vgic.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472
  1. /*
  2. * Copyright (C) 2012 ARM Ltd.
  3. * Author: Marc Zyngier <marc.zyngier@arm.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. */
  18. #include <linux/cpu.h>
  19. #include <linux/kvm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/of.h>
  24. #include <linux/of_address.h>
  25. #include <linux/of_irq.h>
  26. #include <linux/rculist.h>
  27. #include <linux/uaccess.h>
  28. #include <asm/kvm_emulate.h>
  29. #include <asm/kvm_arm.h>
  30. #include <asm/kvm_mmu.h>
  31. #include <trace/events/kvm.h>
  32. #include <asm/kvm.h>
  33. #include <kvm/iodev.h>
  34. #define CREATE_TRACE_POINTS
  35. #include "trace.h"
  36. /*
  37. * How the whole thing works (courtesy of Christoffer Dall):
  38. *
  39. * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
  40. * something is pending on the CPU interface.
  41. * - Interrupts that are pending on the distributor are stored on the
  42. * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
  43. * ioctls and guest mmio ops, and other in-kernel peripherals such as the
  44. * arch. timers).
  45. * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
  46. * recalculated
  47. * - To calculate the oracle, we need info for each cpu from
  48. * compute_pending_for_cpu, which considers:
  49. * - PPI: dist->irq_pending & dist->irq_enable
  50. * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
  51. * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
  52. * registers, stored on each vcpu. We only keep one bit of
  53. * information per interrupt, making sure that only one vcpu can
  54. * accept the interrupt.
  55. * - If any of the above state changes, we must recalculate the oracle.
  56. * - The same is true when injecting an interrupt, except that we only
  57. * consider a single interrupt at a time. The irq_spi_cpu array
  58. * contains the target CPU for each SPI.
  59. *
  60. * The handling of level interrupts adds some extra complexity. We
  61. * need to track when the interrupt has been EOIed, so we can sample
  62. * the 'line' again. This is achieved as such:
  63. *
  64. * - When a level interrupt is moved onto a vcpu, the corresponding
  65. * bit in irq_queued is set. As long as this bit is set, the line
  66. * will be ignored for further interrupts. The interrupt is injected
  67. * into the vcpu with the GICH_LR_EOI bit set (generate a
  68. * maintenance interrupt on EOI).
  69. * - When the interrupt is EOIed, the maintenance interrupt fires,
  70. * and clears the corresponding bit in irq_queued. This allows the
  71. * interrupt line to be sampled again.
  72. * - Note that level-triggered interrupts can also be set to pending from
  73. * writes to GICD_ISPENDRn and lowering the external input line does not
  74. * cause the interrupt to become inactive in such a situation.
  75. * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
  76. * inactive as long as the external input line is held high.
  77. *
  78. *
  79. * Initialization rules: there are multiple stages to the vgic
  80. * initialization, both for the distributor and the CPU interfaces.
  81. *
  82. * Distributor:
  83. *
  84. * - kvm_vgic_early_init(): initialization of static data that doesn't
  85. * depend on any sizing information or emulation type. No allocation
  86. * is allowed there.
  87. *
  88. * - vgic_init(): allocation and initialization of the generic data
  89. * structures that depend on sizing information (number of CPUs,
  90. * number of interrupts). Also initializes the vcpu specific data
  91. * structures. Can be executed lazily for GICv2.
  92. * [to be renamed to kvm_vgic_init??]
  93. *
  94. * CPU Interface:
  95. *
  96. * - kvm_vgic_cpu_early_init(): initialization of static data that
  97. * doesn't depend on any sizing information or emulation type. No
  98. * allocation is allowed there.
  99. */
  100. #include "vgic.h"
  101. static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
  102. static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
  103. static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
  104. static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
  105. static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
  106. static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
  107. int virt_irq);
  108. static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
  109. static const struct vgic_ops *vgic_ops;
  110. static const struct vgic_params *vgic;
  111. static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
  112. {
  113. vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
  114. }
  115. static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
  116. {
  117. return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
  118. }
  119. int kvm_vgic_map_resources(struct kvm *kvm)
  120. {
  121. return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
  122. }
  123. /*
  124. * struct vgic_bitmap contains a bitmap made of unsigned longs, but
  125. * extracts u32s out of them.
  126. *
  127. * This does not work on 64-bit BE systems, because the bitmap access
  128. * will store two consecutive 32-bit words with the higher-addressed
  129. * register's bits at the lower index and the lower-addressed register's
  130. * bits at the higher index.
  131. *
  132. * Therefore, swizzle the register index when accessing the 32-bit word
  133. * registers to access the right register's value.
  134. */
  135. #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
  136. #define REG_OFFSET_SWIZZLE 1
  137. #else
  138. #define REG_OFFSET_SWIZZLE 0
  139. #endif
  140. static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
  141. {
  142. int nr_longs;
  143. nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
  144. b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
  145. if (!b->private)
  146. return -ENOMEM;
  147. b->shared = b->private + nr_cpus;
  148. return 0;
  149. }
  150. static void vgic_free_bitmap(struct vgic_bitmap *b)
  151. {
  152. kfree(b->private);
  153. b->private = NULL;
  154. b->shared = NULL;
  155. }
  156. /*
  157. * Call this function to convert a u64 value to an unsigned long * bitmask
  158. * in a way that works on both 32-bit and 64-bit LE and BE platforms.
  159. *
  160. * Warning: Calling this function may modify *val.
  161. */
  162. static unsigned long *u64_to_bitmask(u64 *val)
  163. {
  164. #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
  165. *val = (*val >> 32) | (*val << 32);
  166. #endif
  167. return (unsigned long *)val;
  168. }
  169. u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
  170. {
  171. offset >>= 2;
  172. if (!offset)
  173. return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
  174. else
  175. return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
  176. }
  177. static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
  178. int cpuid, int irq)
  179. {
  180. if (irq < VGIC_NR_PRIVATE_IRQS)
  181. return test_bit(irq, x->private + cpuid);
  182. return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
  183. }
  184. void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
  185. int irq, int val)
  186. {
  187. unsigned long *reg;
  188. if (irq < VGIC_NR_PRIVATE_IRQS) {
  189. reg = x->private + cpuid;
  190. } else {
  191. reg = x->shared;
  192. irq -= VGIC_NR_PRIVATE_IRQS;
  193. }
  194. if (val)
  195. set_bit(irq, reg);
  196. else
  197. clear_bit(irq, reg);
  198. }
  199. static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
  200. {
  201. return x->private + cpuid;
  202. }
  203. unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
  204. {
  205. return x->shared;
  206. }
  207. static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
  208. {
  209. int size;
  210. size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
  211. size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
  212. x->private = kzalloc(size, GFP_KERNEL);
  213. if (!x->private)
  214. return -ENOMEM;
  215. x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
  216. return 0;
  217. }
  218. static void vgic_free_bytemap(struct vgic_bytemap *b)
  219. {
  220. kfree(b->private);
  221. b->private = NULL;
  222. b->shared = NULL;
  223. }
  224. u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
  225. {
  226. u32 *reg;
  227. if (offset < VGIC_NR_PRIVATE_IRQS) {
  228. reg = x->private;
  229. offset += cpuid * VGIC_NR_PRIVATE_IRQS;
  230. } else {
  231. reg = x->shared;
  232. offset -= VGIC_NR_PRIVATE_IRQS;
  233. }
  234. return reg + (offset / sizeof(u32));
  235. }
  236. #define VGIC_CFG_LEVEL 0
  237. #define VGIC_CFG_EDGE 1
  238. static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
  239. {
  240. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  241. int irq_val;
  242. irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
  243. return irq_val == VGIC_CFG_EDGE;
  244. }
  245. static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
  246. {
  247. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  248. return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
  249. }
  250. static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
  251. {
  252. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  253. return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
  254. }
  255. static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
  256. {
  257. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  258. return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
  259. }
  260. static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
  261. {
  262. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  263. vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
  264. }
  265. static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
  266. {
  267. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  268. vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
  269. }
  270. static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
  271. {
  272. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  273. vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
  274. }
  275. static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
  276. {
  277. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  278. vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
  279. }
  280. static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
  281. {
  282. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  283. return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
  284. }
  285. static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
  286. {
  287. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  288. vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
  289. }
  290. static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
  291. {
  292. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  293. vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
  294. }
  295. static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
  296. {
  297. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  298. return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
  299. }
  300. static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
  301. {
  302. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  303. vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
  304. if (!vgic_dist_irq_get_level(vcpu, irq)) {
  305. vgic_dist_irq_clear_pending(vcpu, irq);
  306. if (!compute_pending_for_cpu(vcpu))
  307. clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
  308. }
  309. }
  310. static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
  311. {
  312. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  313. return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
  314. }
  315. void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
  316. {
  317. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  318. vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
  319. }
  320. void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
  321. {
  322. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  323. vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
  324. }
  325. static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
  326. {
  327. if (irq < VGIC_NR_PRIVATE_IRQS)
  328. set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
  329. else
  330. set_bit(irq - VGIC_NR_PRIVATE_IRQS,
  331. vcpu->arch.vgic_cpu.pending_shared);
  332. }
  333. void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
  334. {
  335. if (irq < VGIC_NR_PRIVATE_IRQS)
  336. clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
  337. else
  338. clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
  339. vcpu->arch.vgic_cpu.pending_shared);
  340. }
  341. static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
  342. {
  343. return !vgic_irq_is_queued(vcpu, irq);
  344. }
  345. /**
  346. * vgic_reg_access - access vgic register
  347. * @mmio: pointer to the data describing the mmio access
  348. * @reg: pointer to the virtual backing of vgic distributor data
  349. * @offset: least significant 2 bits used for word offset
  350. * @mode: ACCESS_ mode (see defines above)
  351. *
  352. * Helper to make vgic register access easier using one of the access
  353. * modes defined for vgic register access
  354. * (read,raz,write-ignored,setbit,clearbit,write)
  355. */
  356. void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
  357. phys_addr_t offset, int mode)
  358. {
  359. int word_offset = (offset & 3) * 8;
  360. u32 mask = (1UL << (mmio->len * 8)) - 1;
  361. u32 regval;
  362. /*
  363. * Any alignment fault should have been delivered to the guest
  364. * directly (ARM ARM B3.12.7 "Prioritization of aborts").
  365. */
  366. if (reg) {
  367. regval = *reg;
  368. } else {
  369. BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
  370. regval = 0;
  371. }
  372. if (mmio->is_write) {
  373. u32 data = mmio_data_read(mmio, mask) << word_offset;
  374. switch (ACCESS_WRITE_MASK(mode)) {
  375. case ACCESS_WRITE_IGNORED:
  376. return;
  377. case ACCESS_WRITE_SETBIT:
  378. regval |= data;
  379. break;
  380. case ACCESS_WRITE_CLEARBIT:
  381. regval &= ~data;
  382. break;
  383. case ACCESS_WRITE_VALUE:
  384. regval = (regval & ~(mask << word_offset)) | data;
  385. break;
  386. }
  387. *reg = regval;
  388. } else {
  389. switch (ACCESS_READ_MASK(mode)) {
  390. case ACCESS_READ_RAZ:
  391. regval = 0;
  392. /* fall through */
  393. case ACCESS_READ_VALUE:
  394. mmio_data_write(mmio, mask, regval >> word_offset);
  395. }
  396. }
  397. }
  398. bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
  399. phys_addr_t offset)
  400. {
  401. vgic_reg_access(mmio, NULL, offset,
  402. ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
  403. return false;
  404. }
  405. bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
  406. phys_addr_t offset, int vcpu_id, int access)
  407. {
  408. u32 *reg;
  409. int mode = ACCESS_READ_VALUE | access;
  410. struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
  411. reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
  412. vgic_reg_access(mmio, reg, offset, mode);
  413. if (mmio->is_write) {
  414. if (access & ACCESS_WRITE_CLEARBIT) {
  415. if (offset < 4) /* Force SGI enabled */
  416. *reg |= 0xffff;
  417. vgic_retire_disabled_irqs(target_vcpu);
  418. }
  419. vgic_update_state(kvm);
  420. return true;
  421. }
  422. return false;
  423. }
  424. bool vgic_handle_set_pending_reg(struct kvm *kvm,
  425. struct kvm_exit_mmio *mmio,
  426. phys_addr_t offset, int vcpu_id)
  427. {
  428. u32 *reg, orig;
  429. u32 level_mask;
  430. int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
  431. struct vgic_dist *dist = &kvm->arch.vgic;
  432. reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
  433. level_mask = (~(*reg));
  434. /* Mark both level and edge triggered irqs as pending */
  435. reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
  436. orig = *reg;
  437. vgic_reg_access(mmio, reg, offset, mode);
  438. if (mmio->is_write) {
  439. /* Set the soft-pending flag only for level-triggered irqs */
  440. reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
  441. vcpu_id, offset);
  442. vgic_reg_access(mmio, reg, offset, mode);
  443. *reg &= level_mask;
  444. /* Ignore writes to SGIs */
  445. if (offset < 2) {
  446. *reg &= ~0xffff;
  447. *reg |= orig & 0xffff;
  448. }
  449. vgic_update_state(kvm);
  450. return true;
  451. }
  452. return false;
  453. }
  454. bool vgic_handle_clear_pending_reg(struct kvm *kvm,
  455. struct kvm_exit_mmio *mmio,
  456. phys_addr_t offset, int vcpu_id)
  457. {
  458. u32 *level_active;
  459. u32 *reg, orig;
  460. int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
  461. struct vgic_dist *dist = &kvm->arch.vgic;
  462. reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
  463. orig = *reg;
  464. vgic_reg_access(mmio, reg, offset, mode);
  465. if (mmio->is_write) {
  466. /* Re-set level triggered level-active interrupts */
  467. level_active = vgic_bitmap_get_reg(&dist->irq_level,
  468. vcpu_id, offset);
  469. reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
  470. *reg |= *level_active;
  471. /* Ignore writes to SGIs */
  472. if (offset < 2) {
  473. *reg &= ~0xffff;
  474. *reg |= orig & 0xffff;
  475. }
  476. /* Clear soft-pending flags */
  477. reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
  478. vcpu_id, offset);
  479. vgic_reg_access(mmio, reg, offset, mode);
  480. vgic_update_state(kvm);
  481. return true;
  482. }
  483. return false;
  484. }
  485. bool vgic_handle_set_active_reg(struct kvm *kvm,
  486. struct kvm_exit_mmio *mmio,
  487. phys_addr_t offset, int vcpu_id)
  488. {
  489. u32 *reg;
  490. struct vgic_dist *dist = &kvm->arch.vgic;
  491. reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
  492. vgic_reg_access(mmio, reg, offset,
  493. ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
  494. if (mmio->is_write) {
  495. vgic_update_state(kvm);
  496. return true;
  497. }
  498. return false;
  499. }
  500. bool vgic_handle_clear_active_reg(struct kvm *kvm,
  501. struct kvm_exit_mmio *mmio,
  502. phys_addr_t offset, int vcpu_id)
  503. {
  504. u32 *reg;
  505. struct vgic_dist *dist = &kvm->arch.vgic;
  506. reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
  507. vgic_reg_access(mmio, reg, offset,
  508. ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
  509. if (mmio->is_write) {
  510. vgic_update_state(kvm);
  511. return true;
  512. }
  513. return false;
  514. }
  515. static u32 vgic_cfg_expand(u16 val)
  516. {
  517. u32 res = 0;
  518. int i;
  519. /*
  520. * Turn a 16bit value like abcd...mnop into a 32bit word
  521. * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
  522. */
  523. for (i = 0; i < 16; i++)
  524. res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
  525. return res;
  526. }
  527. static u16 vgic_cfg_compress(u32 val)
  528. {
  529. u16 res = 0;
  530. int i;
  531. /*
  532. * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
  533. * abcd...mnop which is what we really care about.
  534. */
  535. for (i = 0; i < 16; i++)
  536. res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
  537. return res;
  538. }
  539. /*
  540. * The distributor uses 2 bits per IRQ for the CFG register, but the
  541. * LSB is always 0. As such, we only keep the upper bit, and use the
  542. * two above functions to compress/expand the bits
  543. */
  544. bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
  545. phys_addr_t offset)
  546. {
  547. u32 val;
  548. if (offset & 4)
  549. val = *reg >> 16;
  550. else
  551. val = *reg & 0xffff;
  552. val = vgic_cfg_expand(val);
  553. vgic_reg_access(mmio, &val, offset,
  554. ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
  555. if (mmio->is_write) {
  556. /* Ignore writes to read-only SGI and PPI bits */
  557. if (offset < 8)
  558. return false;
  559. val = vgic_cfg_compress(val);
  560. if (offset & 4) {
  561. *reg &= 0xffff;
  562. *reg |= val << 16;
  563. } else {
  564. *reg &= 0xffff << 16;
  565. *reg |= val;
  566. }
  567. }
  568. return false;
  569. }
  570. /**
  571. * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
  572. * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
  573. *
  574. * Move any IRQs that have already been assigned to LRs back to the
  575. * emulated distributor state so that the complete emulated state can be read
  576. * from the main emulation structures without investigating the LRs.
  577. */
  578. void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
  579. {
  580. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  581. u64 elrsr = vgic_get_elrsr(vcpu);
  582. unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
  583. int i;
  584. for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) {
  585. struct vgic_lr lr = vgic_get_lr(vcpu, i);
  586. /*
  587. * There are three options for the state bits:
  588. *
  589. * 01: pending
  590. * 10: active
  591. * 11: pending and active
  592. */
  593. BUG_ON(!(lr.state & LR_STATE_MASK));
  594. /* Reestablish SGI source for pending and active IRQs */
  595. if (lr.irq < VGIC_NR_SGIS)
  596. add_sgi_source(vcpu, lr.irq, lr.source);
  597. /*
  598. * If the LR holds an active (10) or a pending and active (11)
  599. * interrupt then move the active state to the
  600. * distributor tracking bit.
  601. */
  602. if (lr.state & LR_STATE_ACTIVE)
  603. vgic_irq_set_active(vcpu, lr.irq);
  604. /*
  605. * Reestablish the pending state on the distributor and the
  606. * CPU interface and mark the LR as free for other use.
  607. */
  608. vgic_retire_lr(i, vcpu);
  609. /* Finally update the VGIC state. */
  610. vgic_update_state(vcpu->kvm);
  611. }
  612. }
  613. const
  614. struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
  615. int len, gpa_t offset)
  616. {
  617. while (ranges->len) {
  618. if (offset >= ranges->base &&
  619. (offset + len) <= (ranges->base + ranges->len))
  620. return ranges;
  621. ranges++;
  622. }
  623. return NULL;
  624. }
  625. static bool vgic_validate_access(const struct vgic_dist *dist,
  626. const struct vgic_io_range *range,
  627. unsigned long offset)
  628. {
  629. int irq;
  630. if (!range->bits_per_irq)
  631. return true; /* Not an irq-based access */
  632. irq = offset * 8 / range->bits_per_irq;
  633. if (irq >= dist->nr_irqs)
  634. return false;
  635. return true;
  636. }
  637. /*
  638. * Call the respective handler function for the given range.
  639. * We split up any 64 bit accesses into two consecutive 32 bit
  640. * handler calls and merge the result afterwards.
  641. * We do this in a little endian fashion regardless of the host's
  642. * or guest's endianness, because the GIC is always LE and the rest of
  643. * the code (vgic_reg_access) also puts it in a LE fashion already.
  644. * At this point we have already identified the handle function, so
  645. * range points to that one entry and offset is relative to this.
  646. */
  647. static bool call_range_handler(struct kvm_vcpu *vcpu,
  648. struct kvm_exit_mmio *mmio,
  649. unsigned long offset,
  650. const struct vgic_io_range *range)
  651. {
  652. struct kvm_exit_mmio mmio32;
  653. bool ret;
  654. if (likely(mmio->len <= 4))
  655. return range->handle_mmio(vcpu, mmio, offset);
  656. /*
  657. * Any access bigger than 4 bytes (that we currently handle in KVM)
  658. * is actually 8 bytes long, caused by a 64-bit access
  659. */
  660. mmio32.len = 4;
  661. mmio32.is_write = mmio->is_write;
  662. mmio32.private = mmio->private;
  663. mmio32.phys_addr = mmio->phys_addr + 4;
  664. mmio32.data = &((u32 *)mmio->data)[1];
  665. ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
  666. mmio32.phys_addr = mmio->phys_addr;
  667. mmio32.data = &((u32 *)mmio->data)[0];
  668. ret |= range->handle_mmio(vcpu, &mmio32, offset);
  669. return ret;
  670. }
  671. /**
  672. * vgic_handle_mmio_access - handle an in-kernel MMIO access
  673. * This is called by the read/write KVM IO device wrappers below.
  674. * @vcpu: pointer to the vcpu performing the access
  675. * @this: pointer to the KVM IO device in charge
  676. * @addr: guest physical address of the access
  677. * @len: size of the access
  678. * @val: pointer to the data region
  679. * @is_write: read or write access
  680. *
  681. * returns true if the MMIO access could be performed
  682. */
  683. static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
  684. struct kvm_io_device *this, gpa_t addr,
  685. int len, void *val, bool is_write)
  686. {
  687. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  688. struct vgic_io_device *iodev = container_of(this,
  689. struct vgic_io_device, dev);
  690. struct kvm_run *run = vcpu->run;
  691. const struct vgic_io_range *range;
  692. struct kvm_exit_mmio mmio;
  693. bool updated_state;
  694. gpa_t offset;
  695. offset = addr - iodev->addr;
  696. range = vgic_find_range(iodev->reg_ranges, len, offset);
  697. if (unlikely(!range || !range->handle_mmio)) {
  698. pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
  699. return -ENXIO;
  700. }
  701. mmio.phys_addr = addr;
  702. mmio.len = len;
  703. mmio.is_write = is_write;
  704. mmio.data = val;
  705. mmio.private = iodev->redist_vcpu;
  706. spin_lock(&dist->lock);
  707. offset -= range->base;
  708. if (vgic_validate_access(dist, range, offset)) {
  709. updated_state = call_range_handler(vcpu, &mmio, offset, range);
  710. } else {
  711. if (!is_write)
  712. memset(val, 0, len);
  713. updated_state = false;
  714. }
  715. spin_unlock(&dist->lock);
  716. run->mmio.is_write = is_write;
  717. run->mmio.len = len;
  718. run->mmio.phys_addr = addr;
  719. memcpy(run->mmio.data, val, len);
  720. kvm_handle_mmio_return(vcpu, run);
  721. if (updated_state)
  722. vgic_kick_vcpus(vcpu->kvm);
  723. return 0;
  724. }
  725. static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
  726. struct kvm_io_device *this,
  727. gpa_t addr, int len, void *val)
  728. {
  729. return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
  730. }
  731. static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
  732. struct kvm_io_device *this,
  733. gpa_t addr, int len, const void *val)
  734. {
  735. return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
  736. true);
  737. }
  738. static struct kvm_io_device_ops vgic_io_ops = {
  739. .read = vgic_handle_mmio_read,
  740. .write = vgic_handle_mmio_write,
  741. };
  742. /**
  743. * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
  744. * @kvm: The VM structure pointer
  745. * @base: The (guest) base address for the register frame
  746. * @len: Length of the register frame window
  747. * @ranges: Describing the handler functions for each register
  748. * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
  749. * @iodev: Points to memory to be passed on to the handler
  750. *
  751. * @iodev stores the parameters of this function to be usable by the handler
  752. * respectively the dispatcher function (since the KVM I/O bus framework lacks
  753. * an opaque parameter). Initialization is done in this function, but the
  754. * reference should be valid and unique for the whole VGIC lifetime.
  755. * If the register frame is not mapped for a specific VCPU, pass -1 to
  756. * @redist_vcpu_id.
  757. */
  758. int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
  759. const struct vgic_io_range *ranges,
  760. int redist_vcpu_id,
  761. struct vgic_io_device *iodev)
  762. {
  763. struct kvm_vcpu *vcpu = NULL;
  764. int ret;
  765. if (redist_vcpu_id >= 0)
  766. vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
  767. iodev->addr = base;
  768. iodev->len = len;
  769. iodev->reg_ranges = ranges;
  770. iodev->redist_vcpu = vcpu;
  771. kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
  772. mutex_lock(&kvm->slots_lock);
  773. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
  774. &iodev->dev);
  775. mutex_unlock(&kvm->slots_lock);
  776. /* Mark the iodev as invalid if registration fails. */
  777. if (ret)
  778. iodev->dev.ops = NULL;
  779. return ret;
  780. }
  781. static int vgic_nr_shared_irqs(struct vgic_dist *dist)
  782. {
  783. return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
  784. }
  785. static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
  786. {
  787. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  788. unsigned long *active, *enabled, *act_percpu, *act_shared;
  789. unsigned long active_private, active_shared;
  790. int nr_shared = vgic_nr_shared_irqs(dist);
  791. int vcpu_id;
  792. vcpu_id = vcpu->vcpu_id;
  793. act_percpu = vcpu->arch.vgic_cpu.active_percpu;
  794. act_shared = vcpu->arch.vgic_cpu.active_shared;
  795. active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
  796. enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
  797. bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
  798. active = vgic_bitmap_get_shared_map(&dist->irq_active);
  799. enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
  800. bitmap_and(act_shared, active, enabled, nr_shared);
  801. bitmap_and(act_shared, act_shared,
  802. vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
  803. nr_shared);
  804. active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
  805. active_shared = find_first_bit(act_shared, nr_shared);
  806. return (active_private < VGIC_NR_PRIVATE_IRQS ||
  807. active_shared < nr_shared);
  808. }
  809. static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
  810. {
  811. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  812. unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
  813. unsigned long pending_private, pending_shared;
  814. int nr_shared = vgic_nr_shared_irqs(dist);
  815. int vcpu_id;
  816. vcpu_id = vcpu->vcpu_id;
  817. pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
  818. pend_shared = vcpu->arch.vgic_cpu.pending_shared;
  819. if (!dist->enabled) {
  820. bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
  821. bitmap_zero(pend_shared, nr_shared);
  822. return 0;
  823. }
  824. pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
  825. enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
  826. bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
  827. pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
  828. enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
  829. bitmap_and(pend_shared, pending, enabled, nr_shared);
  830. bitmap_and(pend_shared, pend_shared,
  831. vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
  832. nr_shared);
  833. pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
  834. pending_shared = find_first_bit(pend_shared, nr_shared);
  835. return (pending_private < VGIC_NR_PRIVATE_IRQS ||
  836. pending_shared < vgic_nr_shared_irqs(dist));
  837. }
  838. /*
  839. * Update the interrupt state and determine which CPUs have pending
  840. * or active interrupts. Must be called with distributor lock held.
  841. */
  842. void vgic_update_state(struct kvm *kvm)
  843. {
  844. struct vgic_dist *dist = &kvm->arch.vgic;
  845. struct kvm_vcpu *vcpu;
  846. int c;
  847. kvm_for_each_vcpu(c, vcpu, kvm) {
  848. if (compute_pending_for_cpu(vcpu))
  849. set_bit(c, dist->irq_pending_on_cpu);
  850. if (compute_active_for_cpu(vcpu))
  851. set_bit(c, dist->irq_active_on_cpu);
  852. else
  853. clear_bit(c, dist->irq_active_on_cpu);
  854. }
  855. }
  856. static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
  857. {
  858. return vgic_ops->get_lr(vcpu, lr);
  859. }
  860. static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
  861. struct vgic_lr vlr)
  862. {
  863. vgic_ops->set_lr(vcpu, lr, vlr);
  864. }
  865. static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
  866. {
  867. return vgic_ops->get_elrsr(vcpu);
  868. }
  869. static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
  870. {
  871. return vgic_ops->get_eisr(vcpu);
  872. }
  873. static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
  874. {
  875. vgic_ops->clear_eisr(vcpu);
  876. }
  877. static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
  878. {
  879. return vgic_ops->get_interrupt_status(vcpu);
  880. }
  881. static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
  882. {
  883. vgic_ops->enable_underflow(vcpu);
  884. }
  885. static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
  886. {
  887. vgic_ops->disable_underflow(vcpu);
  888. }
  889. void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
  890. {
  891. vgic_ops->get_vmcr(vcpu, vmcr);
  892. }
  893. void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
  894. {
  895. vgic_ops->set_vmcr(vcpu, vmcr);
  896. }
  897. static inline void vgic_enable(struct kvm_vcpu *vcpu)
  898. {
  899. vgic_ops->enable(vcpu);
  900. }
  901. static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
  902. {
  903. struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
  904. vgic_irq_clear_queued(vcpu, vlr.irq);
  905. /*
  906. * We must transfer the pending state back to the distributor before
  907. * retiring the LR, otherwise we may loose edge-triggered interrupts.
  908. */
  909. if (vlr.state & LR_STATE_PENDING) {
  910. vgic_dist_irq_set_pending(vcpu, vlr.irq);
  911. vlr.hwirq = 0;
  912. }
  913. vlr.state = 0;
  914. vgic_set_lr(vcpu, lr_nr, vlr);
  915. }
  916. static bool dist_active_irq(struct kvm_vcpu *vcpu)
  917. {
  918. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  919. return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
  920. }
  921. bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
  922. {
  923. int i;
  924. for (i = 0; i < vcpu->arch.vgic_cpu.nr_lr; i++) {
  925. struct vgic_lr vlr = vgic_get_lr(vcpu, i);
  926. if (vlr.irq == map->virt_irq && vlr.state & LR_STATE_ACTIVE)
  927. return true;
  928. }
  929. return vgic_irq_is_active(vcpu, map->virt_irq);
  930. }
  931. /*
  932. * An interrupt may have been disabled after being made pending on the
  933. * CPU interface (the classic case is a timer running while we're
  934. * rebooting the guest - the interrupt would kick as soon as the CPU
  935. * interface gets enabled, with deadly consequences).
  936. *
  937. * The solution is to examine already active LRs, and check the
  938. * interrupt is still enabled. If not, just retire it.
  939. */
  940. static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
  941. {
  942. u64 elrsr = vgic_get_elrsr(vcpu);
  943. unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
  944. int lr;
  945. for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
  946. struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
  947. if (!vgic_irq_is_enabled(vcpu, vlr.irq))
  948. vgic_retire_lr(lr, vcpu);
  949. }
  950. }
  951. static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
  952. int lr_nr, struct vgic_lr vlr)
  953. {
  954. if (vgic_irq_is_active(vcpu, irq)) {
  955. vlr.state |= LR_STATE_ACTIVE;
  956. kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
  957. vgic_irq_clear_active(vcpu, irq);
  958. vgic_update_state(vcpu->kvm);
  959. } else {
  960. WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
  961. vlr.state |= LR_STATE_PENDING;
  962. kvm_debug("Set pending: 0x%x\n", vlr.state);
  963. }
  964. if (!vgic_irq_is_edge(vcpu, irq))
  965. vlr.state |= LR_EOI_INT;
  966. if (vlr.irq >= VGIC_NR_SGIS) {
  967. struct irq_phys_map *map;
  968. map = vgic_irq_map_search(vcpu, irq);
  969. if (map) {
  970. vlr.hwirq = map->phys_irq;
  971. vlr.state |= LR_HW;
  972. vlr.state &= ~LR_EOI_INT;
  973. /*
  974. * Make sure we're not going to sample this
  975. * again, as a HW-backed interrupt cannot be
  976. * in the PENDING_ACTIVE stage.
  977. */
  978. vgic_irq_set_queued(vcpu, irq);
  979. }
  980. }
  981. vgic_set_lr(vcpu, lr_nr, vlr);
  982. }
  983. /*
  984. * Queue an interrupt to a CPU virtual interface. Return true on success,
  985. * or false if it wasn't possible to queue it.
  986. * sgi_source must be zero for any non-SGI interrupts.
  987. */
  988. bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
  989. {
  990. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  991. u64 elrsr = vgic_get_elrsr(vcpu);
  992. unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
  993. struct vgic_lr vlr;
  994. int lr;
  995. /* Sanitize the input... */
  996. BUG_ON(sgi_source_id & ~7);
  997. BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
  998. BUG_ON(irq >= dist->nr_irqs);
  999. kvm_debug("Queue IRQ%d\n", irq);
  1000. /* Do we have an active interrupt for the same CPUID? */
  1001. for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
  1002. vlr = vgic_get_lr(vcpu, lr);
  1003. if (vlr.irq == irq && vlr.source == sgi_source_id) {
  1004. kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
  1005. vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
  1006. return true;
  1007. }
  1008. }
  1009. /* Try to use another LR for this interrupt */
  1010. lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
  1011. if (lr >= vgic->nr_lr)
  1012. return false;
  1013. kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
  1014. vlr.irq = irq;
  1015. vlr.source = sgi_source_id;
  1016. vlr.state = 0;
  1017. vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
  1018. return true;
  1019. }
  1020. static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
  1021. {
  1022. if (!vgic_can_sample_irq(vcpu, irq))
  1023. return true; /* level interrupt, already queued */
  1024. if (vgic_queue_irq(vcpu, 0, irq)) {
  1025. if (vgic_irq_is_edge(vcpu, irq)) {
  1026. vgic_dist_irq_clear_pending(vcpu, irq);
  1027. vgic_cpu_irq_clear(vcpu, irq);
  1028. } else {
  1029. vgic_irq_set_queued(vcpu, irq);
  1030. }
  1031. return true;
  1032. }
  1033. return false;
  1034. }
  1035. /*
  1036. * Fill the list registers with pending interrupts before running the
  1037. * guest.
  1038. */
  1039. static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
  1040. {
  1041. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  1042. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  1043. unsigned long *pa_percpu, *pa_shared;
  1044. int i, vcpu_id;
  1045. int overflow = 0;
  1046. int nr_shared = vgic_nr_shared_irqs(dist);
  1047. vcpu_id = vcpu->vcpu_id;
  1048. pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
  1049. pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
  1050. bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
  1051. VGIC_NR_PRIVATE_IRQS);
  1052. bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
  1053. nr_shared);
  1054. /*
  1055. * We may not have any pending interrupt, or the interrupts
  1056. * may have been serviced from another vcpu. In all cases,
  1057. * move along.
  1058. */
  1059. if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu))
  1060. goto epilog;
  1061. /* SGIs */
  1062. for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
  1063. if (!queue_sgi(vcpu, i))
  1064. overflow = 1;
  1065. }
  1066. /* PPIs */
  1067. for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
  1068. if (!vgic_queue_hwirq(vcpu, i))
  1069. overflow = 1;
  1070. }
  1071. /* SPIs */
  1072. for_each_set_bit(i, pa_shared, nr_shared) {
  1073. if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
  1074. overflow = 1;
  1075. }
  1076. epilog:
  1077. if (overflow) {
  1078. vgic_enable_underflow(vcpu);
  1079. } else {
  1080. vgic_disable_underflow(vcpu);
  1081. /*
  1082. * We're about to run this VCPU, and we've consumed
  1083. * everything the distributor had in store for
  1084. * us. Claim we don't have anything pending. We'll
  1085. * adjust that if needed while exiting.
  1086. */
  1087. clear_bit(vcpu_id, dist->irq_pending_on_cpu);
  1088. }
  1089. }
  1090. static int process_queued_irq(struct kvm_vcpu *vcpu,
  1091. int lr, struct vgic_lr vlr)
  1092. {
  1093. int pending = 0;
  1094. /*
  1095. * If the IRQ was EOIed (called from vgic_process_maintenance) or it
  1096. * went from active to non-active (called from vgic_sync_hwirq) it was
  1097. * also ACKed and we we therefore assume we can clear the soft pending
  1098. * state (should it had been set) for this interrupt.
  1099. *
  1100. * Note: if the IRQ soft pending state was set after the IRQ was
  1101. * acked, it actually shouldn't be cleared, but we have no way of
  1102. * knowing that unless we start trapping ACKs when the soft-pending
  1103. * state is set.
  1104. */
  1105. vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
  1106. /*
  1107. * Tell the gic to start sampling this interrupt again.
  1108. */
  1109. vgic_irq_clear_queued(vcpu, vlr.irq);
  1110. /* Any additional pending interrupt? */
  1111. if (vgic_irq_is_edge(vcpu, vlr.irq)) {
  1112. BUG_ON(!(vlr.state & LR_HW));
  1113. pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
  1114. } else {
  1115. if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
  1116. vgic_cpu_irq_set(vcpu, vlr.irq);
  1117. pending = 1;
  1118. } else {
  1119. vgic_dist_irq_clear_pending(vcpu, vlr.irq);
  1120. vgic_cpu_irq_clear(vcpu, vlr.irq);
  1121. }
  1122. }
  1123. /*
  1124. * Despite being EOIed, the LR may not have
  1125. * been marked as empty.
  1126. */
  1127. vlr.state = 0;
  1128. vlr.hwirq = 0;
  1129. vgic_set_lr(vcpu, lr, vlr);
  1130. return pending;
  1131. }
  1132. static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
  1133. {
  1134. u32 status = vgic_get_interrupt_status(vcpu);
  1135. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  1136. struct kvm *kvm = vcpu->kvm;
  1137. int level_pending = 0;
  1138. kvm_debug("STATUS = %08x\n", status);
  1139. if (status & INT_STATUS_EOI) {
  1140. /*
  1141. * Some level interrupts have been EOIed. Clear their
  1142. * active bit.
  1143. */
  1144. u64 eisr = vgic_get_eisr(vcpu);
  1145. unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
  1146. int lr;
  1147. for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
  1148. struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
  1149. WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
  1150. WARN_ON(vlr.state & LR_STATE_MASK);
  1151. /*
  1152. * kvm_notify_acked_irq calls kvm_set_irq()
  1153. * to reset the IRQ level, which grabs the dist->lock
  1154. * so we call this before taking the dist->lock.
  1155. */
  1156. kvm_notify_acked_irq(kvm, 0,
  1157. vlr.irq - VGIC_NR_PRIVATE_IRQS);
  1158. spin_lock(&dist->lock);
  1159. level_pending |= process_queued_irq(vcpu, lr, vlr);
  1160. spin_unlock(&dist->lock);
  1161. }
  1162. }
  1163. if (status & INT_STATUS_UNDERFLOW)
  1164. vgic_disable_underflow(vcpu);
  1165. /*
  1166. * In the next iterations of the vcpu loop, if we sync the vgic state
  1167. * after flushing it, but before entering the guest (this happens for
  1168. * pending signals and vmid rollovers), then make sure we don't pick
  1169. * up any old maintenance interrupts here.
  1170. */
  1171. vgic_clear_eisr(vcpu);
  1172. return level_pending;
  1173. }
  1174. /*
  1175. * Save the physical active state, and reset it to inactive.
  1176. *
  1177. * Return true if there's a pending forwarded interrupt to queue.
  1178. */
  1179. static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
  1180. {
  1181. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  1182. bool level_pending;
  1183. if (!(vlr.state & LR_HW))
  1184. return false;
  1185. if (vlr.state & LR_STATE_ACTIVE)
  1186. return false;
  1187. spin_lock(&dist->lock);
  1188. level_pending = process_queued_irq(vcpu, lr, vlr);
  1189. spin_unlock(&dist->lock);
  1190. return level_pending;
  1191. }
  1192. /* Sync back the VGIC state after a guest run */
  1193. static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
  1194. {
  1195. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  1196. u64 elrsr;
  1197. unsigned long *elrsr_ptr;
  1198. int lr, pending;
  1199. bool level_pending;
  1200. level_pending = vgic_process_maintenance(vcpu);
  1201. /* Deal with HW interrupts, and clear mappings for empty LRs */
  1202. for (lr = 0; lr < vgic->nr_lr; lr++) {
  1203. struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
  1204. level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
  1205. BUG_ON(vlr.irq >= dist->nr_irqs);
  1206. }
  1207. /* Check if we still have something up our sleeve... */
  1208. elrsr = vgic_get_elrsr(vcpu);
  1209. elrsr_ptr = u64_to_bitmask(&elrsr);
  1210. pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
  1211. if (level_pending || pending < vgic->nr_lr)
  1212. set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
  1213. }
  1214. void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
  1215. {
  1216. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  1217. if (!irqchip_in_kernel(vcpu->kvm))
  1218. return;
  1219. spin_lock(&dist->lock);
  1220. __kvm_vgic_flush_hwstate(vcpu);
  1221. spin_unlock(&dist->lock);
  1222. }
  1223. void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
  1224. {
  1225. if (!irqchip_in_kernel(vcpu->kvm))
  1226. return;
  1227. __kvm_vgic_sync_hwstate(vcpu);
  1228. }
  1229. int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
  1230. {
  1231. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  1232. if (!irqchip_in_kernel(vcpu->kvm))
  1233. return 0;
  1234. return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
  1235. }
  1236. void vgic_kick_vcpus(struct kvm *kvm)
  1237. {
  1238. struct kvm_vcpu *vcpu;
  1239. int c;
  1240. /*
  1241. * We've injected an interrupt, time to find out who deserves
  1242. * a good kick...
  1243. */
  1244. kvm_for_each_vcpu(c, vcpu, kvm) {
  1245. if (kvm_vgic_vcpu_pending_irq(vcpu))
  1246. kvm_vcpu_kick(vcpu);
  1247. }
  1248. }
  1249. static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
  1250. {
  1251. int edge_triggered = vgic_irq_is_edge(vcpu, irq);
  1252. /*
  1253. * Only inject an interrupt if:
  1254. * - edge triggered and we have a rising edge
  1255. * - level triggered and we change level
  1256. */
  1257. if (edge_triggered) {
  1258. int state = vgic_dist_irq_is_pending(vcpu, irq);
  1259. return level > state;
  1260. } else {
  1261. int state = vgic_dist_irq_get_level(vcpu, irq);
  1262. return level != state;
  1263. }
  1264. }
  1265. static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
  1266. struct irq_phys_map *map,
  1267. unsigned int irq_num, bool level)
  1268. {
  1269. struct vgic_dist *dist = &kvm->arch.vgic;
  1270. struct kvm_vcpu *vcpu;
  1271. int edge_triggered, level_triggered;
  1272. int enabled;
  1273. bool ret = true, can_inject = true;
  1274. trace_vgic_update_irq_pending(cpuid, irq_num, level);
  1275. if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
  1276. return -EINVAL;
  1277. spin_lock(&dist->lock);
  1278. vcpu = kvm_get_vcpu(kvm, cpuid);
  1279. edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
  1280. level_triggered = !edge_triggered;
  1281. if (!vgic_validate_injection(vcpu, irq_num, level)) {
  1282. ret = false;
  1283. goto out;
  1284. }
  1285. if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
  1286. cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
  1287. if (cpuid == VCPU_NOT_ALLOCATED) {
  1288. /* Pretend we use CPU0, and prevent injection */
  1289. cpuid = 0;
  1290. can_inject = false;
  1291. }
  1292. vcpu = kvm_get_vcpu(kvm, cpuid);
  1293. }
  1294. kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
  1295. if (level) {
  1296. if (level_triggered)
  1297. vgic_dist_irq_set_level(vcpu, irq_num);
  1298. vgic_dist_irq_set_pending(vcpu, irq_num);
  1299. } else {
  1300. if (level_triggered) {
  1301. vgic_dist_irq_clear_level(vcpu, irq_num);
  1302. if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
  1303. vgic_dist_irq_clear_pending(vcpu, irq_num);
  1304. vgic_cpu_irq_clear(vcpu, irq_num);
  1305. if (!compute_pending_for_cpu(vcpu))
  1306. clear_bit(cpuid, dist->irq_pending_on_cpu);
  1307. }
  1308. }
  1309. ret = false;
  1310. goto out;
  1311. }
  1312. enabled = vgic_irq_is_enabled(vcpu, irq_num);
  1313. if (!enabled || !can_inject) {
  1314. ret = false;
  1315. goto out;
  1316. }
  1317. if (!vgic_can_sample_irq(vcpu, irq_num)) {
  1318. /*
  1319. * Level interrupt in progress, will be picked up
  1320. * when EOId.
  1321. */
  1322. ret = false;
  1323. goto out;
  1324. }
  1325. if (level) {
  1326. vgic_cpu_irq_set(vcpu, irq_num);
  1327. set_bit(cpuid, dist->irq_pending_on_cpu);
  1328. }
  1329. out:
  1330. spin_unlock(&dist->lock);
  1331. if (ret) {
  1332. /* kick the specified vcpu */
  1333. kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
  1334. }
  1335. return 0;
  1336. }
  1337. static int vgic_lazy_init(struct kvm *kvm)
  1338. {
  1339. int ret = 0;
  1340. if (unlikely(!vgic_initialized(kvm))) {
  1341. /*
  1342. * We only provide the automatic initialization of the VGIC
  1343. * for the legacy case of a GICv2. Any other type must
  1344. * be explicitly initialized once setup with the respective
  1345. * KVM device call.
  1346. */
  1347. if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
  1348. return -EBUSY;
  1349. mutex_lock(&kvm->lock);
  1350. ret = vgic_init(kvm);
  1351. mutex_unlock(&kvm->lock);
  1352. }
  1353. return ret;
  1354. }
  1355. /**
  1356. * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
  1357. * @kvm: The VM structure pointer
  1358. * @cpuid: The CPU for PPIs
  1359. * @irq_num: The IRQ number that is assigned to the device. This IRQ
  1360. * must not be mapped to a HW interrupt.
  1361. * @level: Edge-triggered: true: to trigger the interrupt
  1362. * false: to ignore the call
  1363. * Level-sensitive true: raise the input signal
  1364. * false: lower the input signal
  1365. *
  1366. * The GIC is not concerned with devices being active-LOW or active-HIGH for
  1367. * level-sensitive interrupts. You can think of the level parameter as 1
  1368. * being HIGH and 0 being LOW and all devices being active-HIGH.
  1369. */
  1370. int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
  1371. bool level)
  1372. {
  1373. struct irq_phys_map *map;
  1374. int ret;
  1375. ret = vgic_lazy_init(kvm);
  1376. if (ret)
  1377. return ret;
  1378. map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
  1379. if (map)
  1380. return -EINVAL;
  1381. return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
  1382. }
  1383. /**
  1384. * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
  1385. * @kvm: The VM structure pointer
  1386. * @cpuid: The CPU for PPIs
  1387. * @map: Pointer to a irq_phys_map structure describing the mapping
  1388. * @level: Edge-triggered: true: to trigger the interrupt
  1389. * false: to ignore the call
  1390. * Level-sensitive true: raise the input signal
  1391. * false: lower the input signal
  1392. *
  1393. * The GIC is not concerned with devices being active-LOW or active-HIGH for
  1394. * level-sensitive interrupts. You can think of the level parameter as 1
  1395. * being HIGH and 0 being LOW and all devices being active-HIGH.
  1396. */
  1397. int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
  1398. struct irq_phys_map *map, bool level)
  1399. {
  1400. int ret;
  1401. ret = vgic_lazy_init(kvm);
  1402. if (ret)
  1403. return ret;
  1404. return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
  1405. }
  1406. static irqreturn_t vgic_maintenance_handler(int irq, void *data)
  1407. {
  1408. /*
  1409. * We cannot rely on the vgic maintenance interrupt to be
  1410. * delivered synchronously. This means we can only use it to
  1411. * exit the VM, and we perform the handling of EOIed
  1412. * interrupts on the exit path (see vgic_process_maintenance).
  1413. */
  1414. return IRQ_HANDLED;
  1415. }
  1416. static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
  1417. int virt_irq)
  1418. {
  1419. if (virt_irq < VGIC_NR_PRIVATE_IRQS)
  1420. return &vcpu->arch.vgic_cpu.irq_phys_map_list;
  1421. else
  1422. return &vcpu->kvm->arch.vgic.irq_phys_map_list;
  1423. }
  1424. /**
  1425. * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
  1426. * @vcpu: The VCPU pointer
  1427. * @virt_irq: The virtual irq number
  1428. * @irq: The Linux IRQ number
  1429. *
  1430. * Establish a mapping between a guest visible irq (@virt_irq) and a
  1431. * Linux irq (@irq). On injection, @virt_irq will be associated with
  1432. * the physical interrupt represented by @irq. This mapping can be
  1433. * established multiple times as long as the parameters are the same.
  1434. *
  1435. * Returns a valid pointer on success, and an error pointer otherwise
  1436. */
  1437. struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
  1438. int virt_irq, int irq)
  1439. {
  1440. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  1441. struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
  1442. struct irq_phys_map *map;
  1443. struct irq_phys_map_entry *entry;
  1444. struct irq_desc *desc;
  1445. struct irq_data *data;
  1446. int phys_irq;
  1447. desc = irq_to_desc(irq);
  1448. if (!desc) {
  1449. kvm_err("%s: no interrupt descriptor\n", __func__);
  1450. return ERR_PTR(-EINVAL);
  1451. }
  1452. data = irq_desc_get_irq_data(desc);
  1453. while (data->parent_data)
  1454. data = data->parent_data;
  1455. phys_irq = data->hwirq;
  1456. /* Create a new mapping */
  1457. entry = kzalloc(sizeof(*entry), GFP_KERNEL);
  1458. if (!entry)
  1459. return ERR_PTR(-ENOMEM);
  1460. spin_lock(&dist->irq_phys_map_lock);
  1461. /* Try to match an existing mapping */
  1462. map = vgic_irq_map_search(vcpu, virt_irq);
  1463. if (map) {
  1464. /* Make sure this mapping matches */
  1465. if (map->phys_irq != phys_irq ||
  1466. map->irq != irq)
  1467. map = ERR_PTR(-EINVAL);
  1468. /* Found an existing, valid mapping */
  1469. goto out;
  1470. }
  1471. map = &entry->map;
  1472. map->virt_irq = virt_irq;
  1473. map->phys_irq = phys_irq;
  1474. map->irq = irq;
  1475. list_add_tail_rcu(&entry->entry, root);
  1476. out:
  1477. spin_unlock(&dist->irq_phys_map_lock);
  1478. /* If we've found a hit in the existing list, free the useless
  1479. * entry */
  1480. if (IS_ERR(map) || map != &entry->map)
  1481. kfree(entry);
  1482. return map;
  1483. }
  1484. static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
  1485. int virt_irq)
  1486. {
  1487. struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
  1488. struct irq_phys_map_entry *entry;
  1489. struct irq_phys_map *map;
  1490. rcu_read_lock();
  1491. list_for_each_entry_rcu(entry, root, entry) {
  1492. map = &entry->map;
  1493. if (map->virt_irq == virt_irq) {
  1494. rcu_read_unlock();
  1495. return map;
  1496. }
  1497. }
  1498. rcu_read_unlock();
  1499. return NULL;
  1500. }
  1501. static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
  1502. {
  1503. struct irq_phys_map_entry *entry;
  1504. entry = container_of(rcu, struct irq_phys_map_entry, rcu);
  1505. kfree(entry);
  1506. }
  1507. /**
  1508. * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
  1509. * @vcpu: The VCPU pointer
  1510. * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
  1511. *
  1512. * Remove an existing mapping between virtual and physical interrupts.
  1513. */
  1514. int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
  1515. {
  1516. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  1517. struct irq_phys_map_entry *entry;
  1518. struct list_head *root;
  1519. if (!map)
  1520. return -EINVAL;
  1521. root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
  1522. spin_lock(&dist->irq_phys_map_lock);
  1523. list_for_each_entry(entry, root, entry) {
  1524. if (&entry->map == map) {
  1525. list_del_rcu(&entry->entry);
  1526. call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
  1527. break;
  1528. }
  1529. }
  1530. spin_unlock(&dist->irq_phys_map_lock);
  1531. return 0;
  1532. }
  1533. static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
  1534. {
  1535. struct vgic_dist *dist = &kvm->arch.vgic;
  1536. struct irq_phys_map_entry *entry;
  1537. spin_lock(&dist->irq_phys_map_lock);
  1538. list_for_each_entry(entry, root, entry) {
  1539. list_del_rcu(&entry->entry);
  1540. call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
  1541. }
  1542. spin_unlock(&dist->irq_phys_map_lock);
  1543. }
  1544. void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
  1545. {
  1546. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  1547. kfree(vgic_cpu->pending_shared);
  1548. kfree(vgic_cpu->active_shared);
  1549. kfree(vgic_cpu->pend_act_shared);
  1550. vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
  1551. vgic_cpu->pending_shared = NULL;
  1552. vgic_cpu->active_shared = NULL;
  1553. vgic_cpu->pend_act_shared = NULL;
  1554. }
  1555. static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
  1556. {
  1557. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  1558. int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
  1559. vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
  1560. vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
  1561. vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
  1562. if (!vgic_cpu->pending_shared
  1563. || !vgic_cpu->active_shared
  1564. || !vgic_cpu->pend_act_shared) {
  1565. kvm_vgic_vcpu_destroy(vcpu);
  1566. return -ENOMEM;
  1567. }
  1568. /*
  1569. * Store the number of LRs per vcpu, so we don't have to go
  1570. * all the way to the distributor structure to find out. Only
  1571. * assembly code should use this one.
  1572. */
  1573. vgic_cpu->nr_lr = vgic->nr_lr;
  1574. return 0;
  1575. }
  1576. /**
  1577. * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
  1578. *
  1579. * No memory allocation should be performed here, only static init.
  1580. */
  1581. void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
  1582. {
  1583. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  1584. INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
  1585. }
  1586. /**
  1587. * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
  1588. *
  1589. * The host's GIC naturally limits the maximum amount of VCPUs a guest
  1590. * can use.
  1591. */
  1592. int kvm_vgic_get_max_vcpus(void)
  1593. {
  1594. return vgic->max_gic_vcpus;
  1595. }
  1596. void kvm_vgic_destroy(struct kvm *kvm)
  1597. {
  1598. struct vgic_dist *dist = &kvm->arch.vgic;
  1599. struct kvm_vcpu *vcpu;
  1600. int i;
  1601. kvm_for_each_vcpu(i, vcpu, kvm)
  1602. kvm_vgic_vcpu_destroy(vcpu);
  1603. vgic_free_bitmap(&dist->irq_enabled);
  1604. vgic_free_bitmap(&dist->irq_level);
  1605. vgic_free_bitmap(&dist->irq_pending);
  1606. vgic_free_bitmap(&dist->irq_soft_pend);
  1607. vgic_free_bitmap(&dist->irq_queued);
  1608. vgic_free_bitmap(&dist->irq_cfg);
  1609. vgic_free_bytemap(&dist->irq_priority);
  1610. if (dist->irq_spi_target) {
  1611. for (i = 0; i < dist->nr_cpus; i++)
  1612. vgic_free_bitmap(&dist->irq_spi_target[i]);
  1613. }
  1614. kfree(dist->irq_sgi_sources);
  1615. kfree(dist->irq_spi_cpu);
  1616. kfree(dist->irq_spi_mpidr);
  1617. kfree(dist->irq_spi_target);
  1618. kfree(dist->irq_pending_on_cpu);
  1619. kfree(dist->irq_active_on_cpu);
  1620. vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
  1621. dist->irq_sgi_sources = NULL;
  1622. dist->irq_spi_cpu = NULL;
  1623. dist->irq_spi_target = NULL;
  1624. dist->irq_pending_on_cpu = NULL;
  1625. dist->irq_active_on_cpu = NULL;
  1626. dist->nr_cpus = 0;
  1627. }
  1628. /*
  1629. * Allocate and initialize the various data structures. Must be called
  1630. * with kvm->lock held!
  1631. */
  1632. int vgic_init(struct kvm *kvm)
  1633. {
  1634. struct vgic_dist *dist = &kvm->arch.vgic;
  1635. struct kvm_vcpu *vcpu;
  1636. int nr_cpus, nr_irqs;
  1637. int ret, i, vcpu_id;
  1638. if (vgic_initialized(kvm))
  1639. return 0;
  1640. nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
  1641. if (!nr_cpus) /* No vcpus? Can't be good... */
  1642. return -ENODEV;
  1643. /*
  1644. * If nobody configured the number of interrupts, use the
  1645. * legacy one.
  1646. */
  1647. if (!dist->nr_irqs)
  1648. dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
  1649. nr_irqs = dist->nr_irqs;
  1650. ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
  1651. ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
  1652. ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
  1653. ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
  1654. ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
  1655. ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
  1656. ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
  1657. ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
  1658. if (ret)
  1659. goto out;
  1660. dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
  1661. dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
  1662. dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
  1663. GFP_KERNEL);
  1664. dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
  1665. GFP_KERNEL);
  1666. dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
  1667. GFP_KERNEL);
  1668. if (!dist->irq_sgi_sources ||
  1669. !dist->irq_spi_cpu ||
  1670. !dist->irq_spi_target ||
  1671. !dist->irq_pending_on_cpu ||
  1672. !dist->irq_active_on_cpu) {
  1673. ret = -ENOMEM;
  1674. goto out;
  1675. }
  1676. for (i = 0; i < nr_cpus; i++)
  1677. ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
  1678. nr_cpus, nr_irqs);
  1679. if (ret)
  1680. goto out;
  1681. ret = kvm->arch.vgic.vm_ops.init_model(kvm);
  1682. if (ret)
  1683. goto out;
  1684. kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
  1685. ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
  1686. if (ret) {
  1687. kvm_err("VGIC: Failed to allocate vcpu memory\n");
  1688. break;
  1689. }
  1690. /*
  1691. * Enable and configure all SGIs to be edge-triggere and
  1692. * configure all PPIs as level-triggered.
  1693. */
  1694. for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
  1695. if (i < VGIC_NR_SGIS) {
  1696. /* SGIs */
  1697. vgic_bitmap_set_irq_val(&dist->irq_enabled,
  1698. vcpu->vcpu_id, i, 1);
  1699. vgic_bitmap_set_irq_val(&dist->irq_cfg,
  1700. vcpu->vcpu_id, i,
  1701. VGIC_CFG_EDGE);
  1702. } else if (i < VGIC_NR_PRIVATE_IRQS) {
  1703. /* PPIs */
  1704. vgic_bitmap_set_irq_val(&dist->irq_cfg,
  1705. vcpu->vcpu_id, i,
  1706. VGIC_CFG_LEVEL);
  1707. }
  1708. }
  1709. vgic_enable(vcpu);
  1710. }
  1711. out:
  1712. if (ret)
  1713. kvm_vgic_destroy(kvm);
  1714. return ret;
  1715. }
  1716. static int init_vgic_model(struct kvm *kvm, int type)
  1717. {
  1718. switch (type) {
  1719. case KVM_DEV_TYPE_ARM_VGIC_V2:
  1720. vgic_v2_init_emulation(kvm);
  1721. break;
  1722. #ifdef CONFIG_KVM_ARM_VGIC_V3
  1723. case KVM_DEV_TYPE_ARM_VGIC_V3:
  1724. vgic_v3_init_emulation(kvm);
  1725. break;
  1726. #endif
  1727. default:
  1728. return -ENODEV;
  1729. }
  1730. if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
  1731. return -E2BIG;
  1732. return 0;
  1733. }
  1734. /**
  1735. * kvm_vgic_early_init - Earliest possible vgic initialization stage
  1736. *
  1737. * No memory allocation should be performed here, only static init.
  1738. */
  1739. void kvm_vgic_early_init(struct kvm *kvm)
  1740. {
  1741. spin_lock_init(&kvm->arch.vgic.lock);
  1742. spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
  1743. INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
  1744. }
  1745. int kvm_vgic_create(struct kvm *kvm, u32 type)
  1746. {
  1747. int i, vcpu_lock_idx = -1, ret;
  1748. struct kvm_vcpu *vcpu;
  1749. mutex_lock(&kvm->lock);
  1750. if (irqchip_in_kernel(kvm)) {
  1751. ret = -EEXIST;
  1752. goto out;
  1753. }
  1754. /*
  1755. * This function is also called by the KVM_CREATE_IRQCHIP handler,
  1756. * which had no chance yet to check the availability of the GICv2
  1757. * emulation. So check this here again. KVM_CREATE_DEVICE does
  1758. * the proper checks already.
  1759. */
  1760. if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
  1761. ret = -ENODEV;
  1762. goto out;
  1763. }
  1764. /*
  1765. * Any time a vcpu is run, vcpu_load is called which tries to grab the
  1766. * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
  1767. * that no other VCPUs are run while we create the vgic.
  1768. */
  1769. ret = -EBUSY;
  1770. kvm_for_each_vcpu(i, vcpu, kvm) {
  1771. if (!mutex_trylock(&vcpu->mutex))
  1772. goto out_unlock;
  1773. vcpu_lock_idx = i;
  1774. }
  1775. kvm_for_each_vcpu(i, vcpu, kvm) {
  1776. if (vcpu->arch.has_run_once)
  1777. goto out_unlock;
  1778. }
  1779. ret = 0;
  1780. ret = init_vgic_model(kvm, type);
  1781. if (ret)
  1782. goto out_unlock;
  1783. kvm->arch.vgic.in_kernel = true;
  1784. kvm->arch.vgic.vgic_model = type;
  1785. kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
  1786. kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
  1787. kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
  1788. kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
  1789. out_unlock:
  1790. for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
  1791. vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
  1792. mutex_unlock(&vcpu->mutex);
  1793. }
  1794. out:
  1795. mutex_unlock(&kvm->lock);
  1796. return ret;
  1797. }
  1798. static int vgic_ioaddr_overlap(struct kvm *kvm)
  1799. {
  1800. phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
  1801. phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
  1802. if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
  1803. return 0;
  1804. if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
  1805. (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
  1806. return -EBUSY;
  1807. return 0;
  1808. }
  1809. static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
  1810. phys_addr_t addr, phys_addr_t size)
  1811. {
  1812. int ret;
  1813. if (addr & ~KVM_PHYS_MASK)
  1814. return -E2BIG;
  1815. if (addr & (SZ_4K - 1))
  1816. return -EINVAL;
  1817. if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
  1818. return -EEXIST;
  1819. if (addr + size < addr)
  1820. return -EINVAL;
  1821. *ioaddr = addr;
  1822. ret = vgic_ioaddr_overlap(kvm);
  1823. if (ret)
  1824. *ioaddr = VGIC_ADDR_UNDEF;
  1825. return ret;
  1826. }
  1827. /**
  1828. * kvm_vgic_addr - set or get vgic VM base addresses
  1829. * @kvm: pointer to the vm struct
  1830. * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
  1831. * @addr: pointer to address value
  1832. * @write: if true set the address in the VM address space, if false read the
  1833. * address
  1834. *
  1835. * Set or get the vgic base addresses for the distributor and the virtual CPU
  1836. * interface in the VM physical address space. These addresses are properties
  1837. * of the emulated core/SoC and therefore user space initially knows this
  1838. * information.
  1839. */
  1840. int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
  1841. {
  1842. int r = 0;
  1843. struct vgic_dist *vgic = &kvm->arch.vgic;
  1844. int type_needed;
  1845. phys_addr_t *addr_ptr, block_size;
  1846. phys_addr_t alignment;
  1847. mutex_lock(&kvm->lock);
  1848. switch (type) {
  1849. case KVM_VGIC_V2_ADDR_TYPE_DIST:
  1850. type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
  1851. addr_ptr = &vgic->vgic_dist_base;
  1852. block_size = KVM_VGIC_V2_DIST_SIZE;
  1853. alignment = SZ_4K;
  1854. break;
  1855. case KVM_VGIC_V2_ADDR_TYPE_CPU:
  1856. type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
  1857. addr_ptr = &vgic->vgic_cpu_base;
  1858. block_size = KVM_VGIC_V2_CPU_SIZE;
  1859. alignment = SZ_4K;
  1860. break;
  1861. #ifdef CONFIG_KVM_ARM_VGIC_V3
  1862. case KVM_VGIC_V3_ADDR_TYPE_DIST:
  1863. type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
  1864. addr_ptr = &vgic->vgic_dist_base;
  1865. block_size = KVM_VGIC_V3_DIST_SIZE;
  1866. alignment = SZ_64K;
  1867. break;
  1868. case KVM_VGIC_V3_ADDR_TYPE_REDIST:
  1869. type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
  1870. addr_ptr = &vgic->vgic_redist_base;
  1871. block_size = KVM_VGIC_V3_REDIST_SIZE;
  1872. alignment = SZ_64K;
  1873. break;
  1874. #endif
  1875. default:
  1876. r = -ENODEV;
  1877. goto out;
  1878. }
  1879. if (vgic->vgic_model != type_needed) {
  1880. r = -ENODEV;
  1881. goto out;
  1882. }
  1883. if (write) {
  1884. if (!IS_ALIGNED(*addr, alignment))
  1885. r = -EINVAL;
  1886. else
  1887. r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
  1888. block_size);
  1889. } else {
  1890. *addr = *addr_ptr;
  1891. }
  1892. out:
  1893. mutex_unlock(&kvm->lock);
  1894. return r;
  1895. }
  1896. int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1897. {
  1898. int r;
  1899. switch (attr->group) {
  1900. case KVM_DEV_ARM_VGIC_GRP_ADDR: {
  1901. u64 __user *uaddr = (u64 __user *)(long)attr->addr;
  1902. u64 addr;
  1903. unsigned long type = (unsigned long)attr->attr;
  1904. if (copy_from_user(&addr, uaddr, sizeof(addr)))
  1905. return -EFAULT;
  1906. r = kvm_vgic_addr(dev->kvm, type, &addr, true);
  1907. return (r == -ENODEV) ? -ENXIO : r;
  1908. }
  1909. case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
  1910. u32 __user *uaddr = (u32 __user *)(long)attr->addr;
  1911. u32 val;
  1912. int ret = 0;
  1913. if (get_user(val, uaddr))
  1914. return -EFAULT;
  1915. /*
  1916. * We require:
  1917. * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
  1918. * - at most 1024 interrupts
  1919. * - a multiple of 32 interrupts
  1920. */
  1921. if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
  1922. val > VGIC_MAX_IRQS ||
  1923. (val & 31))
  1924. return -EINVAL;
  1925. mutex_lock(&dev->kvm->lock);
  1926. if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
  1927. ret = -EBUSY;
  1928. else
  1929. dev->kvm->arch.vgic.nr_irqs = val;
  1930. mutex_unlock(&dev->kvm->lock);
  1931. return ret;
  1932. }
  1933. case KVM_DEV_ARM_VGIC_GRP_CTRL: {
  1934. switch (attr->attr) {
  1935. case KVM_DEV_ARM_VGIC_CTRL_INIT:
  1936. r = vgic_init(dev->kvm);
  1937. return r;
  1938. }
  1939. break;
  1940. }
  1941. }
  1942. return -ENXIO;
  1943. }
  1944. int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1945. {
  1946. int r = -ENXIO;
  1947. switch (attr->group) {
  1948. case KVM_DEV_ARM_VGIC_GRP_ADDR: {
  1949. u64 __user *uaddr = (u64 __user *)(long)attr->addr;
  1950. u64 addr;
  1951. unsigned long type = (unsigned long)attr->attr;
  1952. r = kvm_vgic_addr(dev->kvm, type, &addr, false);
  1953. if (r)
  1954. return (r == -ENODEV) ? -ENXIO : r;
  1955. if (copy_to_user(uaddr, &addr, sizeof(addr)))
  1956. return -EFAULT;
  1957. break;
  1958. }
  1959. case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
  1960. u32 __user *uaddr = (u32 __user *)(long)attr->addr;
  1961. r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
  1962. break;
  1963. }
  1964. }
  1965. return r;
  1966. }
  1967. int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
  1968. {
  1969. if (vgic_find_range(ranges, 4, offset))
  1970. return 0;
  1971. else
  1972. return -ENXIO;
  1973. }
  1974. static void vgic_init_maintenance_interrupt(void *info)
  1975. {
  1976. enable_percpu_irq(vgic->maint_irq, 0);
  1977. }
  1978. static int vgic_cpu_notify(struct notifier_block *self,
  1979. unsigned long action, void *cpu)
  1980. {
  1981. switch (action) {
  1982. case CPU_STARTING:
  1983. case CPU_STARTING_FROZEN:
  1984. vgic_init_maintenance_interrupt(NULL);
  1985. break;
  1986. case CPU_DYING:
  1987. case CPU_DYING_FROZEN:
  1988. disable_percpu_irq(vgic->maint_irq);
  1989. break;
  1990. }
  1991. return NOTIFY_OK;
  1992. }
  1993. static struct notifier_block vgic_cpu_nb = {
  1994. .notifier_call = vgic_cpu_notify,
  1995. };
  1996. static const struct of_device_id vgic_ids[] = {
  1997. { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
  1998. { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
  1999. { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
  2000. { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
  2001. {},
  2002. };
  2003. int kvm_vgic_hyp_init(void)
  2004. {
  2005. const struct of_device_id *matched_id;
  2006. const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
  2007. const struct vgic_params **);
  2008. struct device_node *vgic_node;
  2009. int ret;
  2010. vgic_node = of_find_matching_node_and_match(NULL,
  2011. vgic_ids, &matched_id);
  2012. if (!vgic_node) {
  2013. kvm_err("error: no compatible GIC node found\n");
  2014. return -ENODEV;
  2015. }
  2016. vgic_probe = matched_id->data;
  2017. ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
  2018. if (ret)
  2019. return ret;
  2020. ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
  2021. "vgic", kvm_get_running_vcpus());
  2022. if (ret) {
  2023. kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
  2024. return ret;
  2025. }
  2026. ret = __register_cpu_notifier(&vgic_cpu_nb);
  2027. if (ret) {
  2028. kvm_err("Cannot register vgic CPU notifier\n");
  2029. goto out_free_irq;
  2030. }
  2031. on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
  2032. return 0;
  2033. out_free_irq:
  2034. free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
  2035. return ret;
  2036. }
  2037. int kvm_irq_map_gsi(struct kvm *kvm,
  2038. struct kvm_kernel_irq_routing_entry *entries,
  2039. int gsi)
  2040. {
  2041. return 0;
  2042. }
  2043. int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
  2044. {
  2045. return pin;
  2046. }
  2047. int kvm_set_irq(struct kvm *kvm, int irq_source_id,
  2048. u32 irq, int level, bool line_status)
  2049. {
  2050. unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
  2051. trace_kvm_set_irq(irq, level, irq_source_id);
  2052. BUG_ON(!vgic_initialized(kvm));
  2053. return kvm_vgic_inject_irq(kvm, 0, spi, level);
  2054. }
  2055. /* MSI not implemented yet */
  2056. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
  2057. struct kvm *kvm, int irq_source_id,
  2058. int level, bool line_status)
  2059. {
  2060. return 0;
  2061. }