page-writeback.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/timer.h>
  37. #include <linux/sched/rt.h>
  38. #include <linux/mm_inline.h>
  39. #include <trace/events/writeback.h>
  40. #include "internal.h"
  41. /*
  42. * Sleep at most 200ms at a time in balance_dirty_pages().
  43. */
  44. #define MAX_PAUSE max(HZ/5, 1)
  45. /*
  46. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  47. * by raising pause time to max_pause when falls below it.
  48. */
  49. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  50. /*
  51. * Estimate write bandwidth at 200ms intervals.
  52. */
  53. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  54. #define RATELIMIT_CALC_SHIFT 10
  55. /*
  56. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  57. * will look to see if it needs to force writeback or throttling.
  58. */
  59. static long ratelimit_pages = 32;
  60. /* The following parameters are exported via /proc/sys/vm */
  61. /*
  62. * Start background writeback (via writeback threads) at this percentage
  63. */
  64. int dirty_background_ratio = 10;
  65. /*
  66. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  67. * dirty_background_ratio * the amount of dirtyable memory
  68. */
  69. unsigned long dirty_background_bytes;
  70. /*
  71. * free highmem will not be subtracted from the total free memory
  72. * for calculating free ratios if vm_highmem_is_dirtyable is true
  73. */
  74. int vm_highmem_is_dirtyable;
  75. /*
  76. * The generator of dirty data starts writeback at this percentage
  77. */
  78. int vm_dirty_ratio = 20;
  79. /*
  80. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  81. * vm_dirty_ratio * the amount of dirtyable memory
  82. */
  83. unsigned long vm_dirty_bytes;
  84. /*
  85. * The interval between `kupdate'-style writebacks
  86. */
  87. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  88. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  89. /*
  90. * The longest time for which data is allowed to remain dirty
  91. */
  92. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  93. /*
  94. * Flag that makes the machine dump writes/reads and block dirtyings.
  95. */
  96. int block_dump;
  97. /*
  98. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  99. * a full sync is triggered after this time elapses without any disk activity.
  100. */
  101. int laptop_mode;
  102. EXPORT_SYMBOL(laptop_mode);
  103. /* End of sysctl-exported parameters */
  104. struct wb_domain global_wb_domain;
  105. /* consolidated parameters for balance_dirty_pages() and its subroutines */
  106. struct dirty_throttle_control {
  107. #ifdef CONFIG_CGROUP_WRITEBACK
  108. struct wb_domain *dom;
  109. struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
  110. #endif
  111. struct bdi_writeback *wb;
  112. struct fprop_local_percpu *wb_completions;
  113. unsigned long avail; /* dirtyable */
  114. unsigned long dirty; /* file_dirty + write + nfs */
  115. unsigned long thresh; /* dirty threshold */
  116. unsigned long bg_thresh; /* dirty background threshold */
  117. unsigned long wb_dirty; /* per-wb counterparts */
  118. unsigned long wb_thresh;
  119. unsigned long wb_bg_thresh;
  120. unsigned long pos_ratio;
  121. };
  122. /*
  123. * Length of period for aging writeout fractions of bdis. This is an
  124. * arbitrarily chosen number. The longer the period, the slower fractions will
  125. * reflect changes in current writeout rate.
  126. */
  127. #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  128. #ifdef CONFIG_CGROUP_WRITEBACK
  129. #define GDTC_INIT(__wb) .wb = (__wb), \
  130. .dom = &global_wb_domain, \
  131. .wb_completions = &(__wb)->completions
  132. #define GDTC_INIT_NO_WB .dom = &global_wb_domain
  133. #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
  134. .dom = mem_cgroup_wb_domain(__wb), \
  135. .wb_completions = &(__wb)->memcg_completions, \
  136. .gdtc = __gdtc
  137. static bool mdtc_valid(struct dirty_throttle_control *dtc)
  138. {
  139. return dtc->dom;
  140. }
  141. static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
  142. {
  143. return dtc->dom;
  144. }
  145. static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
  146. {
  147. return mdtc->gdtc;
  148. }
  149. static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
  150. {
  151. return &wb->memcg_completions;
  152. }
  153. static void wb_min_max_ratio(struct bdi_writeback *wb,
  154. unsigned long *minp, unsigned long *maxp)
  155. {
  156. unsigned long this_bw = wb->avg_write_bandwidth;
  157. unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
  158. unsigned long long min = wb->bdi->min_ratio;
  159. unsigned long long max = wb->bdi->max_ratio;
  160. /*
  161. * @wb may already be clean by the time control reaches here and
  162. * the total may not include its bw.
  163. */
  164. if (this_bw < tot_bw) {
  165. if (min) {
  166. min *= this_bw;
  167. do_div(min, tot_bw);
  168. }
  169. if (max < 100) {
  170. max *= this_bw;
  171. do_div(max, tot_bw);
  172. }
  173. }
  174. *minp = min;
  175. *maxp = max;
  176. }
  177. #else /* CONFIG_CGROUP_WRITEBACK */
  178. #define GDTC_INIT(__wb) .wb = (__wb), \
  179. .wb_completions = &(__wb)->completions
  180. #define GDTC_INIT_NO_WB
  181. #define MDTC_INIT(__wb, __gdtc)
  182. static bool mdtc_valid(struct dirty_throttle_control *dtc)
  183. {
  184. return false;
  185. }
  186. static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
  187. {
  188. return &global_wb_domain;
  189. }
  190. static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
  191. {
  192. return NULL;
  193. }
  194. static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
  195. {
  196. return NULL;
  197. }
  198. static void wb_min_max_ratio(struct bdi_writeback *wb,
  199. unsigned long *minp, unsigned long *maxp)
  200. {
  201. *minp = wb->bdi->min_ratio;
  202. *maxp = wb->bdi->max_ratio;
  203. }
  204. #endif /* CONFIG_CGROUP_WRITEBACK */
  205. /*
  206. * In a memory zone, there is a certain amount of pages we consider
  207. * available for the page cache, which is essentially the number of
  208. * free and reclaimable pages, minus some zone reserves to protect
  209. * lowmem and the ability to uphold the zone's watermarks without
  210. * requiring writeback.
  211. *
  212. * This number of dirtyable pages is the base value of which the
  213. * user-configurable dirty ratio is the effictive number of pages that
  214. * are allowed to be actually dirtied. Per individual zone, or
  215. * globally by using the sum of dirtyable pages over all zones.
  216. *
  217. * Because the user is allowed to specify the dirty limit globally as
  218. * absolute number of bytes, calculating the per-zone dirty limit can
  219. * require translating the configured limit into a percentage of
  220. * global dirtyable memory first.
  221. */
  222. /**
  223. * zone_dirtyable_memory - number of dirtyable pages in a zone
  224. * @zone: the zone
  225. *
  226. * Returns the zone's number of pages potentially available for dirty
  227. * page cache. This is the base value for the per-zone dirty limits.
  228. */
  229. static unsigned long zone_dirtyable_memory(struct zone *zone)
  230. {
  231. unsigned long nr_pages;
  232. nr_pages = zone_page_state(zone, NR_FREE_PAGES);
  233. /*
  234. * Pages reserved for the kernel should not be considered
  235. * dirtyable, to prevent a situation where reclaim has to
  236. * clean pages in order to balance the zones.
  237. */
  238. nr_pages -= min(nr_pages, zone->totalreserve_pages);
  239. nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
  240. nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
  241. return nr_pages;
  242. }
  243. static unsigned long highmem_dirtyable_memory(unsigned long total)
  244. {
  245. #ifdef CONFIG_HIGHMEM
  246. int node;
  247. unsigned long x = 0;
  248. int i;
  249. for_each_node_state(node, N_HIGH_MEMORY) {
  250. for (i = 0; i < MAX_NR_ZONES; i++) {
  251. struct zone *z = &NODE_DATA(node)->node_zones[i];
  252. if (is_highmem(z))
  253. x += zone_dirtyable_memory(z);
  254. }
  255. }
  256. /*
  257. * Unreclaimable memory (kernel memory or anonymous memory
  258. * without swap) can bring down the dirtyable pages below
  259. * the zone's dirty balance reserve and the above calculation
  260. * will underflow. However we still want to add in nodes
  261. * which are below threshold (negative values) to get a more
  262. * accurate calculation but make sure that the total never
  263. * underflows.
  264. */
  265. if ((long)x < 0)
  266. x = 0;
  267. /*
  268. * Make sure that the number of highmem pages is never larger
  269. * than the number of the total dirtyable memory. This can only
  270. * occur in very strange VM situations but we want to make sure
  271. * that this does not occur.
  272. */
  273. return min(x, total);
  274. #else
  275. return 0;
  276. #endif
  277. }
  278. /**
  279. * global_dirtyable_memory - number of globally dirtyable pages
  280. *
  281. * Returns the global number of pages potentially available for dirty
  282. * page cache. This is the base value for the global dirty limits.
  283. */
  284. static unsigned long global_dirtyable_memory(void)
  285. {
  286. unsigned long x;
  287. x = global_page_state(NR_FREE_PAGES);
  288. /*
  289. * Pages reserved for the kernel should not be considered
  290. * dirtyable, to prevent a situation where reclaim has to
  291. * clean pages in order to balance the zones.
  292. */
  293. x -= min(x, totalreserve_pages);
  294. x += global_page_state(NR_INACTIVE_FILE);
  295. x += global_page_state(NR_ACTIVE_FILE);
  296. if (!vm_highmem_is_dirtyable)
  297. x -= highmem_dirtyable_memory(x);
  298. return x + 1; /* Ensure that we never return 0 */
  299. }
  300. /**
  301. * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
  302. * @dtc: dirty_throttle_control of interest
  303. *
  304. * Calculate @dtc->thresh and ->bg_thresh considering
  305. * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
  306. * must ensure that @dtc->avail is set before calling this function. The
  307. * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  308. * real-time tasks.
  309. */
  310. static void domain_dirty_limits(struct dirty_throttle_control *dtc)
  311. {
  312. const unsigned long available_memory = dtc->avail;
  313. struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
  314. unsigned long bytes = vm_dirty_bytes;
  315. unsigned long bg_bytes = dirty_background_bytes;
  316. /* convert ratios to per-PAGE_SIZE for higher precision */
  317. unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
  318. unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
  319. unsigned long thresh;
  320. unsigned long bg_thresh;
  321. struct task_struct *tsk;
  322. /* gdtc is !NULL iff @dtc is for memcg domain */
  323. if (gdtc) {
  324. unsigned long global_avail = gdtc->avail;
  325. /*
  326. * The byte settings can't be applied directly to memcg
  327. * domains. Convert them to ratios by scaling against
  328. * globally available memory. As the ratios are in
  329. * per-PAGE_SIZE, they can be obtained by dividing bytes by
  330. * number of pages.
  331. */
  332. if (bytes)
  333. ratio = min(DIV_ROUND_UP(bytes, global_avail),
  334. PAGE_SIZE);
  335. if (bg_bytes)
  336. bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
  337. PAGE_SIZE);
  338. bytes = bg_bytes = 0;
  339. }
  340. if (bytes)
  341. thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
  342. else
  343. thresh = (ratio * available_memory) / PAGE_SIZE;
  344. if (bg_bytes)
  345. bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
  346. else
  347. bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
  348. if (bg_thresh >= thresh)
  349. bg_thresh = thresh / 2;
  350. tsk = current;
  351. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  352. bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
  353. thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
  354. }
  355. dtc->thresh = thresh;
  356. dtc->bg_thresh = bg_thresh;
  357. /* we should eventually report the domain in the TP */
  358. if (!gdtc)
  359. trace_global_dirty_state(bg_thresh, thresh);
  360. }
  361. /**
  362. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  363. * @pbackground: out parameter for bg_thresh
  364. * @pdirty: out parameter for thresh
  365. *
  366. * Calculate bg_thresh and thresh for global_wb_domain. See
  367. * domain_dirty_limits() for details.
  368. */
  369. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  370. {
  371. struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
  372. gdtc.avail = global_dirtyable_memory();
  373. domain_dirty_limits(&gdtc);
  374. *pbackground = gdtc.bg_thresh;
  375. *pdirty = gdtc.thresh;
  376. }
  377. /**
  378. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  379. * @zone: the zone
  380. *
  381. * Returns the maximum number of dirty pages allowed in a zone, based
  382. * on the zone's dirtyable memory.
  383. */
  384. static unsigned long zone_dirty_limit(struct zone *zone)
  385. {
  386. unsigned long zone_memory = zone_dirtyable_memory(zone);
  387. struct task_struct *tsk = current;
  388. unsigned long dirty;
  389. if (vm_dirty_bytes)
  390. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  391. zone_memory / global_dirtyable_memory();
  392. else
  393. dirty = vm_dirty_ratio * zone_memory / 100;
  394. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  395. dirty += dirty / 4;
  396. return dirty;
  397. }
  398. /**
  399. * zone_dirty_ok - tells whether a zone is within its dirty limits
  400. * @zone: the zone to check
  401. *
  402. * Returns %true when the dirty pages in @zone are within the zone's
  403. * dirty limit, %false if the limit is exceeded.
  404. */
  405. bool zone_dirty_ok(struct zone *zone)
  406. {
  407. unsigned long limit = zone_dirty_limit(zone);
  408. return zone_page_state(zone, NR_FILE_DIRTY) +
  409. zone_page_state(zone, NR_UNSTABLE_NFS) +
  410. zone_page_state(zone, NR_WRITEBACK) <= limit;
  411. }
  412. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  413. void __user *buffer, size_t *lenp,
  414. loff_t *ppos)
  415. {
  416. int ret;
  417. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  418. if (ret == 0 && write)
  419. dirty_background_bytes = 0;
  420. return ret;
  421. }
  422. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  423. void __user *buffer, size_t *lenp,
  424. loff_t *ppos)
  425. {
  426. int ret;
  427. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  428. if (ret == 0 && write)
  429. dirty_background_ratio = 0;
  430. return ret;
  431. }
  432. int dirty_ratio_handler(struct ctl_table *table, int write,
  433. void __user *buffer, size_t *lenp,
  434. loff_t *ppos)
  435. {
  436. int old_ratio = vm_dirty_ratio;
  437. int ret;
  438. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  439. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  440. writeback_set_ratelimit();
  441. vm_dirty_bytes = 0;
  442. }
  443. return ret;
  444. }
  445. int dirty_bytes_handler(struct ctl_table *table, int write,
  446. void __user *buffer, size_t *lenp,
  447. loff_t *ppos)
  448. {
  449. unsigned long old_bytes = vm_dirty_bytes;
  450. int ret;
  451. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  452. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  453. writeback_set_ratelimit();
  454. vm_dirty_ratio = 0;
  455. }
  456. return ret;
  457. }
  458. static unsigned long wp_next_time(unsigned long cur_time)
  459. {
  460. cur_time += VM_COMPLETIONS_PERIOD_LEN;
  461. /* 0 has a special meaning... */
  462. if (!cur_time)
  463. return 1;
  464. return cur_time;
  465. }
  466. static void wb_domain_writeout_inc(struct wb_domain *dom,
  467. struct fprop_local_percpu *completions,
  468. unsigned int max_prop_frac)
  469. {
  470. __fprop_inc_percpu_max(&dom->completions, completions,
  471. max_prop_frac);
  472. /* First event after period switching was turned off? */
  473. if (!unlikely(dom->period_time)) {
  474. /*
  475. * We can race with other __bdi_writeout_inc calls here but
  476. * it does not cause any harm since the resulting time when
  477. * timer will fire and what is in writeout_period_time will be
  478. * roughly the same.
  479. */
  480. dom->period_time = wp_next_time(jiffies);
  481. mod_timer(&dom->period_timer, dom->period_time);
  482. }
  483. }
  484. /*
  485. * Increment @wb's writeout completion count and the global writeout
  486. * completion count. Called from test_clear_page_writeback().
  487. */
  488. static inline void __wb_writeout_inc(struct bdi_writeback *wb)
  489. {
  490. struct wb_domain *cgdom;
  491. __inc_wb_stat(wb, WB_WRITTEN);
  492. wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
  493. wb->bdi->max_prop_frac);
  494. cgdom = mem_cgroup_wb_domain(wb);
  495. if (cgdom)
  496. wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
  497. wb->bdi->max_prop_frac);
  498. }
  499. void wb_writeout_inc(struct bdi_writeback *wb)
  500. {
  501. unsigned long flags;
  502. local_irq_save(flags);
  503. __wb_writeout_inc(wb);
  504. local_irq_restore(flags);
  505. }
  506. EXPORT_SYMBOL_GPL(wb_writeout_inc);
  507. /*
  508. * On idle system, we can be called long after we scheduled because we use
  509. * deferred timers so count with missed periods.
  510. */
  511. static void writeout_period(unsigned long t)
  512. {
  513. struct wb_domain *dom = (void *)t;
  514. int miss_periods = (jiffies - dom->period_time) /
  515. VM_COMPLETIONS_PERIOD_LEN;
  516. if (fprop_new_period(&dom->completions, miss_periods + 1)) {
  517. dom->period_time = wp_next_time(dom->period_time +
  518. miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  519. mod_timer(&dom->period_timer, dom->period_time);
  520. } else {
  521. /*
  522. * Aging has zeroed all fractions. Stop wasting CPU on period
  523. * updates.
  524. */
  525. dom->period_time = 0;
  526. }
  527. }
  528. int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
  529. {
  530. memset(dom, 0, sizeof(*dom));
  531. spin_lock_init(&dom->lock);
  532. init_timer_deferrable(&dom->period_timer);
  533. dom->period_timer.function = writeout_period;
  534. dom->period_timer.data = (unsigned long)dom;
  535. dom->dirty_limit_tstamp = jiffies;
  536. return fprop_global_init(&dom->completions, gfp);
  537. }
  538. #ifdef CONFIG_CGROUP_WRITEBACK
  539. void wb_domain_exit(struct wb_domain *dom)
  540. {
  541. del_timer_sync(&dom->period_timer);
  542. fprop_global_destroy(&dom->completions);
  543. }
  544. #endif
  545. /*
  546. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  547. * registered backing devices, which, for obvious reasons, can not
  548. * exceed 100%.
  549. */
  550. static unsigned int bdi_min_ratio;
  551. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  552. {
  553. int ret = 0;
  554. spin_lock_bh(&bdi_lock);
  555. if (min_ratio > bdi->max_ratio) {
  556. ret = -EINVAL;
  557. } else {
  558. min_ratio -= bdi->min_ratio;
  559. if (bdi_min_ratio + min_ratio < 100) {
  560. bdi_min_ratio += min_ratio;
  561. bdi->min_ratio += min_ratio;
  562. } else {
  563. ret = -EINVAL;
  564. }
  565. }
  566. spin_unlock_bh(&bdi_lock);
  567. return ret;
  568. }
  569. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  570. {
  571. int ret = 0;
  572. if (max_ratio > 100)
  573. return -EINVAL;
  574. spin_lock_bh(&bdi_lock);
  575. if (bdi->min_ratio > max_ratio) {
  576. ret = -EINVAL;
  577. } else {
  578. bdi->max_ratio = max_ratio;
  579. bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  580. }
  581. spin_unlock_bh(&bdi_lock);
  582. return ret;
  583. }
  584. EXPORT_SYMBOL(bdi_set_max_ratio);
  585. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  586. unsigned long bg_thresh)
  587. {
  588. return (thresh + bg_thresh) / 2;
  589. }
  590. static unsigned long hard_dirty_limit(struct wb_domain *dom,
  591. unsigned long thresh)
  592. {
  593. return max(thresh, dom->dirty_limit);
  594. }
  595. /*
  596. * Memory which can be further allocated to a memcg domain is capped by
  597. * system-wide clean memory excluding the amount being used in the domain.
  598. */
  599. static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
  600. unsigned long filepages, unsigned long headroom)
  601. {
  602. struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
  603. unsigned long clean = filepages - min(filepages, mdtc->dirty);
  604. unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
  605. unsigned long other_clean = global_clean - min(global_clean, clean);
  606. mdtc->avail = filepages + min(headroom, other_clean);
  607. }
  608. /**
  609. * __wb_calc_thresh - @wb's share of dirty throttling threshold
  610. * @dtc: dirty_throttle_context of interest
  611. *
  612. * Returns @wb's dirty limit in pages. The term "dirty" in the context of
  613. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  614. *
  615. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  616. * when sleeping max_pause per page is not enough to keep the dirty pages under
  617. * control. For example, when the device is completely stalled due to some error
  618. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  619. * In the other normal situations, it acts more gently by throttling the tasks
  620. * more (rather than completely block them) when the wb dirty pages go high.
  621. *
  622. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  623. * - starving fast devices
  624. * - piling up dirty pages (that will take long time to sync) on slow devices
  625. *
  626. * The wb's share of dirty limit will be adapting to its throughput and
  627. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  628. */
  629. static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
  630. {
  631. struct wb_domain *dom = dtc_dom(dtc);
  632. unsigned long thresh = dtc->thresh;
  633. u64 wb_thresh;
  634. long numerator, denominator;
  635. unsigned long wb_min_ratio, wb_max_ratio;
  636. /*
  637. * Calculate this BDI's share of the thresh ratio.
  638. */
  639. fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
  640. &numerator, &denominator);
  641. wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
  642. wb_thresh *= numerator;
  643. do_div(wb_thresh, denominator);
  644. wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
  645. wb_thresh += (thresh * wb_min_ratio) / 100;
  646. if (wb_thresh > (thresh * wb_max_ratio) / 100)
  647. wb_thresh = thresh * wb_max_ratio / 100;
  648. return wb_thresh;
  649. }
  650. unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
  651. {
  652. struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
  653. .thresh = thresh };
  654. return __wb_calc_thresh(&gdtc);
  655. }
  656. /*
  657. * setpoint - dirty 3
  658. * f(dirty) := 1.0 + (----------------)
  659. * limit - setpoint
  660. *
  661. * it's a 3rd order polynomial that subjects to
  662. *
  663. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  664. * (2) f(setpoint) = 1.0 => the balance point
  665. * (3) f(limit) = 0 => the hard limit
  666. * (4) df/dx <= 0 => negative feedback control
  667. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  668. * => fast response on large errors; small oscillation near setpoint
  669. */
  670. static long long pos_ratio_polynom(unsigned long setpoint,
  671. unsigned long dirty,
  672. unsigned long limit)
  673. {
  674. long long pos_ratio;
  675. long x;
  676. x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
  677. (limit - setpoint) | 1);
  678. pos_ratio = x;
  679. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  680. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  681. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  682. return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
  683. }
  684. /*
  685. * Dirty position control.
  686. *
  687. * (o) global/bdi setpoints
  688. *
  689. * We want the dirty pages be balanced around the global/wb setpoints.
  690. * When the number of dirty pages is higher/lower than the setpoint, the
  691. * dirty position control ratio (and hence task dirty ratelimit) will be
  692. * decreased/increased to bring the dirty pages back to the setpoint.
  693. *
  694. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  695. *
  696. * if (dirty < setpoint) scale up pos_ratio
  697. * if (dirty > setpoint) scale down pos_ratio
  698. *
  699. * if (wb_dirty < wb_setpoint) scale up pos_ratio
  700. * if (wb_dirty > wb_setpoint) scale down pos_ratio
  701. *
  702. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  703. *
  704. * (o) global control line
  705. *
  706. * ^ pos_ratio
  707. * |
  708. * | |<===== global dirty control scope ======>|
  709. * 2.0 .............*
  710. * | .*
  711. * | . *
  712. * | . *
  713. * | . *
  714. * | . *
  715. * | . *
  716. * 1.0 ................................*
  717. * | . . *
  718. * | . . *
  719. * | . . *
  720. * | . . *
  721. * | . . *
  722. * 0 +------------.------------------.----------------------*------------->
  723. * freerun^ setpoint^ limit^ dirty pages
  724. *
  725. * (o) wb control line
  726. *
  727. * ^ pos_ratio
  728. * |
  729. * | *
  730. * | *
  731. * | *
  732. * | *
  733. * | * |<=========== span ============>|
  734. * 1.0 .......................*
  735. * | . *
  736. * | . *
  737. * | . *
  738. * | . *
  739. * | . *
  740. * | . *
  741. * | . *
  742. * | . *
  743. * | . *
  744. * | . *
  745. * | . *
  746. * 1/4 ...............................................* * * * * * * * * * * *
  747. * | . .
  748. * | . .
  749. * | . .
  750. * 0 +----------------------.-------------------------------.------------->
  751. * wb_setpoint^ x_intercept^
  752. *
  753. * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
  754. * be smoothly throttled down to normal if it starts high in situations like
  755. * - start writing to a slow SD card and a fast disk at the same time. The SD
  756. * card's wb_dirty may rush to many times higher than wb_setpoint.
  757. * - the wb dirty thresh drops quickly due to change of JBOD workload
  758. */
  759. static void wb_position_ratio(struct dirty_throttle_control *dtc)
  760. {
  761. struct bdi_writeback *wb = dtc->wb;
  762. unsigned long write_bw = wb->avg_write_bandwidth;
  763. unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
  764. unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
  765. unsigned long wb_thresh = dtc->wb_thresh;
  766. unsigned long x_intercept;
  767. unsigned long setpoint; /* dirty pages' target balance point */
  768. unsigned long wb_setpoint;
  769. unsigned long span;
  770. long long pos_ratio; /* for scaling up/down the rate limit */
  771. long x;
  772. dtc->pos_ratio = 0;
  773. if (unlikely(dtc->dirty >= limit))
  774. return;
  775. /*
  776. * global setpoint
  777. *
  778. * See comment for pos_ratio_polynom().
  779. */
  780. setpoint = (freerun + limit) / 2;
  781. pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
  782. /*
  783. * The strictlimit feature is a tool preventing mistrusted filesystems
  784. * from growing a large number of dirty pages before throttling. For
  785. * such filesystems balance_dirty_pages always checks wb counters
  786. * against wb limits. Even if global "nr_dirty" is under "freerun".
  787. * This is especially important for fuse which sets bdi->max_ratio to
  788. * 1% by default. Without strictlimit feature, fuse writeback may
  789. * consume arbitrary amount of RAM because it is accounted in
  790. * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
  791. *
  792. * Here, in wb_position_ratio(), we calculate pos_ratio based on
  793. * two values: wb_dirty and wb_thresh. Let's consider an example:
  794. * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
  795. * limits are set by default to 10% and 20% (background and throttle).
  796. * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
  797. * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
  798. * about ~6K pages (as the average of background and throttle wb
  799. * limits). The 3rd order polynomial will provide positive feedback if
  800. * wb_dirty is under wb_setpoint and vice versa.
  801. *
  802. * Note, that we cannot use global counters in these calculations
  803. * because we want to throttle process writing to a strictlimit wb
  804. * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
  805. * in the example above).
  806. */
  807. if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  808. long long wb_pos_ratio;
  809. if (dtc->wb_dirty < 8) {
  810. dtc->pos_ratio = min_t(long long, pos_ratio * 2,
  811. 2 << RATELIMIT_CALC_SHIFT);
  812. return;
  813. }
  814. if (dtc->wb_dirty >= wb_thresh)
  815. return;
  816. wb_setpoint = dirty_freerun_ceiling(wb_thresh,
  817. dtc->wb_bg_thresh);
  818. if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
  819. return;
  820. wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
  821. wb_thresh);
  822. /*
  823. * Typically, for strictlimit case, wb_setpoint << setpoint
  824. * and pos_ratio >> wb_pos_ratio. In the other words global
  825. * state ("dirty") is not limiting factor and we have to
  826. * make decision based on wb counters. But there is an
  827. * important case when global pos_ratio should get precedence:
  828. * global limits are exceeded (e.g. due to activities on other
  829. * wb's) while given strictlimit wb is below limit.
  830. *
  831. * "pos_ratio * wb_pos_ratio" would work for the case above,
  832. * but it would look too non-natural for the case of all
  833. * activity in the system coming from a single strictlimit wb
  834. * with bdi->max_ratio == 100%.
  835. *
  836. * Note that min() below somewhat changes the dynamics of the
  837. * control system. Normally, pos_ratio value can be well over 3
  838. * (when globally we are at freerun and wb is well below wb
  839. * setpoint). Now the maximum pos_ratio in the same situation
  840. * is 2. We might want to tweak this if we observe the control
  841. * system is too slow to adapt.
  842. */
  843. dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
  844. return;
  845. }
  846. /*
  847. * We have computed basic pos_ratio above based on global situation. If
  848. * the wb is over/under its share of dirty pages, we want to scale
  849. * pos_ratio further down/up. That is done by the following mechanism.
  850. */
  851. /*
  852. * wb setpoint
  853. *
  854. * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
  855. *
  856. * x_intercept - wb_dirty
  857. * := --------------------------
  858. * x_intercept - wb_setpoint
  859. *
  860. * The main wb control line is a linear function that subjects to
  861. *
  862. * (1) f(wb_setpoint) = 1.0
  863. * (2) k = - 1 / (8 * write_bw) (in single wb case)
  864. * or equally: x_intercept = wb_setpoint + 8 * write_bw
  865. *
  866. * For single wb case, the dirty pages are observed to fluctuate
  867. * regularly within range
  868. * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
  869. * for various filesystems, where (2) can yield in a reasonable 12.5%
  870. * fluctuation range for pos_ratio.
  871. *
  872. * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
  873. * own size, so move the slope over accordingly and choose a slope that
  874. * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
  875. */
  876. if (unlikely(wb_thresh > dtc->thresh))
  877. wb_thresh = dtc->thresh;
  878. /*
  879. * It's very possible that wb_thresh is close to 0 not because the
  880. * device is slow, but that it has remained inactive for long time.
  881. * Honour such devices a reasonable good (hopefully IO efficient)
  882. * threshold, so that the occasional writes won't be blocked and active
  883. * writes can rampup the threshold quickly.
  884. */
  885. wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
  886. /*
  887. * scale global setpoint to wb's:
  888. * wb_setpoint = setpoint * wb_thresh / thresh
  889. */
  890. x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
  891. wb_setpoint = setpoint * (u64)x >> 16;
  892. /*
  893. * Use span=(8*write_bw) in single wb case as indicated by
  894. * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
  895. *
  896. * wb_thresh thresh - wb_thresh
  897. * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
  898. * thresh thresh
  899. */
  900. span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
  901. x_intercept = wb_setpoint + span;
  902. if (dtc->wb_dirty < x_intercept - span / 4) {
  903. pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
  904. (x_intercept - wb_setpoint) | 1);
  905. } else
  906. pos_ratio /= 4;
  907. /*
  908. * wb reserve area, safeguard against dirty pool underrun and disk idle
  909. * It may push the desired control point of global dirty pages higher
  910. * than setpoint.
  911. */
  912. x_intercept = wb_thresh / 2;
  913. if (dtc->wb_dirty < x_intercept) {
  914. if (dtc->wb_dirty > x_intercept / 8)
  915. pos_ratio = div_u64(pos_ratio * x_intercept,
  916. dtc->wb_dirty);
  917. else
  918. pos_ratio *= 8;
  919. }
  920. dtc->pos_ratio = pos_ratio;
  921. }
  922. static void wb_update_write_bandwidth(struct bdi_writeback *wb,
  923. unsigned long elapsed,
  924. unsigned long written)
  925. {
  926. const unsigned long period = roundup_pow_of_two(3 * HZ);
  927. unsigned long avg = wb->avg_write_bandwidth;
  928. unsigned long old = wb->write_bandwidth;
  929. u64 bw;
  930. /*
  931. * bw = written * HZ / elapsed
  932. *
  933. * bw * elapsed + write_bandwidth * (period - elapsed)
  934. * write_bandwidth = ---------------------------------------------------
  935. * period
  936. *
  937. * @written may have decreased due to account_page_redirty().
  938. * Avoid underflowing @bw calculation.
  939. */
  940. bw = written - min(written, wb->written_stamp);
  941. bw *= HZ;
  942. if (unlikely(elapsed > period)) {
  943. do_div(bw, elapsed);
  944. avg = bw;
  945. goto out;
  946. }
  947. bw += (u64)wb->write_bandwidth * (period - elapsed);
  948. bw >>= ilog2(period);
  949. /*
  950. * one more level of smoothing, for filtering out sudden spikes
  951. */
  952. if (avg > old && old >= (unsigned long)bw)
  953. avg -= (avg - old) >> 3;
  954. if (avg < old && old <= (unsigned long)bw)
  955. avg += (old - avg) >> 3;
  956. out:
  957. /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
  958. avg = max(avg, 1LU);
  959. if (wb_has_dirty_io(wb)) {
  960. long delta = avg - wb->avg_write_bandwidth;
  961. WARN_ON_ONCE(atomic_long_add_return(delta,
  962. &wb->bdi->tot_write_bandwidth) <= 0);
  963. }
  964. wb->write_bandwidth = bw;
  965. wb->avg_write_bandwidth = avg;
  966. }
  967. static void update_dirty_limit(struct dirty_throttle_control *dtc)
  968. {
  969. struct wb_domain *dom = dtc_dom(dtc);
  970. unsigned long thresh = dtc->thresh;
  971. unsigned long limit = dom->dirty_limit;
  972. /*
  973. * Follow up in one step.
  974. */
  975. if (limit < thresh) {
  976. limit = thresh;
  977. goto update;
  978. }
  979. /*
  980. * Follow down slowly. Use the higher one as the target, because thresh
  981. * may drop below dirty. This is exactly the reason to introduce
  982. * dom->dirty_limit which is guaranteed to lie above the dirty pages.
  983. */
  984. thresh = max(thresh, dtc->dirty);
  985. if (limit > thresh) {
  986. limit -= (limit - thresh) >> 5;
  987. goto update;
  988. }
  989. return;
  990. update:
  991. dom->dirty_limit = limit;
  992. }
  993. static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
  994. unsigned long now)
  995. {
  996. struct wb_domain *dom = dtc_dom(dtc);
  997. /*
  998. * check locklessly first to optimize away locking for the most time
  999. */
  1000. if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
  1001. return;
  1002. spin_lock(&dom->lock);
  1003. if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
  1004. update_dirty_limit(dtc);
  1005. dom->dirty_limit_tstamp = now;
  1006. }
  1007. spin_unlock(&dom->lock);
  1008. }
  1009. /*
  1010. * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
  1011. *
  1012. * Normal wb tasks will be curbed at or below it in long term.
  1013. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  1014. */
  1015. static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
  1016. unsigned long dirtied,
  1017. unsigned long elapsed)
  1018. {
  1019. struct bdi_writeback *wb = dtc->wb;
  1020. unsigned long dirty = dtc->dirty;
  1021. unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
  1022. unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
  1023. unsigned long setpoint = (freerun + limit) / 2;
  1024. unsigned long write_bw = wb->avg_write_bandwidth;
  1025. unsigned long dirty_ratelimit = wb->dirty_ratelimit;
  1026. unsigned long dirty_rate;
  1027. unsigned long task_ratelimit;
  1028. unsigned long balanced_dirty_ratelimit;
  1029. unsigned long step;
  1030. unsigned long x;
  1031. unsigned long shift;
  1032. /*
  1033. * The dirty rate will match the writeout rate in long term, except
  1034. * when dirty pages are truncated by userspace or re-dirtied by FS.
  1035. */
  1036. dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
  1037. /*
  1038. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  1039. */
  1040. task_ratelimit = (u64)dirty_ratelimit *
  1041. dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
  1042. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  1043. /*
  1044. * A linear estimation of the "balanced" throttle rate. The theory is,
  1045. * if there are N dd tasks, each throttled at task_ratelimit, the wb's
  1046. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  1047. * formula will yield the balanced rate limit (write_bw / N).
  1048. *
  1049. * Note that the expanded form is not a pure rate feedback:
  1050. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  1051. * but also takes pos_ratio into account:
  1052. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  1053. *
  1054. * (1) is not realistic because pos_ratio also takes part in balancing
  1055. * the dirty rate. Consider the state
  1056. * pos_ratio = 0.5 (3)
  1057. * rate = 2 * (write_bw / N) (4)
  1058. * If (1) is used, it will stuck in that state! Because each dd will
  1059. * be throttled at
  1060. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  1061. * yielding
  1062. * dirty_rate = N * task_ratelimit = write_bw (6)
  1063. * put (6) into (1) we get
  1064. * rate_(i+1) = rate_(i) (7)
  1065. *
  1066. * So we end up using (2) to always keep
  1067. * rate_(i+1) ~= (write_bw / N) (8)
  1068. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  1069. * pos_ratio is able to drive itself to 1.0, which is not only where
  1070. * the dirty count meet the setpoint, but also where the slope of
  1071. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  1072. */
  1073. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  1074. dirty_rate | 1);
  1075. /*
  1076. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  1077. */
  1078. if (unlikely(balanced_dirty_ratelimit > write_bw))
  1079. balanced_dirty_ratelimit = write_bw;
  1080. /*
  1081. * We could safely do this and return immediately:
  1082. *
  1083. * wb->dirty_ratelimit = balanced_dirty_ratelimit;
  1084. *
  1085. * However to get a more stable dirty_ratelimit, the below elaborated
  1086. * code makes use of task_ratelimit to filter out singular points and
  1087. * limit the step size.
  1088. *
  1089. * The below code essentially only uses the relative value of
  1090. *
  1091. * task_ratelimit - dirty_ratelimit
  1092. * = (pos_ratio - 1) * dirty_ratelimit
  1093. *
  1094. * which reflects the direction and size of dirty position error.
  1095. */
  1096. /*
  1097. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  1098. * task_ratelimit is on the same side of dirty_ratelimit, too.
  1099. * For example, when
  1100. * - dirty_ratelimit > balanced_dirty_ratelimit
  1101. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  1102. * lowering dirty_ratelimit will help meet both the position and rate
  1103. * control targets. Otherwise, don't update dirty_ratelimit if it will
  1104. * only help meet the rate target. After all, what the users ultimately
  1105. * feel and care are stable dirty rate and small position error.
  1106. *
  1107. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  1108. * and filter out the singular points of balanced_dirty_ratelimit. Which
  1109. * keeps jumping around randomly and can even leap far away at times
  1110. * due to the small 200ms estimation period of dirty_rate (we want to
  1111. * keep that period small to reduce time lags).
  1112. */
  1113. step = 0;
  1114. /*
  1115. * For strictlimit case, calculations above were based on wb counters
  1116. * and limits (starting from pos_ratio = wb_position_ratio() and up to
  1117. * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
  1118. * Hence, to calculate "step" properly, we have to use wb_dirty as
  1119. * "dirty" and wb_setpoint as "setpoint".
  1120. *
  1121. * We rampup dirty_ratelimit forcibly if wb_dirty is low because
  1122. * it's possible that wb_thresh is close to zero due to inactivity
  1123. * of backing device.
  1124. */
  1125. if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  1126. dirty = dtc->wb_dirty;
  1127. if (dtc->wb_dirty < 8)
  1128. setpoint = dtc->wb_dirty + 1;
  1129. else
  1130. setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
  1131. }
  1132. if (dirty < setpoint) {
  1133. x = min3(wb->balanced_dirty_ratelimit,
  1134. balanced_dirty_ratelimit, task_ratelimit);
  1135. if (dirty_ratelimit < x)
  1136. step = x - dirty_ratelimit;
  1137. } else {
  1138. x = max3(wb->balanced_dirty_ratelimit,
  1139. balanced_dirty_ratelimit, task_ratelimit);
  1140. if (dirty_ratelimit > x)
  1141. step = dirty_ratelimit - x;
  1142. }
  1143. /*
  1144. * Don't pursue 100% rate matching. It's impossible since the balanced
  1145. * rate itself is constantly fluctuating. So decrease the track speed
  1146. * when it gets close to the target. Helps eliminate pointless tremors.
  1147. */
  1148. shift = dirty_ratelimit / (2 * step + 1);
  1149. if (shift < BITS_PER_LONG)
  1150. step = DIV_ROUND_UP(step >> shift, 8);
  1151. else
  1152. step = 0;
  1153. if (dirty_ratelimit < balanced_dirty_ratelimit)
  1154. dirty_ratelimit += step;
  1155. else
  1156. dirty_ratelimit -= step;
  1157. wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  1158. wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  1159. trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
  1160. }
  1161. static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
  1162. struct dirty_throttle_control *mdtc,
  1163. unsigned long start_time,
  1164. bool update_ratelimit)
  1165. {
  1166. struct bdi_writeback *wb = gdtc->wb;
  1167. unsigned long now = jiffies;
  1168. unsigned long elapsed = now - wb->bw_time_stamp;
  1169. unsigned long dirtied;
  1170. unsigned long written;
  1171. lockdep_assert_held(&wb->list_lock);
  1172. /*
  1173. * rate-limit, only update once every 200ms.
  1174. */
  1175. if (elapsed < BANDWIDTH_INTERVAL)
  1176. return;
  1177. dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
  1178. written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
  1179. /*
  1180. * Skip quiet periods when disk bandwidth is under-utilized.
  1181. * (at least 1s idle time between two flusher runs)
  1182. */
  1183. if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
  1184. goto snapshot;
  1185. if (update_ratelimit) {
  1186. domain_update_bandwidth(gdtc, now);
  1187. wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
  1188. /*
  1189. * @mdtc is always NULL if !CGROUP_WRITEBACK but the
  1190. * compiler has no way to figure that out. Help it.
  1191. */
  1192. if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
  1193. domain_update_bandwidth(mdtc, now);
  1194. wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
  1195. }
  1196. }
  1197. wb_update_write_bandwidth(wb, elapsed, written);
  1198. snapshot:
  1199. wb->dirtied_stamp = dirtied;
  1200. wb->written_stamp = written;
  1201. wb->bw_time_stamp = now;
  1202. }
  1203. void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
  1204. {
  1205. struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
  1206. __wb_update_bandwidth(&gdtc, NULL, start_time, false);
  1207. }
  1208. /*
  1209. * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
  1210. * will look to see if it needs to start dirty throttling.
  1211. *
  1212. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  1213. * global_page_state() too often. So scale it near-sqrt to the safety margin
  1214. * (the number of pages we may dirty without exceeding the dirty limits).
  1215. */
  1216. static unsigned long dirty_poll_interval(unsigned long dirty,
  1217. unsigned long thresh)
  1218. {
  1219. if (thresh > dirty)
  1220. return 1UL << (ilog2(thresh - dirty) >> 1);
  1221. return 1;
  1222. }
  1223. static unsigned long wb_max_pause(struct bdi_writeback *wb,
  1224. unsigned long wb_dirty)
  1225. {
  1226. unsigned long bw = wb->avg_write_bandwidth;
  1227. unsigned long t;
  1228. /*
  1229. * Limit pause time for small memory systems. If sleeping for too long
  1230. * time, a small pool of dirty/writeback pages may go empty and disk go
  1231. * idle.
  1232. *
  1233. * 8 serves as the safety ratio.
  1234. */
  1235. t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  1236. t++;
  1237. return min_t(unsigned long, t, MAX_PAUSE);
  1238. }
  1239. static long wb_min_pause(struct bdi_writeback *wb,
  1240. long max_pause,
  1241. unsigned long task_ratelimit,
  1242. unsigned long dirty_ratelimit,
  1243. int *nr_dirtied_pause)
  1244. {
  1245. long hi = ilog2(wb->avg_write_bandwidth);
  1246. long lo = ilog2(wb->dirty_ratelimit);
  1247. long t; /* target pause */
  1248. long pause; /* estimated next pause */
  1249. int pages; /* target nr_dirtied_pause */
  1250. /* target for 10ms pause on 1-dd case */
  1251. t = max(1, HZ / 100);
  1252. /*
  1253. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1254. * overheads.
  1255. *
  1256. * (N * 10ms) on 2^N concurrent tasks.
  1257. */
  1258. if (hi > lo)
  1259. t += (hi - lo) * (10 * HZ) / 1024;
  1260. /*
  1261. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1262. * on the much more stable dirty_ratelimit. However the next pause time
  1263. * will be computed based on task_ratelimit and the two rate limits may
  1264. * depart considerably at some time. Especially if task_ratelimit goes
  1265. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1266. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1267. * result task_ratelimit won't be executed faithfully, which could
  1268. * eventually bring down dirty_ratelimit.
  1269. *
  1270. * We apply two rules to fix it up:
  1271. * 1) try to estimate the next pause time and if necessary, use a lower
  1272. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1273. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1274. * 2) limit the target pause time to max_pause/2, so that the normal
  1275. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1276. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1277. */
  1278. t = min(t, 1 + max_pause / 2);
  1279. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1280. /*
  1281. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1282. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1283. * When the 16 consecutive reads are often interrupted by some dirty
  1284. * throttling pause during the async writes, cfq will go into idles
  1285. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1286. * until reaches DIRTY_POLL_THRESH=32 pages.
  1287. */
  1288. if (pages < DIRTY_POLL_THRESH) {
  1289. t = max_pause;
  1290. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1291. if (pages > DIRTY_POLL_THRESH) {
  1292. pages = DIRTY_POLL_THRESH;
  1293. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1294. }
  1295. }
  1296. pause = HZ * pages / (task_ratelimit + 1);
  1297. if (pause > max_pause) {
  1298. t = max_pause;
  1299. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1300. }
  1301. *nr_dirtied_pause = pages;
  1302. /*
  1303. * The minimal pause time will normally be half the target pause time.
  1304. */
  1305. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1306. }
  1307. static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
  1308. {
  1309. struct bdi_writeback *wb = dtc->wb;
  1310. unsigned long wb_reclaimable;
  1311. /*
  1312. * wb_thresh is not treated as some limiting factor as
  1313. * dirty_thresh, due to reasons
  1314. * - in JBOD setup, wb_thresh can fluctuate a lot
  1315. * - in a system with HDD and USB key, the USB key may somehow
  1316. * go into state (wb_dirty >> wb_thresh) either because
  1317. * wb_dirty starts high, or because wb_thresh drops low.
  1318. * In this case we don't want to hard throttle the USB key
  1319. * dirtiers for 100 seconds until wb_dirty drops under
  1320. * wb_thresh. Instead the auxiliary wb control line in
  1321. * wb_position_ratio() will let the dirtier task progress
  1322. * at some rate <= (write_bw / 2) for bringing down wb_dirty.
  1323. */
  1324. dtc->wb_thresh = __wb_calc_thresh(dtc);
  1325. dtc->wb_bg_thresh = dtc->thresh ?
  1326. div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
  1327. /*
  1328. * In order to avoid the stacked BDI deadlock we need
  1329. * to ensure we accurately count the 'dirty' pages when
  1330. * the threshold is low.
  1331. *
  1332. * Otherwise it would be possible to get thresh+n pages
  1333. * reported dirty, even though there are thresh-m pages
  1334. * actually dirty; with m+n sitting in the percpu
  1335. * deltas.
  1336. */
  1337. if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
  1338. wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
  1339. dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
  1340. } else {
  1341. wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
  1342. dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
  1343. }
  1344. }
  1345. /*
  1346. * balance_dirty_pages() must be called by processes which are generating dirty
  1347. * data. It looks at the number of dirty pages in the machine and will force
  1348. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1349. * If we're over `background_thresh' then the writeback threads are woken to
  1350. * perform some writeout.
  1351. */
  1352. static void balance_dirty_pages(struct address_space *mapping,
  1353. struct bdi_writeback *wb,
  1354. unsigned long pages_dirtied)
  1355. {
  1356. struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
  1357. struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
  1358. struct dirty_throttle_control * const gdtc = &gdtc_stor;
  1359. struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
  1360. &mdtc_stor : NULL;
  1361. struct dirty_throttle_control *sdtc;
  1362. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1363. long period;
  1364. long pause;
  1365. long max_pause;
  1366. long min_pause;
  1367. int nr_dirtied_pause;
  1368. bool dirty_exceeded = false;
  1369. unsigned long task_ratelimit;
  1370. unsigned long dirty_ratelimit;
  1371. struct backing_dev_info *bdi = wb->bdi;
  1372. bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
  1373. unsigned long start_time = jiffies;
  1374. for (;;) {
  1375. unsigned long now = jiffies;
  1376. unsigned long dirty, thresh, bg_thresh;
  1377. unsigned long m_dirty = 0; /* stop bogus uninit warnings */
  1378. unsigned long m_thresh = 0;
  1379. unsigned long m_bg_thresh = 0;
  1380. /*
  1381. * Unstable writes are a feature of certain networked
  1382. * filesystems (i.e. NFS) in which data may have been
  1383. * written to the server's write cache, but has not yet
  1384. * been flushed to permanent storage.
  1385. */
  1386. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1387. global_page_state(NR_UNSTABLE_NFS);
  1388. gdtc->avail = global_dirtyable_memory();
  1389. gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1390. domain_dirty_limits(gdtc);
  1391. if (unlikely(strictlimit)) {
  1392. wb_dirty_limits(gdtc);
  1393. dirty = gdtc->wb_dirty;
  1394. thresh = gdtc->wb_thresh;
  1395. bg_thresh = gdtc->wb_bg_thresh;
  1396. } else {
  1397. dirty = gdtc->dirty;
  1398. thresh = gdtc->thresh;
  1399. bg_thresh = gdtc->bg_thresh;
  1400. }
  1401. if (mdtc) {
  1402. unsigned long filepages, headroom, writeback;
  1403. /*
  1404. * If @wb belongs to !root memcg, repeat the same
  1405. * basic calculations for the memcg domain.
  1406. */
  1407. mem_cgroup_wb_stats(wb, &filepages, &headroom,
  1408. &mdtc->dirty, &writeback);
  1409. mdtc->dirty += writeback;
  1410. mdtc_calc_avail(mdtc, filepages, headroom);
  1411. domain_dirty_limits(mdtc);
  1412. if (unlikely(strictlimit)) {
  1413. wb_dirty_limits(mdtc);
  1414. m_dirty = mdtc->wb_dirty;
  1415. m_thresh = mdtc->wb_thresh;
  1416. m_bg_thresh = mdtc->wb_bg_thresh;
  1417. } else {
  1418. m_dirty = mdtc->dirty;
  1419. m_thresh = mdtc->thresh;
  1420. m_bg_thresh = mdtc->bg_thresh;
  1421. }
  1422. }
  1423. /*
  1424. * Throttle it only when the background writeback cannot
  1425. * catch-up. This avoids (excessively) small writeouts
  1426. * when the wb limits are ramping up in case of !strictlimit.
  1427. *
  1428. * In strictlimit case make decision based on the wb counters
  1429. * and limits. Small writeouts when the wb limits are ramping
  1430. * up are the price we consciously pay for strictlimit-ing.
  1431. *
  1432. * If memcg domain is in effect, @dirty should be under
  1433. * both global and memcg freerun ceilings.
  1434. */
  1435. if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
  1436. (!mdtc ||
  1437. m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
  1438. unsigned long intv = dirty_poll_interval(dirty, thresh);
  1439. unsigned long m_intv = ULONG_MAX;
  1440. current->dirty_paused_when = now;
  1441. current->nr_dirtied = 0;
  1442. if (mdtc)
  1443. m_intv = dirty_poll_interval(m_dirty, m_thresh);
  1444. current->nr_dirtied_pause = min(intv, m_intv);
  1445. break;
  1446. }
  1447. if (unlikely(!writeback_in_progress(wb)))
  1448. wb_start_background_writeback(wb);
  1449. /*
  1450. * Calculate global domain's pos_ratio and select the
  1451. * global dtc by default.
  1452. */
  1453. if (!strictlimit)
  1454. wb_dirty_limits(gdtc);
  1455. dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
  1456. ((gdtc->dirty > gdtc->thresh) || strictlimit);
  1457. wb_position_ratio(gdtc);
  1458. sdtc = gdtc;
  1459. if (mdtc) {
  1460. /*
  1461. * If memcg domain is in effect, calculate its
  1462. * pos_ratio. @wb should satisfy constraints from
  1463. * both global and memcg domains. Choose the one
  1464. * w/ lower pos_ratio.
  1465. */
  1466. if (!strictlimit)
  1467. wb_dirty_limits(mdtc);
  1468. dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
  1469. ((mdtc->dirty > mdtc->thresh) || strictlimit);
  1470. wb_position_ratio(mdtc);
  1471. if (mdtc->pos_ratio < gdtc->pos_ratio)
  1472. sdtc = mdtc;
  1473. }
  1474. if (dirty_exceeded && !wb->dirty_exceeded)
  1475. wb->dirty_exceeded = 1;
  1476. if (time_is_before_jiffies(wb->bw_time_stamp +
  1477. BANDWIDTH_INTERVAL)) {
  1478. spin_lock(&wb->list_lock);
  1479. __wb_update_bandwidth(gdtc, mdtc, start_time, true);
  1480. spin_unlock(&wb->list_lock);
  1481. }
  1482. /* throttle according to the chosen dtc */
  1483. dirty_ratelimit = wb->dirty_ratelimit;
  1484. task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
  1485. RATELIMIT_CALC_SHIFT;
  1486. max_pause = wb_max_pause(wb, sdtc->wb_dirty);
  1487. min_pause = wb_min_pause(wb, max_pause,
  1488. task_ratelimit, dirty_ratelimit,
  1489. &nr_dirtied_pause);
  1490. if (unlikely(task_ratelimit == 0)) {
  1491. period = max_pause;
  1492. pause = max_pause;
  1493. goto pause;
  1494. }
  1495. period = HZ * pages_dirtied / task_ratelimit;
  1496. pause = period;
  1497. if (current->dirty_paused_when)
  1498. pause -= now - current->dirty_paused_when;
  1499. /*
  1500. * For less than 1s think time (ext3/4 may block the dirtier
  1501. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1502. * however at much less frequency), try to compensate it in
  1503. * future periods by updating the virtual time; otherwise just
  1504. * do a reset, as it may be a light dirtier.
  1505. */
  1506. if (pause < min_pause) {
  1507. trace_balance_dirty_pages(wb,
  1508. sdtc->thresh,
  1509. sdtc->bg_thresh,
  1510. sdtc->dirty,
  1511. sdtc->wb_thresh,
  1512. sdtc->wb_dirty,
  1513. dirty_ratelimit,
  1514. task_ratelimit,
  1515. pages_dirtied,
  1516. period,
  1517. min(pause, 0L),
  1518. start_time);
  1519. if (pause < -HZ) {
  1520. current->dirty_paused_when = now;
  1521. current->nr_dirtied = 0;
  1522. } else if (period) {
  1523. current->dirty_paused_when += period;
  1524. current->nr_dirtied = 0;
  1525. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1526. current->nr_dirtied_pause += pages_dirtied;
  1527. break;
  1528. }
  1529. if (unlikely(pause > max_pause)) {
  1530. /* for occasional dropped task_ratelimit */
  1531. now += min(pause - max_pause, max_pause);
  1532. pause = max_pause;
  1533. }
  1534. pause:
  1535. trace_balance_dirty_pages(wb,
  1536. sdtc->thresh,
  1537. sdtc->bg_thresh,
  1538. sdtc->dirty,
  1539. sdtc->wb_thresh,
  1540. sdtc->wb_dirty,
  1541. dirty_ratelimit,
  1542. task_ratelimit,
  1543. pages_dirtied,
  1544. period,
  1545. pause,
  1546. start_time);
  1547. __set_current_state(TASK_KILLABLE);
  1548. io_schedule_timeout(pause);
  1549. current->dirty_paused_when = now + pause;
  1550. current->nr_dirtied = 0;
  1551. current->nr_dirtied_pause = nr_dirtied_pause;
  1552. /*
  1553. * This is typically equal to (dirty < thresh) and can also
  1554. * keep "1000+ dd on a slow USB stick" under control.
  1555. */
  1556. if (task_ratelimit)
  1557. break;
  1558. /*
  1559. * In the case of an unresponding NFS server and the NFS dirty
  1560. * pages exceeds dirty_thresh, give the other good wb's a pipe
  1561. * to go through, so that tasks on them still remain responsive.
  1562. *
  1563. * In theory 1 page is enough to keep the comsumer-producer
  1564. * pipe going: the flusher cleans 1 page => the task dirties 1
  1565. * more page. However wb_dirty has accounting errors. So use
  1566. * the larger and more IO friendly wb_stat_error.
  1567. */
  1568. if (sdtc->wb_dirty <= wb_stat_error(wb))
  1569. break;
  1570. if (fatal_signal_pending(current))
  1571. break;
  1572. }
  1573. if (!dirty_exceeded && wb->dirty_exceeded)
  1574. wb->dirty_exceeded = 0;
  1575. if (writeback_in_progress(wb))
  1576. return;
  1577. /*
  1578. * In laptop mode, we wait until hitting the higher threshold before
  1579. * starting background writeout, and then write out all the way down
  1580. * to the lower threshold. So slow writers cause minimal disk activity.
  1581. *
  1582. * In normal mode, we start background writeout at the lower
  1583. * background_thresh, to keep the amount of dirty memory low.
  1584. */
  1585. if (laptop_mode)
  1586. return;
  1587. if (nr_reclaimable > gdtc->bg_thresh)
  1588. wb_start_background_writeback(wb);
  1589. }
  1590. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1591. /*
  1592. * Normal tasks are throttled by
  1593. * loop {
  1594. * dirty tsk->nr_dirtied_pause pages;
  1595. * take a snap in balance_dirty_pages();
  1596. * }
  1597. * However there is a worst case. If every task exit immediately when dirtied
  1598. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1599. * called to throttle the page dirties. The solution is to save the not yet
  1600. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1601. * randomly into the running tasks. This works well for the above worst case,
  1602. * as the new task will pick up and accumulate the old task's leaked dirty
  1603. * count and eventually get throttled.
  1604. */
  1605. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1606. /**
  1607. * balance_dirty_pages_ratelimited - balance dirty memory state
  1608. * @mapping: address_space which was dirtied
  1609. *
  1610. * Processes which are dirtying memory should call in here once for each page
  1611. * which was newly dirtied. The function will periodically check the system's
  1612. * dirty state and will initiate writeback if needed.
  1613. *
  1614. * On really big machines, get_writeback_state is expensive, so try to avoid
  1615. * calling it too often (ratelimiting). But once we're over the dirty memory
  1616. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1617. * from overshooting the limit by (ratelimit_pages) each.
  1618. */
  1619. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  1620. {
  1621. struct inode *inode = mapping->host;
  1622. struct backing_dev_info *bdi = inode_to_bdi(inode);
  1623. struct bdi_writeback *wb = NULL;
  1624. int ratelimit;
  1625. int *p;
  1626. if (!bdi_cap_account_dirty(bdi))
  1627. return;
  1628. if (inode_cgwb_enabled(inode))
  1629. wb = wb_get_create_current(bdi, GFP_KERNEL);
  1630. if (!wb)
  1631. wb = &bdi->wb;
  1632. ratelimit = current->nr_dirtied_pause;
  1633. if (wb->dirty_exceeded)
  1634. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1635. preempt_disable();
  1636. /*
  1637. * This prevents one CPU to accumulate too many dirtied pages without
  1638. * calling into balance_dirty_pages(), which can happen when there are
  1639. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1640. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1641. */
  1642. p = this_cpu_ptr(&bdp_ratelimits);
  1643. if (unlikely(current->nr_dirtied >= ratelimit))
  1644. *p = 0;
  1645. else if (unlikely(*p >= ratelimit_pages)) {
  1646. *p = 0;
  1647. ratelimit = 0;
  1648. }
  1649. /*
  1650. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1651. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1652. * the dirty throttling and livelock other long-run dirtiers.
  1653. */
  1654. p = this_cpu_ptr(&dirty_throttle_leaks);
  1655. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1656. unsigned long nr_pages_dirtied;
  1657. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1658. *p -= nr_pages_dirtied;
  1659. current->nr_dirtied += nr_pages_dirtied;
  1660. }
  1661. preempt_enable();
  1662. if (unlikely(current->nr_dirtied >= ratelimit))
  1663. balance_dirty_pages(mapping, wb, current->nr_dirtied);
  1664. wb_put(wb);
  1665. }
  1666. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  1667. /**
  1668. * wb_over_bg_thresh - does @wb need to be written back?
  1669. * @wb: bdi_writeback of interest
  1670. *
  1671. * Determines whether background writeback should keep writing @wb or it's
  1672. * clean enough. Returns %true if writeback should continue.
  1673. */
  1674. bool wb_over_bg_thresh(struct bdi_writeback *wb)
  1675. {
  1676. struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
  1677. struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
  1678. struct dirty_throttle_control * const gdtc = &gdtc_stor;
  1679. struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
  1680. &mdtc_stor : NULL;
  1681. /*
  1682. * Similar to balance_dirty_pages() but ignores pages being written
  1683. * as we're trying to decide whether to put more under writeback.
  1684. */
  1685. gdtc->avail = global_dirtyable_memory();
  1686. gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
  1687. global_page_state(NR_UNSTABLE_NFS);
  1688. domain_dirty_limits(gdtc);
  1689. if (gdtc->dirty > gdtc->bg_thresh)
  1690. return true;
  1691. if (wb_stat(wb, WB_RECLAIMABLE) >
  1692. wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
  1693. return true;
  1694. if (mdtc) {
  1695. unsigned long filepages, headroom, writeback;
  1696. mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
  1697. &writeback);
  1698. mdtc_calc_avail(mdtc, filepages, headroom);
  1699. domain_dirty_limits(mdtc); /* ditto, ignore writeback */
  1700. if (mdtc->dirty > mdtc->bg_thresh)
  1701. return true;
  1702. if (wb_stat(wb, WB_RECLAIMABLE) >
  1703. wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
  1704. return true;
  1705. }
  1706. return false;
  1707. }
  1708. void throttle_vm_writeout(gfp_t gfp_mask)
  1709. {
  1710. unsigned long background_thresh;
  1711. unsigned long dirty_thresh;
  1712. for ( ; ; ) {
  1713. global_dirty_limits(&background_thresh, &dirty_thresh);
  1714. dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
  1715. /*
  1716. * Boost the allowable dirty threshold a bit for page
  1717. * allocators so they don't get DoS'ed by heavy writers
  1718. */
  1719. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1720. if (global_page_state(NR_UNSTABLE_NFS) +
  1721. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1722. break;
  1723. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1724. /*
  1725. * The caller might hold locks which can prevent IO completion
  1726. * or progress in the filesystem. So we cannot just sit here
  1727. * waiting for IO to complete.
  1728. */
  1729. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1730. break;
  1731. }
  1732. }
  1733. /*
  1734. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1735. */
  1736. int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
  1737. void __user *buffer, size_t *length, loff_t *ppos)
  1738. {
  1739. proc_dointvec(table, write, buffer, length, ppos);
  1740. return 0;
  1741. }
  1742. #ifdef CONFIG_BLOCK
  1743. void laptop_mode_timer_fn(unsigned long data)
  1744. {
  1745. struct request_queue *q = (struct request_queue *)data;
  1746. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1747. global_page_state(NR_UNSTABLE_NFS);
  1748. struct bdi_writeback *wb;
  1749. /*
  1750. * We want to write everything out, not just down to the dirty
  1751. * threshold
  1752. */
  1753. if (!bdi_has_dirty_io(&q->backing_dev_info))
  1754. return;
  1755. rcu_read_lock();
  1756. list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
  1757. if (wb_has_dirty_io(wb))
  1758. wb_start_writeback(wb, nr_pages, true,
  1759. WB_REASON_LAPTOP_TIMER);
  1760. rcu_read_unlock();
  1761. }
  1762. /*
  1763. * We've spun up the disk and we're in laptop mode: schedule writeback
  1764. * of all dirty data a few seconds from now. If the flush is already scheduled
  1765. * then push it back - the user is still using the disk.
  1766. */
  1767. void laptop_io_completion(struct backing_dev_info *info)
  1768. {
  1769. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1770. }
  1771. /*
  1772. * We're in laptop mode and we've just synced. The sync's writes will have
  1773. * caused another writeback to be scheduled by laptop_io_completion.
  1774. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1775. */
  1776. void laptop_sync_completion(void)
  1777. {
  1778. struct backing_dev_info *bdi;
  1779. rcu_read_lock();
  1780. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1781. del_timer(&bdi->laptop_mode_wb_timer);
  1782. rcu_read_unlock();
  1783. }
  1784. #endif
  1785. /*
  1786. * If ratelimit_pages is too high then we can get into dirty-data overload
  1787. * if a large number of processes all perform writes at the same time.
  1788. * If it is too low then SMP machines will call the (expensive)
  1789. * get_writeback_state too often.
  1790. *
  1791. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1792. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1793. * thresholds.
  1794. */
  1795. void writeback_set_ratelimit(void)
  1796. {
  1797. struct wb_domain *dom = &global_wb_domain;
  1798. unsigned long background_thresh;
  1799. unsigned long dirty_thresh;
  1800. global_dirty_limits(&background_thresh, &dirty_thresh);
  1801. dom->dirty_limit = dirty_thresh;
  1802. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1803. if (ratelimit_pages < 16)
  1804. ratelimit_pages = 16;
  1805. }
  1806. static int
  1807. ratelimit_handler(struct notifier_block *self, unsigned long action,
  1808. void *hcpu)
  1809. {
  1810. switch (action & ~CPU_TASKS_FROZEN) {
  1811. case CPU_ONLINE:
  1812. case CPU_DEAD:
  1813. writeback_set_ratelimit();
  1814. return NOTIFY_OK;
  1815. default:
  1816. return NOTIFY_DONE;
  1817. }
  1818. }
  1819. static struct notifier_block ratelimit_nb = {
  1820. .notifier_call = ratelimit_handler,
  1821. .next = NULL,
  1822. };
  1823. /*
  1824. * Called early on to tune the page writeback dirty limits.
  1825. *
  1826. * We used to scale dirty pages according to how total memory
  1827. * related to pages that could be allocated for buffers (by
  1828. * comparing nr_free_buffer_pages() to vm_total_pages.
  1829. *
  1830. * However, that was when we used "dirty_ratio" to scale with
  1831. * all memory, and we don't do that any more. "dirty_ratio"
  1832. * is now applied to total non-HIGHPAGE memory (by subtracting
  1833. * totalhigh_pages from vm_total_pages), and as such we can't
  1834. * get into the old insane situation any more where we had
  1835. * large amounts of dirty pages compared to a small amount of
  1836. * non-HIGHMEM memory.
  1837. *
  1838. * But we might still want to scale the dirty_ratio by how
  1839. * much memory the box has..
  1840. */
  1841. void __init page_writeback_init(void)
  1842. {
  1843. BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
  1844. writeback_set_ratelimit();
  1845. register_cpu_notifier(&ratelimit_nb);
  1846. }
  1847. /**
  1848. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1849. * @mapping: address space structure to write
  1850. * @start: starting page index
  1851. * @end: ending page index (inclusive)
  1852. *
  1853. * This function scans the page range from @start to @end (inclusive) and tags
  1854. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1855. * that write_cache_pages (or whoever calls this function) will then use
  1856. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1857. * used to avoid livelocking of writeback by a process steadily creating new
  1858. * dirty pages in the file (thus it is important for this function to be quick
  1859. * so that it can tag pages faster than a dirtying process can create them).
  1860. */
  1861. /*
  1862. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1863. */
  1864. void tag_pages_for_writeback(struct address_space *mapping,
  1865. pgoff_t start, pgoff_t end)
  1866. {
  1867. #define WRITEBACK_TAG_BATCH 4096
  1868. unsigned long tagged;
  1869. do {
  1870. spin_lock_irq(&mapping->tree_lock);
  1871. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1872. &start, end, WRITEBACK_TAG_BATCH,
  1873. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1874. spin_unlock_irq(&mapping->tree_lock);
  1875. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1876. cond_resched();
  1877. /* We check 'start' to handle wrapping when end == ~0UL */
  1878. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1879. }
  1880. EXPORT_SYMBOL(tag_pages_for_writeback);
  1881. /**
  1882. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1883. * @mapping: address space structure to write
  1884. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1885. * @writepage: function called for each page
  1886. * @data: data passed to writepage function
  1887. *
  1888. * If a page is already under I/O, write_cache_pages() skips it, even
  1889. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1890. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1891. * and msync() need to guarantee that all the data which was dirty at the time
  1892. * the call was made get new I/O started against them. If wbc->sync_mode is
  1893. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1894. * existing IO to complete.
  1895. *
  1896. * To avoid livelocks (when other process dirties new pages), we first tag
  1897. * pages which should be written back with TOWRITE tag and only then start
  1898. * writing them. For data-integrity sync we have to be careful so that we do
  1899. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1900. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1901. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1902. */
  1903. int write_cache_pages(struct address_space *mapping,
  1904. struct writeback_control *wbc, writepage_t writepage,
  1905. void *data)
  1906. {
  1907. int ret = 0;
  1908. int done = 0;
  1909. struct pagevec pvec;
  1910. int nr_pages;
  1911. pgoff_t uninitialized_var(writeback_index);
  1912. pgoff_t index;
  1913. pgoff_t end; /* Inclusive */
  1914. pgoff_t done_index;
  1915. int cycled;
  1916. int range_whole = 0;
  1917. int tag;
  1918. pagevec_init(&pvec, 0);
  1919. if (wbc->range_cyclic) {
  1920. writeback_index = mapping->writeback_index; /* prev offset */
  1921. index = writeback_index;
  1922. if (index == 0)
  1923. cycled = 1;
  1924. else
  1925. cycled = 0;
  1926. end = -1;
  1927. } else {
  1928. index = wbc->range_start >> PAGE_SHIFT;
  1929. end = wbc->range_end >> PAGE_SHIFT;
  1930. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1931. range_whole = 1;
  1932. cycled = 1; /* ignore range_cyclic tests */
  1933. }
  1934. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1935. tag = PAGECACHE_TAG_TOWRITE;
  1936. else
  1937. tag = PAGECACHE_TAG_DIRTY;
  1938. retry:
  1939. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1940. tag_pages_for_writeback(mapping, index, end);
  1941. done_index = index;
  1942. while (!done && (index <= end)) {
  1943. int i;
  1944. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1945. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1946. if (nr_pages == 0)
  1947. break;
  1948. for (i = 0; i < nr_pages; i++) {
  1949. struct page *page = pvec.pages[i];
  1950. /*
  1951. * At this point, the page may be truncated or
  1952. * invalidated (changing page->mapping to NULL), or
  1953. * even swizzled back from swapper_space to tmpfs file
  1954. * mapping. However, page->index will not change
  1955. * because we have a reference on the page.
  1956. */
  1957. if (page->index > end) {
  1958. /*
  1959. * can't be range_cyclic (1st pass) because
  1960. * end == -1 in that case.
  1961. */
  1962. done = 1;
  1963. break;
  1964. }
  1965. done_index = page->index;
  1966. lock_page(page);
  1967. /*
  1968. * Page truncated or invalidated. We can freely skip it
  1969. * then, even for data integrity operations: the page
  1970. * has disappeared concurrently, so there could be no
  1971. * real expectation of this data interity operation
  1972. * even if there is now a new, dirty page at the same
  1973. * pagecache address.
  1974. */
  1975. if (unlikely(page->mapping != mapping)) {
  1976. continue_unlock:
  1977. unlock_page(page);
  1978. continue;
  1979. }
  1980. if (!PageDirty(page)) {
  1981. /* someone wrote it for us */
  1982. goto continue_unlock;
  1983. }
  1984. if (PageWriteback(page)) {
  1985. if (wbc->sync_mode != WB_SYNC_NONE)
  1986. wait_on_page_writeback(page);
  1987. else
  1988. goto continue_unlock;
  1989. }
  1990. BUG_ON(PageWriteback(page));
  1991. if (!clear_page_dirty_for_io(page))
  1992. goto continue_unlock;
  1993. trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
  1994. ret = (*writepage)(page, wbc, data);
  1995. if (unlikely(ret)) {
  1996. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1997. unlock_page(page);
  1998. ret = 0;
  1999. } else {
  2000. /*
  2001. * done_index is set past this page,
  2002. * so media errors will not choke
  2003. * background writeout for the entire
  2004. * file. This has consequences for
  2005. * range_cyclic semantics (ie. it may
  2006. * not be suitable for data integrity
  2007. * writeout).
  2008. */
  2009. done_index = page->index + 1;
  2010. done = 1;
  2011. break;
  2012. }
  2013. }
  2014. /*
  2015. * We stop writing back only if we are not doing
  2016. * integrity sync. In case of integrity sync we have to
  2017. * keep going until we have written all the pages
  2018. * we tagged for writeback prior to entering this loop.
  2019. */
  2020. if (--wbc->nr_to_write <= 0 &&
  2021. wbc->sync_mode == WB_SYNC_NONE) {
  2022. done = 1;
  2023. break;
  2024. }
  2025. }
  2026. pagevec_release(&pvec);
  2027. cond_resched();
  2028. }
  2029. if (!cycled && !done) {
  2030. /*
  2031. * range_cyclic:
  2032. * We hit the last page and there is more work to be done: wrap
  2033. * back to the start of the file
  2034. */
  2035. cycled = 1;
  2036. index = 0;
  2037. end = writeback_index - 1;
  2038. goto retry;
  2039. }
  2040. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2041. mapping->writeback_index = done_index;
  2042. return ret;
  2043. }
  2044. EXPORT_SYMBOL(write_cache_pages);
  2045. /*
  2046. * Function used by generic_writepages to call the real writepage
  2047. * function and set the mapping flags on error
  2048. */
  2049. static int __writepage(struct page *page, struct writeback_control *wbc,
  2050. void *data)
  2051. {
  2052. struct address_space *mapping = data;
  2053. int ret = mapping->a_ops->writepage(page, wbc);
  2054. mapping_set_error(mapping, ret);
  2055. return ret;
  2056. }
  2057. /**
  2058. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  2059. * @mapping: address space structure to write
  2060. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  2061. *
  2062. * This is a library function, which implements the writepages()
  2063. * address_space_operation.
  2064. */
  2065. int generic_writepages(struct address_space *mapping,
  2066. struct writeback_control *wbc)
  2067. {
  2068. struct blk_plug plug;
  2069. int ret;
  2070. /* deal with chardevs and other special file */
  2071. if (!mapping->a_ops->writepage)
  2072. return 0;
  2073. blk_start_plug(&plug);
  2074. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  2075. blk_finish_plug(&plug);
  2076. return ret;
  2077. }
  2078. EXPORT_SYMBOL(generic_writepages);
  2079. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  2080. {
  2081. int ret;
  2082. if (wbc->nr_to_write <= 0)
  2083. return 0;
  2084. if (mapping->a_ops->writepages)
  2085. ret = mapping->a_ops->writepages(mapping, wbc);
  2086. else
  2087. ret = generic_writepages(mapping, wbc);
  2088. return ret;
  2089. }
  2090. /**
  2091. * write_one_page - write out a single page and optionally wait on I/O
  2092. * @page: the page to write
  2093. * @wait: if true, wait on writeout
  2094. *
  2095. * The page must be locked by the caller and will be unlocked upon return.
  2096. *
  2097. * write_one_page() returns a negative error code if I/O failed.
  2098. */
  2099. int write_one_page(struct page *page, int wait)
  2100. {
  2101. struct address_space *mapping = page->mapping;
  2102. int ret = 0;
  2103. struct writeback_control wbc = {
  2104. .sync_mode = WB_SYNC_ALL,
  2105. .nr_to_write = 1,
  2106. };
  2107. BUG_ON(!PageLocked(page));
  2108. if (wait)
  2109. wait_on_page_writeback(page);
  2110. if (clear_page_dirty_for_io(page)) {
  2111. get_page(page);
  2112. ret = mapping->a_ops->writepage(page, &wbc);
  2113. if (ret == 0 && wait) {
  2114. wait_on_page_writeback(page);
  2115. if (PageError(page))
  2116. ret = -EIO;
  2117. }
  2118. put_page(page);
  2119. } else {
  2120. unlock_page(page);
  2121. }
  2122. return ret;
  2123. }
  2124. EXPORT_SYMBOL(write_one_page);
  2125. /*
  2126. * For address_spaces which do not use buffers nor write back.
  2127. */
  2128. int __set_page_dirty_no_writeback(struct page *page)
  2129. {
  2130. if (!PageDirty(page))
  2131. return !TestSetPageDirty(page);
  2132. return 0;
  2133. }
  2134. /*
  2135. * Helper function for set_page_dirty family.
  2136. *
  2137. * Caller must hold lock_page_memcg().
  2138. *
  2139. * NOTE: This relies on being atomic wrt interrupts.
  2140. */
  2141. void account_page_dirtied(struct page *page, struct address_space *mapping)
  2142. {
  2143. struct inode *inode = mapping->host;
  2144. trace_writeback_dirty_page(page, mapping);
  2145. if (mapping_cap_account_dirty(mapping)) {
  2146. struct bdi_writeback *wb;
  2147. inode_attach_wb(inode, page);
  2148. wb = inode_to_wb(inode);
  2149. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
  2150. __inc_zone_page_state(page, NR_FILE_DIRTY);
  2151. __inc_zone_page_state(page, NR_DIRTIED);
  2152. __inc_wb_stat(wb, WB_RECLAIMABLE);
  2153. __inc_wb_stat(wb, WB_DIRTIED);
  2154. task_io_account_write(PAGE_SIZE);
  2155. current->nr_dirtied++;
  2156. this_cpu_inc(bdp_ratelimits);
  2157. }
  2158. }
  2159. EXPORT_SYMBOL(account_page_dirtied);
  2160. /*
  2161. * Helper function for deaccounting dirty page without writeback.
  2162. *
  2163. * Caller must hold lock_page_memcg().
  2164. */
  2165. void account_page_cleaned(struct page *page, struct address_space *mapping,
  2166. struct bdi_writeback *wb)
  2167. {
  2168. if (mapping_cap_account_dirty(mapping)) {
  2169. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
  2170. dec_zone_page_state(page, NR_FILE_DIRTY);
  2171. dec_wb_stat(wb, WB_RECLAIMABLE);
  2172. task_io_account_cancelled_write(PAGE_SIZE);
  2173. }
  2174. }
  2175. /*
  2176. * For address_spaces which do not use buffers. Just tag the page as dirty in
  2177. * its radix tree.
  2178. *
  2179. * This is also used when a single buffer is being dirtied: we want to set the
  2180. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  2181. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  2182. *
  2183. * The caller must ensure this doesn't race with truncation. Most will simply
  2184. * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
  2185. * the pte lock held, which also locks out truncation.
  2186. */
  2187. int __set_page_dirty_nobuffers(struct page *page)
  2188. {
  2189. lock_page_memcg(page);
  2190. if (!TestSetPageDirty(page)) {
  2191. struct address_space *mapping = page_mapping(page);
  2192. unsigned long flags;
  2193. if (!mapping) {
  2194. unlock_page_memcg(page);
  2195. return 1;
  2196. }
  2197. spin_lock_irqsave(&mapping->tree_lock, flags);
  2198. BUG_ON(page_mapping(page) != mapping);
  2199. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  2200. account_page_dirtied(page, mapping);
  2201. radix_tree_tag_set(&mapping->page_tree, page_index(page),
  2202. PAGECACHE_TAG_DIRTY);
  2203. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2204. unlock_page_memcg(page);
  2205. if (mapping->host) {
  2206. /* !PageAnon && !swapper_space */
  2207. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  2208. }
  2209. return 1;
  2210. }
  2211. unlock_page_memcg(page);
  2212. return 0;
  2213. }
  2214. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  2215. /*
  2216. * Call this whenever redirtying a page, to de-account the dirty counters
  2217. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  2218. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  2219. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  2220. * control.
  2221. */
  2222. void account_page_redirty(struct page *page)
  2223. {
  2224. struct address_space *mapping = page->mapping;
  2225. if (mapping && mapping_cap_account_dirty(mapping)) {
  2226. struct inode *inode = mapping->host;
  2227. struct bdi_writeback *wb;
  2228. bool locked;
  2229. wb = unlocked_inode_to_wb_begin(inode, &locked);
  2230. current->nr_dirtied--;
  2231. dec_zone_page_state(page, NR_DIRTIED);
  2232. dec_wb_stat(wb, WB_DIRTIED);
  2233. unlocked_inode_to_wb_end(inode, locked);
  2234. }
  2235. }
  2236. EXPORT_SYMBOL(account_page_redirty);
  2237. /*
  2238. * When a writepage implementation decides that it doesn't want to write this
  2239. * page for some reason, it should redirty the locked page via
  2240. * redirty_page_for_writepage() and it should then unlock the page and return 0
  2241. */
  2242. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  2243. {
  2244. int ret;
  2245. wbc->pages_skipped++;
  2246. ret = __set_page_dirty_nobuffers(page);
  2247. account_page_redirty(page);
  2248. return ret;
  2249. }
  2250. EXPORT_SYMBOL(redirty_page_for_writepage);
  2251. /*
  2252. * Dirty a page.
  2253. *
  2254. * For pages with a mapping this should be done under the page lock
  2255. * for the benefit of asynchronous memory errors who prefer a consistent
  2256. * dirty state. This rule can be broken in some special cases,
  2257. * but should be better not to.
  2258. *
  2259. * If the mapping doesn't provide a set_page_dirty a_op, then
  2260. * just fall through and assume that it wants buffer_heads.
  2261. */
  2262. int set_page_dirty(struct page *page)
  2263. {
  2264. struct address_space *mapping = page_mapping(page);
  2265. if (likely(mapping)) {
  2266. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  2267. /*
  2268. * readahead/lru_deactivate_page could remain
  2269. * PG_readahead/PG_reclaim due to race with end_page_writeback
  2270. * About readahead, if the page is written, the flags would be
  2271. * reset. So no problem.
  2272. * About lru_deactivate_page, if the page is redirty, the flag
  2273. * will be reset. So no problem. but if the page is used by readahead
  2274. * it will confuse readahead and make it restart the size rampup
  2275. * process. But it's a trivial problem.
  2276. */
  2277. if (PageReclaim(page))
  2278. ClearPageReclaim(page);
  2279. #ifdef CONFIG_BLOCK
  2280. if (!spd)
  2281. spd = __set_page_dirty_buffers;
  2282. #endif
  2283. return (*spd)(page);
  2284. }
  2285. if (!PageDirty(page)) {
  2286. if (!TestSetPageDirty(page))
  2287. return 1;
  2288. }
  2289. return 0;
  2290. }
  2291. EXPORT_SYMBOL(set_page_dirty);
  2292. /*
  2293. * set_page_dirty() is racy if the caller has no reference against
  2294. * page->mapping->host, and if the page is unlocked. This is because another
  2295. * CPU could truncate the page off the mapping and then free the mapping.
  2296. *
  2297. * Usually, the page _is_ locked, or the caller is a user-space process which
  2298. * holds a reference on the inode by having an open file.
  2299. *
  2300. * In other cases, the page should be locked before running set_page_dirty().
  2301. */
  2302. int set_page_dirty_lock(struct page *page)
  2303. {
  2304. int ret;
  2305. lock_page(page);
  2306. ret = set_page_dirty(page);
  2307. unlock_page(page);
  2308. return ret;
  2309. }
  2310. EXPORT_SYMBOL(set_page_dirty_lock);
  2311. /*
  2312. * This cancels just the dirty bit on the kernel page itself, it does NOT
  2313. * actually remove dirty bits on any mmap's that may be around. It also
  2314. * leaves the page tagged dirty, so any sync activity will still find it on
  2315. * the dirty lists, and in particular, clear_page_dirty_for_io() will still
  2316. * look at the dirty bits in the VM.
  2317. *
  2318. * Doing this should *normally* only ever be done when a page is truncated,
  2319. * and is not actually mapped anywhere at all. However, fs/buffer.c does
  2320. * this when it notices that somebody has cleaned out all the buffers on a
  2321. * page without actually doing it through the VM. Can you say "ext3 is
  2322. * horribly ugly"? Thought you could.
  2323. */
  2324. void cancel_dirty_page(struct page *page)
  2325. {
  2326. struct address_space *mapping = page_mapping(page);
  2327. if (mapping_cap_account_dirty(mapping)) {
  2328. struct inode *inode = mapping->host;
  2329. struct bdi_writeback *wb;
  2330. bool locked;
  2331. lock_page_memcg(page);
  2332. wb = unlocked_inode_to_wb_begin(inode, &locked);
  2333. if (TestClearPageDirty(page))
  2334. account_page_cleaned(page, mapping, wb);
  2335. unlocked_inode_to_wb_end(inode, locked);
  2336. unlock_page_memcg(page);
  2337. } else {
  2338. ClearPageDirty(page);
  2339. }
  2340. }
  2341. EXPORT_SYMBOL(cancel_dirty_page);
  2342. /*
  2343. * Clear a page's dirty flag, while caring for dirty memory accounting.
  2344. * Returns true if the page was previously dirty.
  2345. *
  2346. * This is for preparing to put the page under writeout. We leave the page
  2347. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  2348. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  2349. * implementation will run either set_page_writeback() or set_page_dirty(),
  2350. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  2351. * back into sync.
  2352. *
  2353. * This incoherency between the page's dirty flag and radix-tree tag is
  2354. * unfortunate, but it only exists while the page is locked.
  2355. */
  2356. int clear_page_dirty_for_io(struct page *page)
  2357. {
  2358. struct address_space *mapping = page_mapping(page);
  2359. int ret = 0;
  2360. BUG_ON(!PageLocked(page));
  2361. if (mapping && mapping_cap_account_dirty(mapping)) {
  2362. struct inode *inode = mapping->host;
  2363. struct bdi_writeback *wb;
  2364. bool locked;
  2365. /*
  2366. * Yes, Virginia, this is indeed insane.
  2367. *
  2368. * We use this sequence to make sure that
  2369. * (a) we account for dirty stats properly
  2370. * (b) we tell the low-level filesystem to
  2371. * mark the whole page dirty if it was
  2372. * dirty in a pagetable. Only to then
  2373. * (c) clean the page again and return 1 to
  2374. * cause the writeback.
  2375. *
  2376. * This way we avoid all nasty races with the
  2377. * dirty bit in multiple places and clearing
  2378. * them concurrently from different threads.
  2379. *
  2380. * Note! Normally the "set_page_dirty(page)"
  2381. * has no effect on the actual dirty bit - since
  2382. * that will already usually be set. But we
  2383. * need the side effects, and it can help us
  2384. * avoid races.
  2385. *
  2386. * We basically use the page "master dirty bit"
  2387. * as a serialization point for all the different
  2388. * threads doing their things.
  2389. */
  2390. if (page_mkclean(page))
  2391. set_page_dirty(page);
  2392. /*
  2393. * We carefully synchronise fault handlers against
  2394. * installing a dirty pte and marking the page dirty
  2395. * at this point. We do this by having them hold the
  2396. * page lock while dirtying the page, and pages are
  2397. * always locked coming in here, so we get the desired
  2398. * exclusion.
  2399. */
  2400. wb = unlocked_inode_to_wb_begin(inode, &locked);
  2401. if (TestClearPageDirty(page)) {
  2402. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
  2403. dec_zone_page_state(page, NR_FILE_DIRTY);
  2404. dec_wb_stat(wb, WB_RECLAIMABLE);
  2405. ret = 1;
  2406. }
  2407. unlocked_inode_to_wb_end(inode, locked);
  2408. return ret;
  2409. }
  2410. return TestClearPageDirty(page);
  2411. }
  2412. EXPORT_SYMBOL(clear_page_dirty_for_io);
  2413. int test_clear_page_writeback(struct page *page)
  2414. {
  2415. struct address_space *mapping = page_mapping(page);
  2416. int ret;
  2417. lock_page_memcg(page);
  2418. if (mapping) {
  2419. struct inode *inode = mapping->host;
  2420. struct backing_dev_info *bdi = inode_to_bdi(inode);
  2421. unsigned long flags;
  2422. spin_lock_irqsave(&mapping->tree_lock, flags);
  2423. ret = TestClearPageWriteback(page);
  2424. if (ret) {
  2425. radix_tree_tag_clear(&mapping->page_tree,
  2426. page_index(page),
  2427. PAGECACHE_TAG_WRITEBACK);
  2428. if (bdi_cap_account_writeback(bdi)) {
  2429. struct bdi_writeback *wb = inode_to_wb(inode);
  2430. __dec_wb_stat(wb, WB_WRITEBACK);
  2431. __wb_writeout_inc(wb);
  2432. }
  2433. }
  2434. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2435. } else {
  2436. ret = TestClearPageWriteback(page);
  2437. }
  2438. if (ret) {
  2439. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
  2440. dec_zone_page_state(page, NR_WRITEBACK);
  2441. inc_zone_page_state(page, NR_WRITTEN);
  2442. }
  2443. unlock_page_memcg(page);
  2444. return ret;
  2445. }
  2446. int __test_set_page_writeback(struct page *page, bool keep_write)
  2447. {
  2448. struct address_space *mapping = page_mapping(page);
  2449. int ret;
  2450. lock_page_memcg(page);
  2451. if (mapping) {
  2452. struct inode *inode = mapping->host;
  2453. struct backing_dev_info *bdi = inode_to_bdi(inode);
  2454. unsigned long flags;
  2455. spin_lock_irqsave(&mapping->tree_lock, flags);
  2456. ret = TestSetPageWriteback(page);
  2457. if (!ret) {
  2458. radix_tree_tag_set(&mapping->page_tree,
  2459. page_index(page),
  2460. PAGECACHE_TAG_WRITEBACK);
  2461. if (bdi_cap_account_writeback(bdi))
  2462. __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
  2463. }
  2464. if (!PageDirty(page))
  2465. radix_tree_tag_clear(&mapping->page_tree,
  2466. page_index(page),
  2467. PAGECACHE_TAG_DIRTY);
  2468. if (!keep_write)
  2469. radix_tree_tag_clear(&mapping->page_tree,
  2470. page_index(page),
  2471. PAGECACHE_TAG_TOWRITE);
  2472. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2473. } else {
  2474. ret = TestSetPageWriteback(page);
  2475. }
  2476. if (!ret) {
  2477. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
  2478. inc_zone_page_state(page, NR_WRITEBACK);
  2479. }
  2480. unlock_page_memcg(page);
  2481. return ret;
  2482. }
  2483. EXPORT_SYMBOL(__test_set_page_writeback);
  2484. /*
  2485. * Return true if any of the pages in the mapping are marked with the
  2486. * passed tag.
  2487. */
  2488. int mapping_tagged(struct address_space *mapping, int tag)
  2489. {
  2490. return radix_tree_tagged(&mapping->page_tree, tag);
  2491. }
  2492. EXPORT_SYMBOL(mapping_tagged);
  2493. /**
  2494. * wait_for_stable_page() - wait for writeback to finish, if necessary.
  2495. * @page: The page to wait on.
  2496. *
  2497. * This function determines if the given page is related to a backing device
  2498. * that requires page contents to be held stable during writeback. If so, then
  2499. * it will wait for any pending writeback to complete.
  2500. */
  2501. void wait_for_stable_page(struct page *page)
  2502. {
  2503. if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
  2504. wait_on_page_writeback(page);
  2505. }
  2506. EXPORT_SYMBOL_GPL(wait_for_stable_page);