll(&sched_clock_timer);
  172. cd.suspended = true;
  173. return 0;
  174. }
  175. static void sched_clock_resume(void)
  176. {
  177. cd.epoch_cyc = read_sched_clock();
  178. cd.suspended = false;
  179. }
  180. static struct syscore_ops sched_clock_ops = {
  181. .suspend = sched_clock_suspend,
  182. .resume = sched_clock_resume,
  183. };
  184. static int __init sched_clock_syscore_init(void)
  185. {
  186. register_syscore_ops(&sched_clock_ops);
  187. return 0;
  188. }
  189. device_initcall(sched_clock_syscore_init);