vmstat.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /*
  2. * linux/mm/vmstat.c
  3. *
  4. * Manages VM statistics
  5. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  6. *
  7. * zoned VM statistics
  8. * Copyright (C) 2006 Silicon Graphics, Inc.,
  9. * Christoph Lameter <christoph@lameter.com>
  10. * Copyright (C) 2008-2014 Christoph Lameter
  11. */
  12. #include <linux/fs.h>
  13. #include <linux/mm.h>
  14. #include <linux/err.h>
  15. #include <linux/module.h>
  16. #include <linux/slab.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/vmstat.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/debugfs.h>
  23. #include <linux/sched.h>
  24. #include <linux/math64.h>
  25. #include <linux/writeback.h>
  26. #include <linux/compaction.h>
  27. #include <linux/mm_inline.h>
  28. #include <linux/page_ext.h>
  29. #include <linux/page_owner.h>
  30. #include "internal.h"
  31. #ifdef CONFIG_VM_EVENT_COUNTERS
  32. DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  33. EXPORT_PER_CPU_SYMBOL(vm_event_states);
  34. static void sum_vm_events(unsigned long *ret)
  35. {
  36. int cpu;
  37. int i;
  38. memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  39. for_each_online_cpu(cpu) {
  40. struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  41. for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  42. ret[i] += this->event[i];
  43. }
  44. }
  45. /*
  46. * Accumulate the vm event counters across all CPUs.
  47. * The result is unavoidably approximate - it can change
  48. * during and after execution of this function.
  49. */
  50. void all_vm_events(unsigned long *ret)
  51. {
  52. get_online_cpus();
  53. sum_vm_events(ret);
  54. put_online_cpus();
  55. }
  56. EXPORT_SYMBOL_GPL(all_vm_events);
  57. /*
  58. * Fold the foreign cpu events into our own.
  59. *
  60. * This is adding to the events on one processor
  61. * but keeps the global counts constant.
  62. */
  63. void vm_events_fold_cpu(int cpu)
  64. {
  65. struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  66. int i;
  67. for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  68. count_vm_events(i, fold_state->event[i]);
  69. fold_state->event[i] = 0;
  70. }
  71. }
  72. #endif /* CONFIG_VM_EVENT_COUNTERS */
  73. /*
  74. * Manage combined zone based / global counters
  75. *
  76. * vm_stat contains the global counters
  77. */
  78. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  79. EXPORT_SYMBOL(vm_stat);
  80. #ifdef CONFIG_SMP
  81. int calculate_pressure_threshold(struct zone *zone)
  82. {
  83. int threshold;
  84. int watermark_distance;
  85. /*
  86. * As vmstats are not up to date, there is drift between the estimated
  87. * and real values. For high thresholds and a high number of CPUs, it
  88. * is possible for the min watermark to be breached while the estimated
  89. * value looks fine. The pressure threshold is a reduced value such
  90. * that even the maximum amount of drift will not accidentally breach
  91. * the min watermark
  92. */
  93. watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
  94. threshold = max(1, (int)(watermark_distance / num_online_cpus()));
  95. /*
  96. * Maximum threshold is 125
  97. */
  98. threshold = min(125, threshold);
  99. return threshold;
  100. }
  101. int calculate_normal_threshold(struct zone *zone)
  102. {
  103. int threshold;
  104. int mem; /* memory in 128 MB units */
  105. /*
  106. * The threshold scales with the number of processors and the amount
  107. * of memory per zone. More memory means that we can defer updates for
  108. * longer, more processors could lead to more contention.
  109. * fls() is used to have a cheap way of logarithmic scaling.
  110. *
  111. * Some sample thresholds:
  112. *
  113. * Threshold Processors (fls) Zonesize fls(mem+1)
  114. * ------------------------------------------------------------------
  115. * 8 1 1 0.9-1 GB 4
  116. * 16 2 2 0.9-1 GB 4
  117. * 20 2 2 1-2 GB 5
  118. * 24 2 2 2-4 GB 6
  119. * 28 2 2 4-8 GB 7
  120. * 32 2 2 8-16 GB 8
  121. * 4 2 2 <128M 1
  122. * 30 4 3 2-4 GB 5
  123. * 48 4 3 8-16 GB 8
  124. * 32 8 4 1-2 GB 4
  125. * 32 8 4 0.9-1GB 4
  126. * 10 16 5 <128M 1
  127. * 40 16 5 900M 4
  128. * 70 64 7 2-4 GB 5
  129. * 84 64 7 4-8 GB 6
  130. * 108 512 9 4-8 GB 6
  131. * 125 1024 10 8-16 GB 8
  132. * 125 1024 10 16-32 GB 9
  133. */
  134. mem = zone->managed_pages >> (27 - PAGE_SHIFT);
  135. threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
  136. /*
  137. * Maximum threshold is 125
  138. */
  139. threshold = min(125, threshold);
  140. return threshold;
  141. }
  142. /*
  143. * Refresh the thresholds for each zone.
  144. */
  145. void refresh_zone_stat_thresholds(void)
  146. {
  147. struct zone *zone;
  148. int cpu;
  149. int threshold;
  150. for_each_populated_zone(zone) {
  151. unsigned long max_drift, tolerate_drift;
  152. threshold = calculate_normal_threshold(zone);
  153. for_each_online_cpu(cpu)
  154. per_cpu_ptr(zone->pageset, cpu)->stat_threshold
  155. = threshold;
  156. /*
  157. * Only set percpu_drift_mark if there is a danger that
  158. * NR_FREE_PAGES reports the low watermark is ok when in fact
  159. * the min watermark could be breached by an allocation
  160. */
  161. tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
  162. max_drift = num_online_cpus() * threshold;
  163. if (max_drift > tolerate_drift)
  164. zone->percpu_drift_mark = high_wmark_pages(zone) +
  165. max_drift;
  166. }
  167. }
  168. void set_pgdat_percpu_threshold(pg_data_t *pgdat,
  169. int (*calculate_pressure)(struct zone *))
  170. {
  171. struct zone *zone;
  172. int cpu;
  173. int threshold;
  174. int i;
  175. for (i = 0; i < pgdat->nr_zones; i++) {
  176. zone = &pgdat->node_zones[i];
  177. if (!zone->percpu_drift_mark)
  178. continue;
  179. threshold = (*calculate_pressure)(zone);
  180. for_each_online_cpu(cpu)
  181. per_cpu_ptr(zone->pageset, cpu)->stat_threshold
  182. = threshold;
  183. }
  184. }
  185. /*
  186. * For use when we know that interrupts are disabled,
  187. * or when we know that preemption is disabled and that
  188. * particular counter cannot be updated from interrupt context.
  189. */
  190. void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  191. long delta)
  192. {
  193. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  194. s8 __percpu *p = pcp->vm_stat_diff + item;
  195. long x;
  196. long t;
  197. x = delta + __this_cpu_read(*p);
  198. t = __this_cpu_read(pcp->stat_threshold);
  199. if (unlikely(x > t || x < -t)) {
  200. zone_page_state_add(x, zone, item);
  201. x = 0;
  202. }
  203. __this_cpu_write(*p, x);
  204. }
  205. EXPORT_SYMBOL(__mod_zone_page_state);
  206. /*
  207. * Optimized increment and decrement functions.
  208. *
  209. * These are only for a single page and therefore can take a struct page *
  210. * argument instead of struct zone *. This allows the inclusion of the code
  211. * generated for page_zone(page) into the optimized functions.
  212. *
  213. * No overflow check is necessary and therefore the differential can be
  214. * incremented or decremented in place which may allow the compilers to
  215. * generate better code.
  216. * The increment or decrement is known and therefore one boundary check can
  217. * be omitted.
  218. *
  219. * NOTE: These functions are very performance sensitive. Change only
  220. * with care.
  221. *
  222. * Some processors have inc/dec instructions that are atomic vs an interrupt.
  223. * However, the code must first determine the differential location in a zone
  224. * based on the processor number and then inc/dec the counter. There is no
  225. * guarantee without disabling preemption that the processor will not change
  226. * in between and therefore the atomicity vs. interrupt cannot be exploited
  227. * in a useful way here.
  228. */
  229. void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
  230. {
  231. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  232. s8 __percpu *p = pcp->vm_stat_diff + item;
  233. s8 v, t;
  234. v = __this_cpu_inc_return(*p);
  235. t = __this_cpu_read(pcp->stat_threshold);
  236. if (unlikely(v > t)) {
  237. s8 overstep = t >> 1;
  238. zone_page_state_add(v + overstep, zone, item);
  239. __this_cpu_write(*p, -overstep);
  240. }
  241. }
  242. void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
  243. {
  244. __inc_zone_state(page_zone(page), item);
  245. }
  246. EXPORT_SYMBOL(__inc_zone_page_state);
  247. void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
  248. {
  249. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  250. s8 __percpu *p = pcp->vm_stat_diff + item;
  251. s8 v, t;
  252. v = __this_cpu_dec_return(*p);
  253. t = __this_cpu_read(pcp->stat_threshold);
  254. if (unlikely(v < - t)) {
  255. s8 overstep = t >> 1;
  256. zone_page_state_add(v - overstep, zone, item);
  257. __this_cpu_write(*p, overstep);
  258. }
  259. }
  260. void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
  261. {
  262. __dec_zone_state(page_zone(page), item);
  263. }
  264. EXPORT_SYMBOL(__dec_zone_page_state);
  265. #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
  266. /*
  267. * If we have cmpxchg_local support then we do not need to incur the overhead
  268. * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
  269. *
  270. * mod_state() modifies the zone counter state through atomic per cpu
  271. * operations.
  272. *
  273. * Overstep mode specifies how overstep should handled:
  274. * 0 No overstepping
  275. * 1 Overstepping half of threshold
  276. * -1 Overstepping minus half of threshold
  277. */
  278. static inline void mod_state(struct zone *zone, enum zone_stat_item item,
  279. long delta, int overstep_mode)
  280. {
  281. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  282. s8 __percpu *p = pcp->vm_stat_diff + item;
  283. long o, n, t, z;
  284. do {
  285. z = 0; /* overflow to zone counters */
  286. /*
  287. * The fetching of the stat_threshold is racy. We may apply
  288. * a counter threshold to the wrong the cpu if we get
  289. * rescheduled while executing here. However, the next
  290. * counter update will apply the threshold again and
  291. * therefore bring the counter under the threshold again.
  292. *
  293. * Most of the time the thresholds are the same anyways
  294. * for all cpus in a zone.
  295. */
  296. t = this_cpu_read(pcp->stat_threshold);
  297. o = this_cpu_read(*p);
  298. n = delta + o;
  299. if (n > t || n < -t) {
  300. int os = overstep_mode * (t >> 1) ;
  301. /* Overflow must be added to zone counters */
  302. z = n + os;
  303. n = -os;
  304. }
  305. } while (this_cpu_cmpxchg(*p, o, n) != o);
  306. if (z)
  307. zone_page_state_add(z, zone, item);
  308. }
  309. void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  310. long delta)
  311. {
  312. mod_state(zone, item, delta, 0);
  313. }
  314. EXPORT_SYMBOL(mod_zone_page_state);
  315. void inc_zone_state(struct zone *zone, enum zone_stat_item item)
  316. {
  317. mod_state(zone, item, 1, 1);
  318. }
  319. void inc_zone_page_state(struct page *page, enum zone_stat_item item)
  320. {
  321. mod_state(page_zone(page), item, 1, 1);
  322. }
  323. EXPORT_SYMBOL(inc_zone_page_state);
  324. void dec_zone_page_state(struct page *page, enum zone_stat_item item)
  325. {
  326. mod_state(page_zone(page), item, -1, -1);
  327. }
  328. EXPORT_SYMBOL(dec_zone_page_state);
  329. #else
  330. /*
  331. * Use interrupt disable to serialize counter updates
  332. */
  333. void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  334. long delta)
  335. {
  336. unsigned long flags;
  337. local_irq_save(flags);
  338. __mod_zone_page_state(zone, item, delta);
  339. local_irq_restore(flags);
  340. }
  341. EXPORT_SYMBOL(mod_zone_page_state);
  342. void inc_zone_state(struct zone *zone, enum zone_stat_item item)
  343. {
  344. unsigned long flags;
  345. local_irq_save(flags);
  346. __inc_zone_state(zone, item);
  347. local_irq_restore(flags);
  348. }
  349. void inc_zone_page_state(struct page *page, enum zone_stat_item item)
  350. {
  351. unsigned long flags;
  352. struct zone *zone;
  353. zone = page_zone(page);
  354. local_irq_save(flags);
  355. __inc_zone_state(zone, item);
  356. local_irq_restore(flags);
  357. }
  358. EXPORT_SYMBOL(inc_zone_page_state);
  359. void dec_zone_page_state(struct page *page, enum zone_stat_item item)
  360. {
  361. unsigned long flags;
  362. local_irq_save(flags);
  363. __dec_zone_page_state(page, item);
  364. local_irq_restore(flags);
  365. }
  366. EXPORT_SYMBOL(dec_zone_page_state);
  367. #endif
  368. /*
  369. * Fold a differential into the global counters.
  370. * Returns the number of counters updated.
  371. */
  372. static int fold_diff(int *diff)
  373. {
  374. int i;
  375. int changes = 0;
  376. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  377. if (diff[i]) {
  378. atomic_long_add(diff[i], &vm_stat[i]);
  379. changes++;
  380. }
  381. return changes;
  382. }
  383. /*
  384. * Update the zone counters for the current cpu.
  385. *
  386. * Note that refresh_cpu_vm_stats strives to only access
  387. * node local memory. The per cpu pagesets on remote zones are placed
  388. * in the memory local to the processor using that pageset. So the
  389. * loop over all zones will access a series of cachelines local to
  390. * the processor.
  391. *
  392. * The call to zone_page_state_add updates the cachelines with the
  393. * statistics in the remote zone struct as well as the global cachelines
  394. * with the global counters. These could cause remote node cache line
  395. * bouncing and will have to be only done when necessary.
  396. *
  397. * The function returns the number of global counters updated.
  398. */
  399. static int refresh_cpu_vm_stats(bool do_pagesets)
  400. {
  401. struct zone *zone;
  402. int i;
  403. int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
  404. int changes = 0;
  405. for_each_populated_zone(zone) {
  406. struct per_cpu_pageset __percpu *p = zone->pageset;
  407. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
  408. int v;
  409. v = this_cpu_xchg(p->vm_stat_diff[i], 0);
  410. if (v) {
  411. atomic_long_add(v, &zone->vm_stat[i]);
  412. global_diff[i] += v;
  413. #ifdef CONFIG_NUMA
  414. /* 3 seconds idle till flush */
  415. __this_cpu_write(p->expire, 3);
  416. #endif
  417. }
  418. }
  419. #ifdef CONFIG_NUMA
  420. if (do_pagesets) {
  421. cond_resched();
  422. /*
  423. * Deal with draining the remote pageset of this
  424. * processor
  425. *
  426. * Check if there are pages remaining in this pageset
  427. * if not then there is nothing to expire.
  428. */
  429. if (!__this_cpu_read(p->expire) ||
  430. !__this_cpu_read(p->pcp.count))
  431. continue;
  432. /*
  433. * We never drain zones local to this processor.
  434. */
  435. if (zone_to_nid(zone) == numa_node_id()) {
  436. __this_cpu_write(p->expire, 0);
  437. continue;
  438. }
  439. if (__this_cpu_dec_return(p->expire))
  440. continue;
  441. if (__this_cpu_read(p->pcp.count)) {
  442. drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
  443. changes++;
  444. }
  445. }
  446. #endif
  447. }
  448. changes += fold_diff(global_diff);
  449. return changes;
  450. }
  451. /*
  452. * Fold the data for an offline cpu into the global array.
  453. * There cannot be any access by the offline cpu and therefore
  454. * synchronization is simplified.
  455. */
  456. void cpu_vm_stats_fold(int cpu)
  457. {
  458. struct zone *zone;
  459. int i;
  460. int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
  461. for_each_populated_zone(zone) {
  462. struct per_cpu_pageset *p;
  463. p = per_cpu_ptr(zone->pageset, cpu);
  464. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  465. if (p->vm_stat_diff[i]) {
  466. int v;
  467. v = p->vm_stat_diff[i];
  468. p->vm_stat_diff[i] = 0;
  469. atomic_long_add(v, &zone->vm_stat[i]);
  470. global_diff[i] += v;
  471. }
  472. }
  473. fold_diff(global_diff);
  474. }
  475. /*
  476. * this is only called if !populated_zone(zone), which implies no other users of
  477. * pset->vm_stat_diff[] exsist.
  478. */
  479. void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
  480. {
  481. int i;
  482. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  483. if (pset->vm_stat_diff[i]) {
  484. int v = pset->vm_stat_diff[i];
  485. pset->vm_stat_diff[i] = 0;
  486. atomic_long_add(v, &zone->vm_stat[i]);
  487. atomic_long_add(v, &vm_stat[i]);
  488. }
  489. }
  490. #endif
  491. #ifdef CONFIG_NUMA
  492. /*
  493. * Determine the per node value of a stat item.
  494. */
  495. unsigned long node_page_state(int node, enum zone_stat_item item)
  496. {
  497. struct zone *zones = NODE_DATA(node)->node_zones;
  498. int i;
  499. unsigned long count = 0;
  500. for (i = 0; i < MAX_NR_ZONES; i++)
  501. count += zone_page_state(zones + i, item);
  502. return count;
  503. }
  504. #endif
  505. #ifdef CONFIG_COMPACTION
  506. struct contig_page_info {
  507. unsigned long free_pages;
  508. unsigned long free_blocks_total;
  509. unsigned long free_blocks_suitable;
  510. };
  511. /*
  512. * Calculate the number of free pages in a zone, how many contiguous
  513. * pages are free and how many are large enough to satisfy an allocation of
  514. * the target size. Note that this function makes no attempt to estimate
  515. * how many suitable free blocks there *might* be if MOVABLE pages were
  516. * migrated. Calculating that is possible, but expensive and can be
  517. * figured out from userspace
  518. */
  519. static void fill_contig_page_info(struct zone *zone,
  520. unsigned int suitable_order,
  521. struct contig_page_info *info)
  522. {
  523. unsigned int order;
  524. info->free_pages = 0;
  525. info->free_blocks_total = 0;
  526. info->free_blocks_suitable = 0;
  527. for (order = 0; order < MAX_ORDER; order++) {
  528. unsigned long blocks;
  529. /* Count number of free blocks */
  530. blocks = zone->free_area[order].nr_free;
  531. info->free_blocks_total += blocks;
  532. /* Count free base pages */
  533. info->free_pages += blocks << order;
  534. /* Count the suitable free blocks */
  535. if (order >= suitable_order)
  536. info->free_blocks_suitable += blocks <<
  537. (order - suitable_order);
  538. }
  539. }
  540. /*
  541. * A fragmentation index only makes sense if an allocation of a requested
  542. * size would fail. If that is true, the fragmentation index indicates
  543. * whether external fragmentation or a lack of memory was the problem.
  544. * The value can be used to determine if page reclaim or compaction
  545. * should be used
  546. */
  547. static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
  548. {
  549. unsigned long requested = 1UL << order;
  550. if (!info->free_blocks_total)
  551. return 0;
  552. /* Fragmentation index only makes sense when a request would fail */
  553. if (info->free_blocks_suitable)
  554. return -1000;
  555. /*
  556. * Index is between 0 and 1 so return within 3 decimal places
  557. *
  558. * 0 => allocation would fail due to lack of memory
  559. * 1 => allocation would fail due to fragmentation
  560. */
  561. return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
  562. }
  563. /* Same as __fragmentation index but allocs contig_page_info on stack */
  564. int fragmentation_index(struct zone *zone, unsigned int order)
  565. {
  566. struct contig_page_info info;
  567. fill_contig_page_info(zone, order, &info);
  568. return __fragmentation_index(order, &info);
  569. }
  570. #endif
  571. #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
  572. #ifdef CONFIG_ZONE_DMA
  573. #define TEXT_FOR_DMA(xx) xx "_dma",
  574. #else
  575. #define TEXT_FOR_DMA(xx)
  576. #endif
  577. #ifdef CONFIG_ZONE_DMA32
  578. #define TEXT_FOR_DMA32(xx) xx "_dma32",
  579. #else
  580. #define TEXT_FOR_DMA32(xx)
  581. #endif
  582. #ifdef CONFIG_HIGHMEM
  583. #define TEXT_FOR_HIGHMEM(xx) xx "_high",
  584. #else
  585. #define TEXT_FOR_HIGHMEM(xx)
  586. #endif
  587. #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
  588. TEXT_FOR_HIGHMEM(xx) xx "_movable",
  589. const char * const vmstat_text[] = {
  590. /* enum zone_stat_item countes */
  591. "nr_free_pages",
  592. "nr_alloc_batch",
  593. "nr_inactive_anon",
  594. "nr_active_anon",
  595. "nr_inactive_file",
  596. "nr_active_file",
  597. "nr_unevictable",
  598. "nr_mlock",
  599. "nr_anon_pages",
  600. "nr_mapped",
  601. "nr_file_pages",
  602. "nr_dirty",
  603. "nr_writeback",
  604. "nr_slab_reclaimable",
  605. "nr_slab_unreclaimable",
  606. "nr_page_table_pages",
  607. "nr_kernel_stack",
  608. "nr_unstable",
  609. "nr_bounce",
  610. "nr_vmscan_write",
  611. "nr_vmscan_immediate_reclaim",
  612. "nr_writeback_temp",
  613. "nr_isolated_anon",
  614. "nr_isolated_file",
  615. "nr_shmem",
  616. "nr_dirtied",
  617. "nr_written",
  618. "nr_pages_scanned",
  619. #ifdef CONFIG_NUMA
  620. "numa_hit",
  621. "numa_miss",
  622. "numa_foreign",
  623. "numa_interleave",
  624. "numa_local",
  625. "numa_other",
  626. #endif
  627. "workingset_refault",
  628. "workingset_activate",
  629. "workingset_nodereclaim",
  630. "nr_anon_transparent_hugepages",
  631. "nr_free_cma",
  632. /* enum writeback_stat_item counters */
  633. "nr_dirty_threshold",
  634. "nr_dirty_background_threshold",
  635. #ifdef CONFIG_VM_EVENT_COUNTERS
  636. /* enum vm_event_item counters */
  637. "pgpgin",
  638. "pgpgout",
  639. "pswpin",
  640. "pswpout",
  641. TEXTS_FOR_ZONES("pgalloc")
  642. "pgfree",
  643. "pgactivate",
  644. "pgdeactivate",
  645. "pgfault",
  646. "pgmajfault",
  647. "pglazyfreed",
  648. TEXTS_FOR_ZONES("pgrefill")
  649. TEXTS_FOR_ZONES("pgsteal_kswapd")
  650. TEXTS_FOR_ZONES("pgsteal_direct")
  651. TEXTS_FOR_ZONES("pgscan_kswapd")
  652. TEXTS_FOR_ZONES("pgscan_direct")
  653. "pgscan_direct_throttle",
  654. #ifdef CONFIG_NUMA
  655. "zone_reclaim_failed",
  656. #endif
  657. "pginodesteal",
  658. "slabs_scanned",
  659. "kswapd_inodesteal",
  660. "kswapd_low_wmark_hit_quickly",
  661. "kswapd_high_wmark_hit_quickly",
  662. "pageoutrun",
  663. "allocstall",
  664. "pgrotated",
  665. "drop_pagecache",
  666. "drop_slab",
  667. #ifdef CONFIG_NUMA_BALANCING
  668. "numa_pte_updates",
  669. "numa_huge_pte_updates",
  670. "numa_hint_faults",
  671. "numa_hint_faults_local",
  672. "numa_pages_migrated",
  673. #endif
  674. #ifdef CONFIG_MIGRATION
  675. "pgmigrate_success",
  676. "pgmigrate_fail",
  677. #endif
  678. #ifdef CONFIG_COMPACTION
  679. "compact_migrate_scanned",
  680. "compact_free_scanned",
  681. "compact_isolated",
  682. "compact_stall",
  683. "compact_fail",
  684. "compact_success",
  685. "compact_daemon_wake",
  686. #endif
  687. #ifdef CONFIG_HUGETLB_PAGE
  688. "htlb_buddy_alloc_success",
  689. "htlb_buddy_alloc_fail",
  690. #endif
  691. "unevictable_pgs_culled",
  692. "unevictable_pgs_scanned",
  693. "unevictable_pgs_rescued",
  694. "unevictable_pgs_mlocked",
  695. "unevictable_pgs_munlocked",
  696. "unevictable_pgs_cleared",
  697. "unevictable_pgs_stranded",
  698. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  699. "thp_fault_alloc",
  700. "thp_fault_fallback",
  701. "thp_collapse_alloc",
  702. "thp_collapse_alloc_failed",
  703. "thp_split_page",
  704. "thp_split_page_failed",
  705. "thp_deferred_split_page",
  706. "thp_split_pmd",
  707. "thp_zero_page_alloc",
  708. "thp_zero_page_alloc_failed",
  709. #endif
  710. #ifdef CONFIG_MEMORY_BALLOON
  711. "balloon_inflate",
  712. "balloon_deflate",
  713. #ifdef CONFIG_BALLOON_COMPACTION
  714. "balloon_migrate",
  715. #endif
  716. #endif /* CONFIG_MEMORY_BALLOON */
  717. #ifdef CONFIG_DEBUG_TLBFLUSH
  718. #ifdef CONFIG_SMP
  719. "nr_tlb_remote_flush",
  720. "nr_tlb_remote_flush_received",
  721. #endif /* CONFIG_SMP */
  722. "nr_tlb_local_flush_all",
  723. "nr_tlb_local_flush_one",
  724. #endif /* CONFIG_DEBUG_TLBFLUSH */
  725. #ifdef CONFIG_DEBUG_VM_VMACACHE
  726. "vmacache_find_calls",
  727. "vmacache_find_hits",
  728. "vmacache_full_flushes",
  729. #endif
  730. #endif /* CONFIG_VM_EVENTS_COUNTERS */
  731. };
  732. #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
  733. #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
  734. defined(CONFIG_PROC_FS)
  735. static void *frag_start(struct seq_file *m, loff_t *pos)
  736. {
  737. pg_data_t *pgdat;
  738. loff_t node = *pos;
  739. for (pgdat = first_online_pgdat();
  740. pgdat && node;
  741. pgdat = next_online_pgdat(pgdat))
  742. --node;
  743. return pgdat;
  744. }
  745. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  746. {
  747. pg_data_t *pgdat = (pg_data_t *)arg;
  748. (*pos)++;
  749. return next_online_pgdat(pgdat);
  750. }
  751. static void frag_stop(struct seq_file *m, void *arg)
  752. {
  753. }
  754. /* Walk all the zones in a node and print using a callback */
  755. static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
  756. void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
  757. {
  758. struct zone *zone;
  759. struct zone *node_zones = pgdat->node_zones;
  760. unsigned long flags;
  761. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  762. if (!populated_zone(zone))
  763. continue;
  764. spin_lock_irqsave(&zone->lock, flags);
  765. print(m, pgdat, zone);
  766. spin_unlock_irqrestore(&zone->lock, flags);
  767. }
  768. }
  769. #endif
  770. #ifdef CONFIG_PROC_FS
  771. static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
  772. struct zone *zone)
  773. {
  774. int order;
  775. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  776. for (order = 0; order < MAX_ORDER; ++order)
  777. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  778. seq_putc(m, '\n');
  779. }
  780. /*
  781. * This walks the free areas for each zone.
  782. */
  783. static int frag_show(struct seq_file *m, void *arg)
  784. {
  785. pg_data_t *pgdat = (pg_data_t *)arg;
  786. walk_zones_in_node(m, pgdat, frag_show_print);
  787. return 0;
  788. }
  789. static void pagetypeinfo_showfree_print(struct seq_file *m,
  790. pg_data_t *pgdat, struct zone *zone)
  791. {
  792. int order, mtype;
  793. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
  794. seq_printf(m, "Node %4d, zone %8s, type %12s ",
  795. pgdat->node_id,
  796. zone->name,
  797. migratetype_names[mtype]);
  798. for (order = 0; order < MAX_ORDER; ++order) {
  799. unsigned long freecount = 0;
  800. struct free_area *area;
  801. struct list_head *curr;
  802. area = &(zone->free_area[order]);
  803. list_for_each(curr, &area->free_list[mtype])
  804. freecount++;
  805. seq_printf(m, "%6lu ", freecount);
  806. }
  807. seq_putc(m, '\n');
  808. }
  809. }
  810. /* Print out the free pages at each order for each migatetype */
  811. static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
  812. {
  813. int order;
  814. pg_data_t *pgdat = (pg_data_t *)arg;
  815. /* Print header */
  816. seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
  817. for (order = 0; order < MAX_ORDER; ++order)
  818. seq_printf(m, "%6d ", order);
  819. seq_putc(m, '\n');
  820. walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
  821. return 0;
  822. }
  823. static void pagetypeinfo_showblockcount_print(struct seq_file *m,
  824. pg_data_t *pgdat, struct zone *zone)
  825. {
  826. int mtype;
  827. unsigned long pfn;
  828. unsigned long start_pfn = zone->zone_start_pfn;
  829. unsigned long end_pfn = zone_end_pfn(zone);
  830. unsigned long count[MIGRATE_TYPES] = { 0, };
  831. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  832. struct page *page;
  833. if (!pfn_valid(pfn))
  834. continue;
  835. page = pfn_to_page(pfn);
  836. /* Watch for unexpected holes punched in the memmap */
  837. if (!memmap_valid_within(pfn, page, zone))
  838. continue;
  839. if (page_zone(page) != zone)
  840. continue;
  841. mtype = get_pageblock_migratetype(page);
  842. if (mtype < MIGRATE_TYPES)
  843. count[mtype]++;
  844. }
  845. /* Print counts */
  846. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  847. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  848. seq_printf(m, "%12lu ", count[mtype]);
  849. seq_putc(m, '\n');
  850. }
  851. /* Print out the free pages at each order for each migratetype */
  852. static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
  853. {
  854. int mtype;
  855. pg_data_t *pgdat = (pg_data_t *)arg;
  856. seq_printf(m, "\n%-23s", "Number of blocks type ");
  857. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  858. seq_printf(m, "%12s ", migratetype_names[mtype]);
  859. seq_putc(m, '\n');
  860. walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
  861. return 0;
  862. }
  863. #ifdef CONFIG_PAGE_OWNER
  864. static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
  865. pg_data_t *pgdat,
  866. struct zone *zone)
  867. {
  868. struct page *page;
  869. struct page_ext *page_ext;
  870. unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
  871. unsigned long end_pfn = pfn + zone->spanned_pages;
  872. unsigned long count[MIGRATE_TYPES] = { 0, };
  873. int pageblock_mt, page_mt;
  874. int i;
  875. /* Scan block by block. First and last block may be incomplete */
  876. pfn = zone->zone_start_pfn;
  877. /*
  878. * Walk the zone in pageblock_nr_pages steps. If a page block spans
  879. * a zone boundary, it will be double counted between zones. This does
  880. * not matter as the mixed block count will still be correct
  881. */
  882. for (; pfn < end_pfn; ) {
  883. if (!pfn_valid(pfn)) {
  884. pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
  885. continue;
  886. }
  887. block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
  888. block_end_pfn = min(block_end_pfn, end_pfn);
  889. page = pfn_to_page(pfn);
  890. pageblock_mt = get_pageblock_migratetype(page);
  891. for (; pfn < block_end_pfn; pfn++) {
  892. if (!pfn_valid_within(pfn))
  893. continue;
  894. page = pfn_to_page(pfn);
  895. if (page_zone(page) != zone)
  896. continue;
  897. if (PageBuddy(page)) {
  898. pfn += (1UL << page_order(page)) - 1;
  899. continue;
  900. }
  901. if (PageReserved(page))
  902. continue;
  903. page_ext = lookup_page_ext(page);
  904. if (unlikely(!page_ext))
  905. continue;
  906. if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
  907. continue;
  908. page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
  909. if (pageblock_mt != page_mt) {
  910. if (is_migrate_cma(pageblock_mt))
  911. count[MIGRATE_MOVABLE]++;
  912. else
  913. count[pageblock_mt]++;
  914. pfn = block_end_pfn;
  915. break;
  916. }
  917. pfn += (1UL << page_ext->order) - 1;
  918. }
  919. }
  920. /* Print counts */
  921. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  922. for (i = 0; i < MIGRATE_TYPES; i++)
  923. seq_printf(m, "%12lu ", count[i]);
  924. seq_putc(m, '\n');
  925. }
  926. #endif /* CONFIG_PAGE_OWNER */
  927. /*
  928. * Print out the number of pageblocks for each migratetype that contain pages
  929. * of other types. This gives an indication of how well fallbacks are being
  930. * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
  931. * to determine what is going on
  932. */
  933. static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
  934. {
  935. #ifdef CONFIG_PAGE_OWNER
  936. int mtype;
  937. if (!static_branch_unlikely(&page_owner_inited))
  938. return;
  939. drain_all_pages(NULL);
  940. seq_printf(m, "\n%-23s", "Number of mixed blocks ");
  941. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  942. seq_printf(m, "%12s ", migratetype_names[mtype]);
  943. seq_putc(m, '\n');
  944. walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
  945. #endif /* CONFIG_PAGE_OWNER */
  946. }
  947. /*
  948. * This prints out statistics in relation to grouping pages by mobility.
  949. * It is expensive to collect so do not constantly read the file.
  950. */
  951. static int pagetypeinfo_show(struct seq_file *m, void *arg)
  952. {
  953. pg_data_t *pgdat = (pg_data_t *)arg;
  954. /* check memoryless node */
  955. if (!node_state(pgdat->node_id, N_MEMORY))
  956. return 0;
  957. seq_printf(m, "Page block order: %d\n", pageblock_order);
  958. seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
  959. seq_putc(m, '\n');
  960. pagetypeinfo_showfree(m, pgdat);
  961. pagetypeinfo_showblockcount(m, pgdat);
  962. pagetypeinfo_showmixedcount(m, pgdat);
  963. return 0;
  964. }
  965. static const struct seq_operations fragmentation_op = {
  966. .start = frag_start,
  967. .next = frag_next,
  968. .stop = frag_stop,
  969. .show = frag_show,
  970. };
  971. static int fragmentation_open(struct inode *inode, struct file *file)
  972. {
  973. return seq_open(file, &fragmentation_op);
  974. }
  975. static const struct file_operations fragmentation_file_operations = {
  976. .open = fragmentation_open,
  977. .read = seq_read,
  978. .llseek = seq_lseek,
  979. .release = seq_release,
  980. };
  981. static const struct seq_operations pagetypeinfo_op = {
  982. .start = frag_start,
  983. .next = frag_next,
  984. .stop = frag_stop,
  985. .show = pagetypeinfo_show,
  986. };
  987. static int pagetypeinfo_open(struct inode *inode, struct file *file)
  988. {
  989. return seq_open(file, &pagetypeinfo_op);
  990. }
  991. static const struct file_operations pagetypeinfo_file_ops = {
  992. .open = pagetypeinfo_open,
  993. .read = seq_read,
  994. .llseek = seq_lseek,
  995. .release = seq_release,
  996. };
  997. static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
  998. struct zone *zone)
  999. {
  1000. int i;
  1001. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1002. seq_printf(m,
  1003. "\n pages free %lu"
  1004. "\n min %lu"
  1005. "\n low %lu"
  1006. "\n high %lu"
  1007. "\n scanned %lu"
  1008. "\n spanned %lu"
  1009. "\n present %lu"
  1010. "\n managed %lu",
  1011. zone_page_state(zone, NR_FREE_PAGES),
  1012. min_wmark_pages(zone),
  1013. low_wmark_pages(zone),
  1014. high_wmark_pages(zone),
  1015. zone_page_state(zone, NR_PAGES_SCANNED),
  1016. zone->spanned_pages,
  1017. zone->present_pages,
  1018. zone->managed_pages);
  1019. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  1020. seq_printf(m, "\n %-12s %lu", vmstat_text[i],
  1021. zone_page_state(zone, i));
  1022. seq_printf(m,
  1023. "\n protection: (%ld",
  1024. zone->lowmem_reserve[0]);
  1025. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1026. seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
  1027. seq_printf(m,
  1028. ")"
  1029. "\n pagesets");
  1030. for_each_online_cpu(i) {
  1031. struct per_cpu_pageset *pageset;
  1032. pageset = per_cpu_ptr(zone->pageset, i);
  1033. seq_printf(m,
  1034. "\n cpu: %i"
  1035. "\n count: %i"
  1036. "\n high: %i"
  1037. "\n batch: %i",
  1038. i,
  1039. pageset->pcp.count,
  1040. pageset->pcp.high,
  1041. pageset->pcp.batch);
  1042. #ifdef CONFIG_SMP
  1043. seq_printf(m, "\n vm stats threshold: %d",
  1044. pageset->stat_threshold);
  1045. #endif
  1046. }
  1047. seq_printf(m,
  1048. "\n all_unreclaimable: %u"
  1049. "\n start_pfn: %lu"
  1050. "\n inactive_ratio: %u",
  1051. !zone_reclaimable(zone),
  1052. zone->zone_start_pfn,
  1053. zone->inactive_ratio);
  1054. seq_putc(m, '\n');
  1055. }
  1056. /*
  1057. * Output information about zones in @pgdat.
  1058. */
  1059. static int zoneinfo_show(struct seq_file *m, void *arg)
  1060. {
  1061. pg_data_t *pgdat = (pg_data_t *)arg;
  1062. walk_zones_in_node(m, pgdat, zoneinfo_show_print);
  1063. return 0;
  1064. }
  1065. static const struct seq_operations zoneinfo_op = {
  1066. .start = frag_start, /* iterate over all zones. The same as in
  1067. * fragmentation. */
  1068. .next = frag_next,
  1069. .stop = frag_stop,
  1070. .show = zoneinfo_show,
  1071. };
  1072. static int zoneinfo_open(struct inode *inode, struct file *file)
  1073. {
  1074. return seq_open(file, &zoneinfo_op);
  1075. }
  1076. static const struct file_operations proc_zoneinfo_file_operations = {
  1077. .open = zoneinfo_open,
  1078. .read = seq_read,
  1079. .llseek = seq_lseek,
  1080. .release = seq_release,
  1081. };
  1082. enum writeback_stat_item {
  1083. NR_DIRTY_THRESHOLD,
  1084. NR_DIRTY_BG_THRESHOLD,
  1085. NR_VM_WRITEBACK_STAT_ITEMS,
  1086. };
  1087. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  1088. {
  1089. unsigned long *v;
  1090. int i, stat_items_size;
  1091. if (*pos >= ARRAY_SIZE(vmstat_text))
  1092. return NULL;
  1093. stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
  1094. NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
  1095. #ifdef CONFIG_VM_EVENT_COUNTERS
  1096. stat_items_size += sizeof(struct vm_event_state);
  1097. #endif
  1098. v = kmalloc(stat_items_size, GFP_KERNEL);
  1099. m->private = v;
  1100. if (!v)
  1101. return ERR_PTR(-ENOMEM);
  1102. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  1103. v[i] = global_page_state(i);
  1104. v += NR_VM_ZONE_STAT_ITEMS;
  1105. global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
  1106. v + NR_DIRTY_THRESHOLD);
  1107. v += NR_VM_WRITEBACK_STAT_ITEMS;
  1108. #ifdef CONFIG_VM_EVENT_COUNTERS
  1109. all_vm_events(v);
  1110. v[PGPGIN] /= 2; /* sectors -> kbytes */
  1111. v[PGPGOUT] /= 2;
  1112. #endif
  1113. return (unsigned long *)m->private + *pos;
  1114. }
  1115. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  1116. {
  1117. (*pos)++;
  1118. if (*pos >= ARRAY_SIZE(vmstat_text))
  1119. return NULL;
  1120. return (unsigned long *)m->private + *pos;
  1121. }
  1122. static int vmstat_show(struct seq_file *m, void *arg)
  1123. {
  1124. unsigned long *l = arg;
  1125. unsigned long off = l - (unsigned long *)m->private;
  1126. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  1127. return 0;
  1128. }
  1129. static void vmstat_stop(struct seq_file *m, void *arg)
  1130. {
  1131. kfree(m->private);
  1132. m->private = NULL;
  1133. }
  1134. static const struct seq_operations vmstat_op = {
  1135. .start = vmstat_start,
  1136. .next = vmstat_next,
  1137. .stop = vmstat_stop,
  1138. .show = vmstat_show,
  1139. };
  1140. static int vmstat_open(struct inode *inode, struct file *file)
  1141. {
  1142. return seq_open(file, &vmstat_op);
  1143. }
  1144. static const struct file_operations proc_vmstat_file_operations = {
  1145. .open = vmstat_open,
  1146. .read = seq_read,
  1147. .llseek = seq_lseek,
  1148. .release = seq_release,
  1149. };
  1150. #endif /* CONFIG_PROC_FS */
  1151. #ifdef CONFIG_SMP
  1152. static struct workqueue_struct *vmstat_wq;
  1153. static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
  1154. int sysctl_stat_interval __read_mostly = HZ;
  1155. #ifdef CONFIG_PROC_FS
  1156. static void refresh_vm_stats(struct work_struct *work)
  1157. {
  1158. refresh_cpu_vm_stats(true);
  1159. }
  1160. int vmstat_refresh(struct ctl_table *table, int write,
  1161. void __user *buffer, size_t *lenp, loff_t *ppos)
  1162. {
  1163. long val;
  1164. int err;
  1165. int i;
  1166. /*
  1167. * The regular update, every sysctl_stat_interval, may come later
  1168. * than expected: leaving a significant amount in per_cpu buckets.
  1169. * This is particularly misleading when checking a quantity of HUGE
  1170. * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
  1171. * which can equally be echo'ed to or cat'ted from (by root),
  1172. * can be used to update the stats just before reading them.
  1173. *
  1174. * Oh, and since global_page_state() etc. are so careful to hide
  1175. * transiently negative values, report an error here if any of
  1176. * the stats is negative, so we know to go looking for imbalance.
  1177. */
  1178. err = schedule_on_each_cpu(refresh_vm_stats);
  1179. if (err)
  1180. return err;
  1181. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
  1182. val = atomic_long_read(&vm_stat[i]);
  1183. if (val < 0) {
  1184. switch (i) {
  1185. case NR_ALLOC_BATCH:
  1186. case NR_PAGES_SCANNED:
  1187. /*
  1188. * These are often seen to go negative in
  1189. * recent kernels, but not to go permanently
  1190. * negative. Whilst it would be nicer not to
  1191. * have exceptions, rooting them out would be
  1192. * another task, of rather low priority.
  1193. */
  1194. break;
  1195. default:
  1196. pr_warn("%s: %s %ld\n",
  1197. __func__, vmstat_text[i], val);
  1198. err = -EINVAL;
  1199. break;
  1200. }
  1201. }
  1202. }
  1203. if (err)
  1204. return err;
  1205. if (write)
  1206. *ppos += *lenp;
  1207. else
  1208. *lenp = 0;
  1209. return 0;
  1210. }
  1211. #endif /* CONFIG_PROC_FS */
  1212. static void vmstat_update(struct work_struct *w)
  1213. {
  1214. if (refresh_cpu_vm_stats(true)) {
  1215. /*
  1216. * Counters were updated so we expect more updates
  1217. * to occur in the future. Keep on running the
  1218. * update worker thread.
  1219. */
  1220. queue_delayed_work_on(smp_processor_id(), vmstat_wq,
  1221. this_cpu_ptr(&vmstat_work),
  1222. round_jiffies_relative(sysctl_stat_interval));
  1223. }
  1224. }
  1225. /*
  1226. * Switch off vmstat processing and then fold all the remaining differentials
  1227. * until the diffs stay at zero. The function is used by NOHZ and can only be
  1228. * invoked when tick processing is not active.
  1229. */
  1230. /*
  1231. * Check if the diffs for a certain cpu indicate that
  1232. * an update is needed.
  1233. */
  1234. static bool need_update(int cpu)
  1235. {
  1236. struct zone *zone;
  1237. for_each_populated_zone(zone) {
  1238. struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
  1239. BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
  1240. /*
  1241. * The fast way of checking if there are any vmstat diffs.
  1242. * This works because the diffs are byte sized items.
  1243. */
  1244. if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
  1245. return true;
  1246. }
  1247. return false;
  1248. }
  1249. /*
  1250. * Switch off vmstat processing and then fold all the remaining differentials
  1251. * until the diffs stay at zero. The function is used by NOHZ and can only be
  1252. * invoked when tick processing is not active.
  1253. */
  1254. void quiet_vmstat(void)
  1255. {
  1256. if (system_state != SYSTEM_RUNNING)
  1257. return;
  1258. if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
  1259. return;
  1260. if (!need_update(smp_processor_id()))
  1261. return;
  1262. /*
  1263. * Just refresh counters and do not care about the pending delayed
  1264. * vmstat_update. It doesn't fire that often to matter and canceling
  1265. * it would be too expensive from this path.
  1266. * vmstat_shepherd will take care about that for us.
  1267. */
  1268. refresh_cpu_vm_stats(false);
  1269. }
  1270. /*
  1271. * Shepherd worker thread that checks the
  1272. * differentials of processors that have their worker
  1273. * threads for vm statistics updates disabled because of
  1274. * inactivity.
  1275. */
  1276. static void vmstat_shepherd(struct work_struct *w);
  1277. static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
  1278. static void vmstat_shepherd(struct work_struct *w)
  1279. {
  1280. int cpu;
  1281. get_online_cpus();
  1282. /* Check processors whose vmstat worker threads have been disabled */
  1283. for_each_online_cpu(cpu) {
  1284. struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
  1285. if (!delayed_work_pending(dw) && need_update(cpu))
  1286. queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
  1287. }
  1288. put_online_cpus();
  1289. schedule_delayed_work(&shepherd,
  1290. round_jiffies_relative(sysctl_stat_interval));
  1291. }
  1292. static void __init start_shepherd_timer(void)
  1293. {
  1294. int cpu;
  1295. for_each_possible_cpu(cpu)
  1296. INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
  1297. vmstat_update);
  1298. vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
  1299. schedule_delayed_work(&shepherd,
  1300. round_jiffies_relative(sysctl_stat_interval));
  1301. }
  1302. static void vmstat_cpu_dead(int node)
  1303. {
  1304. int cpu;
  1305. get_online_cpus();
  1306. for_each_online_cpu(cpu)
  1307. if (cpu_to_node(cpu) == node)
  1308. goto end;
  1309. node_clear_state(node, N_CPU);
  1310. end:
  1311. put_online_cpus();
  1312. }
  1313. /*
  1314. * Use the cpu notifier to insure that the thresholds are recalculated
  1315. * when necessary.
  1316. */
  1317. static int vmstat_cpuup_callback(struct notifier_block *nfb,
  1318. unsigned long action,
  1319. void *hcpu)
  1320. {
  1321. long cpu = (long)hcpu;
  1322. switch (action) {
  1323. case CPU_ONLINE:
  1324. case CPU_ONLINE_FROZEN:
  1325. refresh_zone_stat_thresholds();
  1326. node_set_state(cpu_to_node(cpu), N_CPU);
  1327. break;
  1328. case CPU_DOWN_PREPARE:
  1329. case CPU_DOWN_PREPARE_FROZEN:
  1330. cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
  1331. break;
  1332. case CPU_DOWN_FAILED:
  1333. case CPU_DOWN_FAILED_FROZEN:
  1334. break;
  1335. case CPU_DEAD:
  1336. case CPU_DEAD_FROZEN:
  1337. refresh_zone_stat_thresholds();
  1338. vmstat_cpu_dead(cpu_to_node(cpu));
  1339. break;
  1340. default:
  1341. break;
  1342. }
  1343. return NOTIFY_OK;
  1344. }
  1345. static struct notifier_block vmstat_notifier =
  1346. { &vmstat_cpuup_callback, NULL, 0 };
  1347. #endif
  1348. static int __init setup_vmstat(void)
  1349. {
  1350. #ifdef CONFIG_SMP
  1351. cpu_notifier_register_begin();
  1352. __register_cpu_notifier(&vmstat_notifier);
  1353. start_shepherd_timer();
  1354. cpu_notifier_register_done();
  1355. #endif
  1356. #ifdef CONFIG_PROC_FS
  1357. proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
  1358. proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
  1359. proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
  1360. proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
  1361. #endif
  1362. return 0;
  1363. }
  1364. module_init(setup_vmstat)
  1365. #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
  1366. /*
  1367. * Return an index indicating how much of the available free memory is
  1368. * unusable for an allocation of the requested size.
  1369. */
  1370. static int unusable_free_index(unsigned int order,
  1371. struct contig_page_info *info)
  1372. {
  1373. /* No free memory is interpreted as all free memory is unusable */
  1374. if (info->free_pages == 0)
  1375. return 1000;
  1376. /*
  1377. * Index should be a value between 0 and 1. Return a value to 3
  1378. * decimal places.
  1379. *
  1380. * 0 => no fragmentation
  1381. * 1 => high fragmentation
  1382. */
  1383. return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
  1384. }
  1385. static void unusable_show_print(struct seq_file *m,
  1386. pg_data_t *pgdat, struct zone *zone)
  1387. {
  1388. unsigned int order;
  1389. int index;
  1390. struct contig_page_info info;
  1391. seq_printf(m, "Node %d, zone %8s ",
  1392. pgdat->node_id,
  1393. zone->name);
  1394. for (order = 0; order < MAX_ORDER; ++order) {
  1395. fill_contig_page_info(zone, order, &info);
  1396. index = unusable_free_index(order, &info);
  1397. seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
  1398. }
  1399. seq_putc(m, '\n');
  1400. }
  1401. /*
  1402. * Display unusable free space index
  1403. *
  1404. * The unusable free space index measures how much of the available free
  1405. * memory cannot be used to satisfy an allocation of a given size and is a
  1406. * value between 0 and 1. The higher the value, the more of free memory is
  1407. * unusable and by implication, the worse the external fragmentation is. This
  1408. * can be expressed as a percentage by multiplying by 100.
  1409. */
  1410. static int unusable_show(struct seq_file *m, void *arg)
  1411. {
  1412. pg_data_t *pgdat = (pg_data_t *)arg;
  1413. /* check memoryless node */
  1414. if (!node_state(pgdat->node_id, N_MEMORY))
  1415. return 0;
  1416. walk_zones_in_node(m, pgdat, unusable_show_print);
  1417. return 0;
  1418. }
  1419. static const struct seq_operations unusable_op = {
  1420. .start = frag_start,
  1421. .next = frag_next,
  1422. .stop = frag_stop,
  1423. .show = unusable_show,
  1424. };
  1425. static int unusable_open(struct inode *inode, struct file *file)
  1426. {
  1427. return seq_open(file, &unusable_op);
  1428. }
  1429. static const struct file_operations unusable_file_ops = {
  1430. .open = unusable_open,
  1431. .read = seq_read,
  1432. .llseek = seq_lseek,
  1433. .release = seq_release,
  1434. };
  1435. static void extfrag_show_print(struct seq_file *m,
  1436. pg_data_t *pgdat, struct zone *zone)
  1437. {
  1438. unsigned int order;
  1439. int index;
  1440. /* Alloc on stack as interrupts are disabled for zone walk */
  1441. struct contig_page_info info;
  1442. seq_printf(m, "Node %d, zone %8s ",
  1443. pgdat->node_id,
  1444. zone->name);
  1445. for (order = 0; order < MAX_ORDER; ++order) {
  1446. fill_contig_page_info(zone, order, &info);
  1447. index = __fragmentation_index(order, &info);
  1448. seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
  1449. }
  1450. seq_putc(m, '\n');
  1451. }
  1452. /*
  1453. * Display fragmentation index for orders that allocations would fail for
  1454. */
  1455. static int extfrag_show(struct seq_file *m, void *arg)
  1456. {
  1457. pg_data_t *pgdat = (pg_data_t *)arg;
  1458. walk_zones_in_node(m, pgdat, extfrag_show_print);
  1459. return 0;
  1460. }
  1461. static const struct seq_operations extfrag_op = {
  1462. .start = frag_start,
  1463. .next = frag_next,
  1464. .stop = frag_stop,
  1465. .show = extfrag_show,
  1466. };
  1467. static int extfrag_open(struct inode *inode, struct file *file)
  1468. {
  1469. return seq_open(file, &extfrag_op);
  1470. }
  1471. static const struct file_operations extfrag_file_ops = {
  1472. .open = extfrag_open,
  1473. .read = seq_read,
  1474. .llseek = seq_lseek,
  1475. .release = seq_release,
  1476. };
  1477. static int __init extfrag_debug_init(void)
  1478. {
  1479. struct dentry *extfrag_debug_root;
  1480. extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
  1481. if (!extfrag_debug_root)
  1482. return -ENOMEM;
  1483. if (!debugfs_create_file("unusable_index", 0444,
  1484. extfrag_debug_root, NULL, &unusable_file_ops))
  1485. goto fail;
  1486. if (!debugfs_create_file("extfrag_index", 0444,
  1487. extfrag_debug_root, NULL, &extfrag_file_ops))
  1488. goto fail;
  1489. return 0;
  1490. fail:
  1491. debugfs_remove_recursive(extfrag_debug_root);
  1492. return -ENOMEM;
  1493. }
  1494. module_init(extfrag_debug_init);
  1495. #endif