af_iucv.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.2"
  29. static char iucv_userid[80];
  30. static const struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static struct iucv_interface *pr_iucv;
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  42. do { \
  43. DEFINE_WAIT(__wait); \
  44. long __timeo = timeo; \
  45. ret = 0; \
  46. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  47. while (!(condition)) { \
  48. if (!__timeo) { \
  49. ret = -EAGAIN; \
  50. break; \
  51. } \
  52. if (signal_pending(current)) { \
  53. ret = sock_intr_errno(__timeo); \
  54. break; \
  55. } \
  56. release_sock(sk); \
  57. __timeo = schedule_timeout(__timeo); \
  58. lock_sock(sk); \
  59. ret = sock_error(sk); \
  60. if (ret) \
  61. break; \
  62. } \
  63. finish_wait(sk_sleep(sk), &__wait); \
  64. } while (0)
  65. #define iucv_sock_wait(sk, condition, timeo) \
  66. ({ \
  67. int __ret = 0; \
  68. if (!(condition)) \
  69. __iucv_sock_wait(sk, condition, timeo, __ret); \
  70. __ret; \
  71. })
  72. static void iucv_sock_kill(struct sock *sk);
  73. static void iucv_sock_close(struct sock *sk);
  74. static void iucv_sever_path(struct sock *, int);
  75. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  76. struct packet_type *pt, struct net_device *orig_dev);
  77. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  78. struct sk_buff *skb, u8 flags);
  79. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  80. /* Call Back functions */
  81. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  82. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  83. static void iucv_callback_connack(struct iucv_path *, u8 *);
  84. static int iucv_callback_connreq(struct iucv_path *, u8 *, u8 *);
  85. static void iucv_callback_connrej(struct iucv_path *, u8 *);
  86. static void iucv_callback_shutdown(struct iucv_path *, u8 *);
  87. static struct iucv_sock_list iucv_sk_list = {
  88. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  89. .autobind_name = ATOMIC_INIT(0)
  90. };
  91. static struct iucv_handler af_iucv_handler = {
  92. .path_pending = iucv_callback_connreq,
  93. .path_complete = iucv_callback_connack,
  94. .path_severed = iucv_callback_connrej,
  95. .message_pending = iucv_callback_rx,
  96. .message_complete = iucv_callback_txdone,
  97. .path_quiesced = iucv_callback_shutdown,
  98. };
  99. static inline void high_nmcpy(unsigned char *dst, char *src)
  100. {
  101. memcpy(dst, src, 8);
  102. }
  103. static inline void low_nmcpy(unsigned char *dst, char *src)
  104. {
  105. memcpy(&dst[8], src, 8);
  106. }
  107. static int afiucv_pm_prepare(struct device *dev)
  108. {
  109. #ifdef CONFIG_PM_DEBUG
  110. printk(KERN_WARNING "afiucv_pm_prepare\n");
  111. #endif
  112. return 0;
  113. }
  114. static void afiucv_pm_complete(struct device *dev)
  115. {
  116. #ifdef CONFIG_PM_DEBUG
  117. printk(KERN_WARNING "afiucv_pm_complete\n");
  118. #endif
  119. }
  120. /**
  121. * afiucv_pm_freeze() - Freeze PM callback
  122. * @dev: AFIUCV dummy device
  123. *
  124. * Sever all established IUCV communication pathes
  125. */
  126. static int afiucv_pm_freeze(struct device *dev)
  127. {
  128. struct iucv_sock *iucv;
  129. struct sock *sk;
  130. int err = 0;
  131. #ifdef CONFIG_PM_DEBUG
  132. printk(KERN_WARNING "afiucv_pm_freeze\n");
  133. #endif
  134. read_lock(&iucv_sk_list.lock);
  135. sk_for_each(sk, &iucv_sk_list.head) {
  136. iucv = iucv_sk(sk);
  137. switch (sk->sk_state) {
  138. case IUCV_DISCONN:
  139. case IUCV_CLOSING:
  140. case IUCV_CONNECTED:
  141. iucv_sever_path(sk, 0);
  142. break;
  143. case IUCV_OPEN:
  144. case IUCV_BOUND:
  145. case IUCV_LISTEN:
  146. case IUCV_CLOSED:
  147. default:
  148. break;
  149. }
  150. skb_queue_purge(&iucv->send_skb_q);
  151. skb_queue_purge(&iucv->backlog_skb_q);
  152. }
  153. read_unlock(&iucv_sk_list.lock);
  154. return err;
  155. }
  156. /**
  157. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  158. * @dev: AFIUCV dummy device
  159. *
  160. * socket clean up after freeze
  161. */
  162. static int afiucv_pm_restore_thaw(struct device *dev)
  163. {
  164. struct sock *sk;
  165. #ifdef CONFIG_PM_DEBUG
  166. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  167. #endif
  168. read_lock(&iucv_sk_list.lock);
  169. sk_for_each(sk, &iucv_sk_list.head) {
  170. switch (sk->sk_state) {
  171. case IUCV_CONNECTED:
  172. sk->sk_err = EPIPE;
  173. sk->sk_state = IUCV_DISCONN;
  174. sk->sk_state_change(sk);
  175. break;
  176. case IUCV_DISCONN:
  177. case IUCV_CLOSING:
  178. case IUCV_LISTEN:
  179. case IUCV_BOUND:
  180. case IUCV_OPEN:
  181. default:
  182. break;
  183. }
  184. }
  185. read_unlock(&iucv_sk_list.lock);
  186. return 0;
  187. }
  188. static const struct dev_pm_ops afiucv_pm_ops = {
  189. .prepare = afiucv_pm_prepare,
  190. .complete = afiucv_pm_complete,
  191. .freeze = afiucv_pm_freeze,
  192. .thaw = afiucv_pm_restore_thaw,
  193. .restore = afiucv_pm_restore_thaw,
  194. };
  195. static struct device_driver af_iucv_driver = {
  196. .owner = THIS_MODULE,
  197. .name = "afiucv",
  198. .bus = NULL,
  199. .pm = &afiucv_pm_ops,
  200. };
  201. /* dummy device used as trigger for PM functions */
  202. static struct device *af_iucv_dev;
  203. /**
  204. * iucv_msg_length() - Returns the length of an iucv message.
  205. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  206. *
  207. * The function returns the length of the specified iucv message @msg of data
  208. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  209. *
  210. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  211. * data:
  212. * PRMDATA[0..6] socket data (max 7 bytes);
  213. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  214. *
  215. * The socket data length is computed by subtracting the socket data length
  216. * value from 0xFF.
  217. * If the socket data len is greater 7, then PRMDATA can be used for special
  218. * notifications (see iucv_sock_shutdown); and further,
  219. * if the socket data len is > 7, the function returns 8.
  220. *
  221. * Use this function to allocate socket buffers to store iucv message data.
  222. */
  223. static inline size_t iucv_msg_length(struct iucv_message *msg)
  224. {
  225. size_t datalen;
  226. if (msg->flags & IUCV_IPRMDATA) {
  227. datalen = 0xff - msg->rmmsg[7];
  228. return (datalen < 8) ? datalen : 8;
  229. }
  230. return msg->length;
  231. }
  232. /**
  233. * iucv_sock_in_state() - check for specific states
  234. * @sk: sock structure
  235. * @state: first iucv sk state
  236. * @state: second iucv sk state
  237. *
  238. * Returns true if the socket in either in the first or second state.
  239. */
  240. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  241. {
  242. return (sk->sk_state == state || sk->sk_state == state2);
  243. }
  244. /**
  245. * iucv_below_msglim() - function to check if messages can be sent
  246. * @sk: sock structure
  247. *
  248. * Returns true if the send queue length is lower than the message limit.
  249. * Always returns true if the socket is not connected (no iucv path for
  250. * checking the message limit).
  251. */
  252. static inline int iucv_below_msglim(struct sock *sk)
  253. {
  254. struct iucv_sock *iucv = iucv_sk(sk);
  255. if (sk->sk_state != IUCV_CONNECTED)
  256. return 1;
  257. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  258. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  259. else
  260. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  261. (atomic_read(&iucv->pendings) <= 0));
  262. }
  263. /**
  264. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  265. */
  266. static void iucv_sock_wake_msglim(struct sock *sk)
  267. {
  268. struct socket_wq *wq;
  269. rcu_read_lock();
  270. wq = rcu_dereference(sk->sk_wq);
  271. if (skwq_has_sleeper(wq))
  272. wake_up_interruptible_all(&wq->wait);
  273. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  274. rcu_read_unlock();
  275. }
  276. /**
  277. * afiucv_hs_send() - send a message through HiperSockets transport
  278. */
  279. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  280. struct sk_buff *skb, u8 flags)
  281. {
  282. struct iucv_sock *iucv = iucv_sk(sock);
  283. struct af_iucv_trans_hdr *phs_hdr;
  284. struct sk_buff *nskb;
  285. int err, confirm_recv = 0;
  286. memset(skb->head, 0, ETH_HLEN);
  287. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  288. sizeof(struct af_iucv_trans_hdr));
  289. skb_reset_mac_header(skb);
  290. skb_reset_network_header(skb);
  291. skb_push(skb, ETH_HLEN);
  292. skb_reset_mac_header(skb);
  293. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  294. phs_hdr->magic = ETH_P_AF_IUCV;
  295. phs_hdr->version = 1;
  296. phs_hdr->flags = flags;
  297. if (flags == AF_IUCV_FLAG_SYN)
  298. phs_hdr->window = iucv->msglimit;
  299. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  300. confirm_recv = atomic_read(&iucv->msg_recv);
  301. phs_hdr->window = confirm_recv;
  302. if (confirm_recv)
  303. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  304. }
  305. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  306. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  307. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  308. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  309. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  310. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  311. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  312. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  313. if (imsg)
  314. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  315. skb->dev = iucv->hs_dev;
  316. if (!skb->dev)
  317. return -ENODEV;
  318. if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev))
  319. return -ENETDOWN;
  320. if (skb->len > skb->dev->mtu) {
  321. if (sock->sk_type == SOCK_SEQPACKET)
  322. return -EMSGSIZE;
  323. else
  324. skb_trim(skb, skb->dev->mtu);
  325. }
  326. skb->protocol = ETH_P_AF_IUCV;
  327. nskb = skb_clone(skb, GFP_ATOMIC);
  328. if (!nskb)
  329. return -ENOMEM;
  330. skb_queue_tail(&iucv->send_skb_q, nskb);
  331. err = dev_queue_xmit(skb);
  332. if (net_xmit_eval(err)) {
  333. skb_unlink(nskb, &iucv->send_skb_q);
  334. kfree_skb(nskb);
  335. } else {
  336. atomic_sub(confirm_recv, &iucv->msg_recv);
  337. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  338. }
  339. return net_xmit_eval(err);
  340. }
  341. static struct sock *__iucv_get_sock_by_name(char *nm)
  342. {
  343. struct sock *sk;
  344. sk_for_each(sk, &iucv_sk_list.head)
  345. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  346. return sk;
  347. return NULL;
  348. }
  349. static void iucv_sock_destruct(struct sock *sk)
  350. {
  351. skb_queue_purge(&sk->sk_receive_queue);
  352. skb_queue_purge(&sk->sk_error_queue);
  353. sk_mem_reclaim(sk);
  354. if (!sock_flag(sk, SOCK_DEAD)) {
  355. pr_err("Attempt to release alive iucv socket %p\n", sk);
  356. return;
  357. }
  358. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  359. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  360. WARN_ON(sk->sk_wmem_queued);
  361. WARN_ON(sk->sk_forward_alloc);
  362. }
  363. /* Cleanup Listen */
  364. static void iucv_sock_cleanup_listen(struct sock *parent)
  365. {
  366. struct sock *sk;
  367. /* Close non-accepted connections */
  368. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  369. iucv_sock_close(sk);
  370. iucv_sock_kill(sk);
  371. }
  372. parent->sk_state = IUCV_CLOSED;
  373. }
  374. /* Kill socket (only if zapped and orphaned) */
  375. static void iucv_sock_kill(struct sock *sk)
  376. {
  377. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  378. return;
  379. iucv_sock_unlink(&iucv_sk_list, sk);
  380. sock_set_flag(sk, SOCK_DEAD);
  381. sock_put(sk);
  382. }
  383. /* Terminate an IUCV path */
  384. static void iucv_sever_path(struct sock *sk, int with_user_data)
  385. {
  386. unsigned char user_data[16];
  387. struct iucv_sock *iucv = iucv_sk(sk);
  388. struct iucv_path *path = iucv->path;
  389. if (iucv->path) {
  390. iucv->path = NULL;
  391. if (with_user_data) {
  392. low_nmcpy(user_data, iucv->src_name);
  393. high_nmcpy(user_data, iucv->dst_name);
  394. ASCEBC(user_data, sizeof(user_data));
  395. pr_iucv->path_sever(path, user_data);
  396. } else
  397. pr_iucv->path_sever(path, NULL);
  398. iucv_path_free(path);
  399. }
  400. }
  401. /* Send FIN through an IUCV socket for HIPER transport */
  402. static int iucv_send_ctrl(struct sock *sk, u8 flags)
  403. {
  404. int err = 0;
  405. int blen;
  406. struct sk_buff *skb;
  407. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  408. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  409. if (skb) {
  410. skb_reserve(skb, blen);
  411. err = afiucv_hs_send(NULL, sk, skb, flags);
  412. }
  413. return err;
  414. }
  415. /* Close an IUCV socket */
  416. static void iucv_sock_close(struct sock *sk)
  417. {
  418. struct iucv_sock *iucv = iucv_sk(sk);
  419. unsigned long timeo;
  420. int err = 0;
  421. lock_sock(sk);
  422. switch (sk->sk_state) {
  423. case IUCV_LISTEN:
  424. iucv_sock_cleanup_listen(sk);
  425. break;
  426. case IUCV_CONNECTED:
  427. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  428. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  429. sk->sk_state = IUCV_DISCONN;
  430. sk->sk_state_change(sk);
  431. }
  432. case IUCV_DISCONN: /* fall through */
  433. sk->sk_state = IUCV_CLOSING;
  434. sk->sk_state_change(sk);
  435. if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
  436. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  437. timeo = sk->sk_lingertime;
  438. else
  439. timeo = IUCV_DISCONN_TIMEOUT;
  440. iucv_sock_wait(sk,
  441. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  442. timeo);
  443. }
  444. case IUCV_CLOSING: /* fall through */
  445. sk->sk_state = IUCV_CLOSED;
  446. sk->sk_state_change(sk);
  447. sk->sk_err = ECONNRESET;
  448. sk->sk_state_change(sk);
  449. skb_queue_purge(&iucv->send_skb_q);
  450. skb_queue_purge(&iucv->backlog_skb_q);
  451. default: /* fall through */
  452. iucv_sever_path(sk, 1);
  453. }
  454. if (iucv->hs_dev) {
  455. dev_put(iucv->hs_dev);
  456. iucv->hs_dev = NULL;
  457. sk->sk_bound_dev_if = 0;
  458. }
  459. /* mark socket for deletion by iucv_sock_kill() */
  460. sock_set_flag(sk, SOCK_ZAPPED);
  461. release_sock(sk);
  462. }
  463. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  464. {
  465. if (parent)
  466. sk->sk_type = parent->sk_type;
  467. }
  468. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern)
  469. {
  470. struct sock *sk;
  471. struct iucv_sock *iucv;
  472. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern);
  473. if (!sk)
  474. return NULL;
  475. iucv = iucv_sk(sk);
  476. sock_init_data(sock, sk);
  477. INIT_LIST_HEAD(&iucv->accept_q);
  478. spin_lock_init(&iucv->accept_q_lock);
  479. skb_queue_head_init(&iucv->send_skb_q);
  480. INIT_LIST_HEAD(&iucv->message_q.list);
  481. spin_lock_init(&iucv->message_q.lock);
  482. skb_queue_head_init(&iucv->backlog_skb_q);
  483. iucv->send_tag = 0;
  484. atomic_set(&iucv->pendings, 0);
  485. iucv->flags = 0;
  486. iucv->msglimit = 0;
  487. atomic_set(&iucv->msg_sent, 0);
  488. atomic_set(&iucv->msg_recv, 0);
  489. iucv->path = NULL;
  490. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  491. memset(&iucv->src_user_id , 0, 32);
  492. if (pr_iucv)
  493. iucv->transport = AF_IUCV_TRANS_IUCV;
  494. else
  495. iucv->transport = AF_IUCV_TRANS_HIPER;
  496. sk->sk_destruct = iucv_sock_destruct;
  497. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  498. sk->sk_allocation = GFP_DMA;
  499. sock_reset_flag(sk, SOCK_ZAPPED);
  500. sk->sk_protocol = proto;
  501. sk->sk_state = IUCV_OPEN;
  502. iucv_sock_link(&iucv_sk_list, sk);
  503. return sk;
  504. }
  505. /* Create an IUCV socket */
  506. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  507. int kern)
  508. {
  509. struct sock *sk;
  510. if (protocol && protocol != PF_IUCV)
  511. return -EPROTONOSUPPORT;
  512. sock->state = SS_UNCONNECTED;
  513. switch (sock->type) {
  514. case SOCK_STREAM:
  515. sock->ops = &iucv_sock_ops;
  516. break;
  517. case SOCK_SEQPACKET:
  518. /* currently, proto ops can handle both sk types */
  519. sock->ops = &iucv_sock_ops;
  520. break;
  521. default:
  522. return -ESOCKTNOSUPPORT;
  523. }
  524. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern);
  525. if (!sk)
  526. return -ENOMEM;
  527. iucv_sock_init(sk, NULL);
  528. return 0;
  529. }
  530. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  531. {
  532. write_lock_bh(&l->lock);
  533. sk_add_node(sk, &l->head);
  534. write_unlock_bh(&l->lock);
  535. }
  536. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  537. {
  538. write_lock_bh(&l->lock);
  539. sk_del_node_init(sk);
  540. write_unlock_bh(&l->lock);
  541. }
  542. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  543. {
  544. unsigned long flags;
  545. struct iucv_sock *par = iucv_sk(parent);
  546. sock_hold(sk);
  547. spin_lock_irqsave(&par->accept_q_lock, flags);
  548. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  549. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  550. iucv_sk(sk)->parent = parent;
  551. sk_acceptq_added(parent);
  552. }
  553. void iucv_accept_unlink(struct sock *sk)
  554. {
  555. unsigned long flags;
  556. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  557. spin_lock_irqsave(&par->accept_q_lock, flags);
  558. list_del_init(&iucv_sk(sk)->accept_q);
  559. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  560. sk_acceptq_removed(iucv_sk(sk)->parent);
  561. iucv_sk(sk)->parent = NULL;
  562. sock_put(sk);
  563. }
  564. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  565. {
  566. struct iucv_sock *isk, *n;
  567. struct sock *sk;
  568. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  569. sk = (struct sock *) isk;
  570. lock_sock(sk);
  571. if (sk->sk_state == IUCV_CLOSED) {
  572. iucv_accept_unlink(sk);
  573. release_sock(sk);
  574. continue;
  575. }
  576. if (sk->sk_state == IUCV_CONNECTED ||
  577. sk->sk_state == IUCV_DISCONN ||
  578. !newsock) {
  579. iucv_accept_unlink(sk);
  580. if (newsock)
  581. sock_graft(sk, newsock);
  582. release_sock(sk);
  583. return sk;
  584. }
  585. release_sock(sk);
  586. }
  587. return NULL;
  588. }
  589. static void __iucv_auto_name(struct iucv_sock *iucv)
  590. {
  591. char name[12];
  592. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  593. while (__iucv_get_sock_by_name(name)) {
  594. sprintf(name, "%08x",
  595. atomic_inc_return(&iucv_sk_list.autobind_name));
  596. }
  597. memcpy(iucv->src_name, name, 8);
  598. }
  599. /* Bind an unbound socket */
  600. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  601. int addr_len)
  602. {
  603. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  604. struct sock *sk = sock->sk;
  605. struct iucv_sock *iucv;
  606. int err = 0;
  607. struct net_device *dev;
  608. char uid[9];
  609. /* Verify the input sockaddr */
  610. if (!addr || addr->sa_family != AF_IUCV)
  611. return -EINVAL;
  612. lock_sock(sk);
  613. if (sk->sk_state != IUCV_OPEN) {
  614. err = -EBADFD;
  615. goto done;
  616. }
  617. write_lock_bh(&iucv_sk_list.lock);
  618. iucv = iucv_sk(sk);
  619. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  620. err = -EADDRINUSE;
  621. goto done_unlock;
  622. }
  623. if (iucv->path)
  624. goto done_unlock;
  625. /* Bind the socket */
  626. if (pr_iucv)
  627. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  628. goto vm_bind; /* VM IUCV transport */
  629. /* try hiper transport */
  630. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  631. ASCEBC(uid, 8);
  632. rcu_read_lock();
  633. for_each_netdev_rcu(&init_net, dev) {
  634. if (!memcmp(dev->perm_addr, uid, 8)) {
  635. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  636. /* Check for unitialized siucv_name */
  637. if (strncmp(sa->siucv_name, " ", 8) == 0)
  638. __iucv_auto_name(iucv);
  639. else
  640. memcpy(iucv->src_name, sa->siucv_name, 8);
  641. sk->sk_bound_dev_if = dev->ifindex;
  642. iucv->hs_dev = dev;
  643. dev_hold(dev);
  644. sk->sk_state = IUCV_BOUND;
  645. iucv->transport = AF_IUCV_TRANS_HIPER;
  646. if (!iucv->msglimit)
  647. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  648. rcu_read_unlock();
  649. goto done_unlock;
  650. }
  651. }
  652. rcu_read_unlock();
  653. vm_bind:
  654. if (pr_iucv) {
  655. /* use local userid for backward compat */
  656. memcpy(iucv->src_name, sa->siucv_name, 8);
  657. memcpy(iucv->src_user_id, iucv_userid, 8);
  658. sk->sk_state = IUCV_BOUND;
  659. iucv->transport = AF_IUCV_TRANS_IUCV;
  660. if (!iucv->msglimit)
  661. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  662. goto done_unlock;
  663. }
  664. /* found no dev to bind */
  665. err = -ENODEV;
  666. done_unlock:
  667. /* Release the socket list lock */
  668. write_unlock_bh(&iucv_sk_list.lock);
  669. done:
  670. release_sock(sk);
  671. return err;
  672. }
  673. /* Automatically bind an unbound socket */
  674. static int iucv_sock_autobind(struct sock *sk)
  675. {
  676. struct iucv_sock *iucv = iucv_sk(sk);
  677. int err = 0;
  678. if (unlikely(!pr_iucv))
  679. return -EPROTO;
  680. memcpy(iucv->src_user_id, iucv_userid, 8);
  681. write_lock_bh(&iucv_sk_list.lock);
  682. __iucv_auto_name(iucv);
  683. write_unlock_bh(&iucv_sk_list.lock);
  684. if (!iucv->msglimit)
  685. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  686. return err;
  687. }
  688. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  689. {
  690. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  691. struct sock *sk = sock->sk;
  692. struct iucv_sock *iucv = iucv_sk(sk);
  693. unsigned char user_data[16];
  694. int err;
  695. high_nmcpy(user_data, sa->siucv_name);
  696. low_nmcpy(user_data, iucv->src_name);
  697. ASCEBC(user_data, sizeof(user_data));
  698. /* Create path. */
  699. iucv->path = iucv_path_alloc(iucv->msglimit,
  700. IUCV_IPRMDATA, GFP_KERNEL);
  701. if (!iucv->path) {
  702. err = -ENOMEM;
  703. goto done;
  704. }
  705. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  706. sa->siucv_user_id, NULL, user_data,
  707. sk);
  708. if (err) {
  709. iucv_path_free(iucv->path);
  710. iucv->path = NULL;
  711. switch (err) {
  712. case 0x0b: /* Target communicator is not logged on */
  713. err = -ENETUNREACH;
  714. break;
  715. case 0x0d: /* Max connections for this guest exceeded */
  716. case 0x0e: /* Max connections for target guest exceeded */
  717. err = -EAGAIN;
  718. break;
  719. case 0x0f: /* Missing IUCV authorization */
  720. err = -EACCES;
  721. break;
  722. default:
  723. err = -ECONNREFUSED;
  724. break;
  725. }
  726. }
  727. done:
  728. return err;
  729. }
  730. /* Connect an unconnected socket */
  731. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  732. int alen, int flags)
  733. {
  734. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  735. struct sock *sk = sock->sk;
  736. struct iucv_sock *iucv = iucv_sk(sk);
  737. int err;
  738. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  739. return -EINVAL;
  740. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  741. return -EBADFD;
  742. if (sk->sk_state == IUCV_OPEN &&
  743. iucv->transport == AF_IUCV_TRANS_HIPER)
  744. return -EBADFD; /* explicit bind required */
  745. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  746. return -EINVAL;
  747. if (sk->sk_state == IUCV_OPEN) {
  748. err = iucv_sock_autobind(sk);
  749. if (unlikely(err))
  750. return err;
  751. }
  752. lock_sock(sk);
  753. /* Set the destination information */
  754. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  755. memcpy(iucv->dst_name, sa->siucv_name, 8);
  756. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  757. err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
  758. else
  759. err = afiucv_path_connect(sock, addr);
  760. if (err)
  761. goto done;
  762. if (sk->sk_state != IUCV_CONNECTED)
  763. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  764. IUCV_DISCONN),
  765. sock_sndtimeo(sk, flags & O_NONBLOCK));
  766. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  767. err = -ECONNREFUSED;
  768. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  769. iucv_sever_path(sk, 0);
  770. done:
  771. release_sock(sk);
  772. return err;
  773. }
  774. /* Move a socket into listening state. */
  775. static int iucv_sock_listen(struct socket *sock, int backlog)
  776. {
  777. struct sock *sk = sock->sk;
  778. int err;
  779. lock_sock(sk);
  780. err = -EINVAL;
  781. if (sk->sk_state != IUCV_BOUND)
  782. goto done;
  783. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  784. goto done;
  785. sk->sk_max_ack_backlog = backlog;
  786. sk->sk_ack_backlog = 0;
  787. sk->sk_state = IUCV_LISTEN;
  788. err = 0;
  789. done:
  790. release_sock(sk);
  791. return err;
  792. }
  793. /* Accept a pending connection */
  794. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  795. int flags)
  796. {
  797. DECLARE_WAITQUEUE(wait, current);
  798. struct sock *sk = sock->sk, *nsk;
  799. long timeo;
  800. int err = 0;
  801. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  802. if (sk->sk_state != IUCV_LISTEN) {
  803. err = -EBADFD;
  804. goto done;
  805. }
  806. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  807. /* Wait for an incoming connection */
  808. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  809. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  810. set_current_state(TASK_INTERRUPTIBLE);
  811. if (!timeo) {
  812. err = -EAGAIN;
  813. break;
  814. }
  815. release_sock(sk);
  816. timeo = schedule_timeout(timeo);
  817. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  818. if (sk->sk_state != IUCV_LISTEN) {
  819. err = -EBADFD;
  820. break;
  821. }
  822. if (signal_pending(current)) {
  823. err = sock_intr_errno(timeo);
  824. break;
  825. }
  826. }
  827. set_current_state(TASK_RUNNING);
  828. remove_wait_queue(sk_sleep(sk), &wait);
  829. if (err)
  830. goto done;
  831. newsock->state = SS_CONNECTED;
  832. done:
  833. release_sock(sk);
  834. return err;
  835. }
  836. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  837. int *len, int peer)
  838. {
  839. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  840. struct sock *sk = sock->sk;
  841. struct iucv_sock *iucv = iucv_sk(sk);
  842. addr->sa_family = AF_IUCV;
  843. *len = sizeof(struct sockaddr_iucv);
  844. if (peer) {
  845. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  846. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  847. } else {
  848. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  849. memcpy(siucv->siucv_name, iucv->src_name, 8);
  850. }
  851. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  852. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  853. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  854. return 0;
  855. }
  856. /**
  857. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  858. * @path: IUCV path
  859. * @msg: Pointer to a struct iucv_message
  860. * @skb: The socket data to send, skb->len MUST BE <= 7
  861. *
  862. * Send the socket data in the parameter list in the iucv message
  863. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  864. * list and the socket data len at index 7 (last byte).
  865. * See also iucv_msg_length().
  866. *
  867. * Returns the error code from the iucv_message_send() call.
  868. */
  869. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  870. struct sk_buff *skb)
  871. {
  872. u8 prmdata[8];
  873. memcpy(prmdata, (void *) skb->data, skb->len);
  874. prmdata[7] = 0xff - (u8) skb->len;
  875. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  876. (void *) prmdata, 8);
  877. }
  878. static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg,
  879. size_t len)
  880. {
  881. struct sock *sk = sock->sk;
  882. struct iucv_sock *iucv = iucv_sk(sk);
  883. struct sk_buff *skb;
  884. struct iucv_message txmsg = {0};
  885. struct cmsghdr *cmsg;
  886. int cmsg_done;
  887. long timeo;
  888. char user_id[9];
  889. char appl_id[9];
  890. int err;
  891. int noblock = msg->msg_flags & MSG_DONTWAIT;
  892. err = sock_error(sk);
  893. if (err)
  894. return err;
  895. if (msg->msg_flags & MSG_OOB)
  896. return -EOPNOTSUPP;
  897. /* SOCK_SEQPACKET: we do not support segmented records */
  898. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  899. return -EOPNOTSUPP;
  900. lock_sock(sk);
  901. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  902. err = -EPIPE;
  903. goto out;
  904. }
  905. /* Return if the socket is not in connected state */
  906. if (sk->sk_state != IUCV_CONNECTED) {
  907. err = -ENOTCONN;
  908. goto out;
  909. }
  910. /* initialize defaults */
  911. cmsg_done = 0; /* check for duplicate headers */
  912. txmsg.class = 0;
  913. /* iterate over control messages */
  914. for_each_cmsghdr(cmsg, msg) {
  915. if (!CMSG_OK(msg, cmsg)) {
  916. err = -EINVAL;
  917. goto out;
  918. }
  919. if (cmsg->cmsg_level != SOL_IUCV)
  920. continue;
  921. if (cmsg->cmsg_type & cmsg_done) {
  922. err = -EINVAL;
  923. goto out;
  924. }
  925. cmsg_done |= cmsg->cmsg_type;
  926. switch (cmsg->cmsg_type) {
  927. case SCM_IUCV_TRGCLS:
  928. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  929. err = -EINVAL;
  930. goto out;
  931. }
  932. /* set iucv message target class */
  933. memcpy(&txmsg.class,
  934. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  935. break;
  936. default:
  937. err = -EINVAL;
  938. goto out;
  939. }
  940. }
  941. /* allocate one skb for each iucv message:
  942. * this is fine for SOCK_SEQPACKET (unless we want to support
  943. * segmented records using the MSG_EOR flag), but
  944. * for SOCK_STREAM we might want to improve it in future */
  945. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  946. skb = sock_alloc_send_skb(sk,
  947. len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
  948. noblock, &err);
  949. else
  950. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  951. if (!skb)
  952. goto out;
  953. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  954. skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
  955. if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
  956. err = -EFAULT;
  957. goto fail;
  958. }
  959. /* wait if outstanding messages for iucv path has reached */
  960. timeo = sock_sndtimeo(sk, noblock);
  961. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  962. if (err)
  963. goto fail;
  964. /* return -ECONNRESET if the socket is no longer connected */
  965. if (sk->sk_state != IUCV_CONNECTED) {
  966. err = -ECONNRESET;
  967. goto fail;
  968. }
  969. /* increment and save iucv message tag for msg_completion cbk */
  970. txmsg.tag = iucv->send_tag++;
  971. IUCV_SKB_CB(skb)->tag = txmsg.tag;
  972. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  973. atomic_inc(&iucv->msg_sent);
  974. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  975. if (err) {
  976. atomic_dec(&iucv->msg_sent);
  977. goto fail;
  978. }
  979. goto release;
  980. }
  981. skb_queue_tail(&iucv->send_skb_q, skb);
  982. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  983. && skb->len <= 7) {
  984. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  985. /* on success: there is no message_complete callback
  986. * for an IPRMDATA msg; remove skb from send queue */
  987. if (err == 0) {
  988. skb_unlink(skb, &iucv->send_skb_q);
  989. kfree_skb(skb);
  990. }
  991. /* this error should never happen since the
  992. * IUCV_IPRMDATA path flag is set... sever path */
  993. if (err == 0x15) {
  994. pr_iucv->path_sever(iucv->path, NULL);
  995. skb_unlink(skb, &iucv->send_skb_q);
  996. err = -EPIPE;
  997. goto fail;
  998. }
  999. } else
  1000. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  1001. (void *) skb->data, skb->len);
  1002. if (err) {
  1003. if (err == 3) {
  1004. user_id[8] = 0;
  1005. memcpy(user_id, iucv->dst_user_id, 8);
  1006. appl_id[8] = 0;
  1007. memcpy(appl_id, iucv->dst_name, 8);
  1008. pr_err("Application %s on z/VM guest %s"
  1009. " exceeds message limit\n",
  1010. appl_id, user_id);
  1011. err = -EAGAIN;
  1012. } else
  1013. err = -EPIPE;
  1014. skb_unlink(skb, &iucv->send_skb_q);
  1015. goto fail;
  1016. }
  1017. release:
  1018. release_sock(sk);
  1019. return len;
  1020. fail:
  1021. kfree_skb(skb);
  1022. out:
  1023. release_sock(sk);
  1024. return err;
  1025. }
  1026. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  1027. *
  1028. * Locking: must be called with message_q.lock held
  1029. */
  1030. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  1031. {
  1032. int dataleft, size, copied = 0;
  1033. struct sk_buff *nskb;
  1034. dataleft = len;
  1035. while (dataleft) {
  1036. if (dataleft >= sk->sk_rcvbuf / 4)
  1037. size = sk->sk_rcvbuf / 4;
  1038. else
  1039. size = dataleft;
  1040. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  1041. if (!nskb)
  1042. return -ENOMEM;
  1043. /* copy target class to control buffer of new skb */
  1044. IUCV_SKB_CB(nskb)->class = IUCV_SKB_CB(skb)->class;
  1045. /* copy data fragment */
  1046. memcpy(nskb->data, skb->data + copied, size);
  1047. copied += size;
  1048. dataleft -= size;
  1049. skb_reset_transport_header(nskb);
  1050. skb_reset_network_header(nskb);
  1051. nskb->len = size;
  1052. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  1053. }
  1054. return 0;
  1055. }
  1056. /* iucv_process_message() - Receive a single outstanding IUCV message
  1057. *
  1058. * Locking: must be called with message_q.lock held
  1059. */
  1060. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1061. struct iucv_path *path,
  1062. struct iucv_message *msg)
  1063. {
  1064. int rc;
  1065. unsigned int len;
  1066. len = iucv_msg_length(msg);
  1067. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1068. /* Note: the first 4 bytes are reserved for msg tag */
  1069. IUCV_SKB_CB(skb)->class = msg->class;
  1070. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1071. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1072. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1073. skb->data = NULL;
  1074. skb->len = 0;
  1075. }
  1076. } else {
  1077. rc = pr_iucv->message_receive(path, msg,
  1078. msg->flags & IUCV_IPRMDATA,
  1079. skb->data, len, NULL);
  1080. if (rc) {
  1081. kfree_skb(skb);
  1082. return;
  1083. }
  1084. /* we need to fragment iucv messages for SOCK_STREAM only;
  1085. * for SOCK_SEQPACKET, it is only relevant if we support
  1086. * record segmentation using MSG_EOR (see also recvmsg()) */
  1087. if (sk->sk_type == SOCK_STREAM &&
  1088. skb->truesize >= sk->sk_rcvbuf / 4) {
  1089. rc = iucv_fragment_skb(sk, skb, len);
  1090. kfree_skb(skb);
  1091. skb = NULL;
  1092. if (rc) {
  1093. pr_iucv->path_sever(path, NULL);
  1094. return;
  1095. }
  1096. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  1097. } else {
  1098. skb_reset_transport_header(skb);
  1099. skb_reset_network_header(skb);
  1100. skb->len = len;
  1101. }
  1102. }
  1103. IUCV_SKB_CB(skb)->offset = 0;
  1104. if (sock_queue_rcv_skb(sk, skb))
  1105. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  1106. }
  1107. /* iucv_process_message_q() - Process outstanding IUCV messages
  1108. *
  1109. * Locking: must be called with message_q.lock held
  1110. */
  1111. static void iucv_process_message_q(struct sock *sk)
  1112. {
  1113. struct iucv_sock *iucv = iucv_sk(sk);
  1114. struct sk_buff *skb;
  1115. struct sock_msg_q *p, *n;
  1116. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1117. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  1118. if (!skb)
  1119. break;
  1120. iucv_process_message(sk, skb, p->path, &p->msg);
  1121. list_del(&p->list);
  1122. kfree(p);
  1123. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1124. break;
  1125. }
  1126. }
  1127. static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg,
  1128. size_t len, int flags)
  1129. {
  1130. int noblock = flags & MSG_DONTWAIT;
  1131. struct sock *sk = sock->sk;
  1132. struct iucv_sock *iucv = iucv_sk(sk);
  1133. unsigned int copied, rlen;
  1134. struct sk_buff *skb, *rskb, *cskb;
  1135. int err = 0;
  1136. u32 offset;
  1137. if ((sk->sk_state == IUCV_DISCONN) &&
  1138. skb_queue_empty(&iucv->backlog_skb_q) &&
  1139. skb_queue_empty(&sk->sk_receive_queue) &&
  1140. list_empty(&iucv->message_q.list))
  1141. return 0;
  1142. if (flags & (MSG_OOB))
  1143. return -EOPNOTSUPP;
  1144. /* receive/dequeue next skb:
  1145. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1146. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1147. if (!skb) {
  1148. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1149. return 0;
  1150. return err;
  1151. }
  1152. offset = IUCV_SKB_CB(skb)->offset;
  1153. rlen = skb->len - offset; /* real length of skb */
  1154. copied = min_t(unsigned int, rlen, len);
  1155. if (!rlen)
  1156. sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
  1157. cskb = skb;
  1158. if (skb_copy_datagram_msg(cskb, offset, msg, copied)) {
  1159. if (!(flags & MSG_PEEK))
  1160. skb_queue_head(&sk->sk_receive_queue, skb);
  1161. return -EFAULT;
  1162. }
  1163. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1164. if (sk->sk_type == SOCK_SEQPACKET) {
  1165. if (copied < rlen)
  1166. msg->msg_flags |= MSG_TRUNC;
  1167. /* each iucv message contains a complete record */
  1168. msg->msg_flags |= MSG_EOR;
  1169. }
  1170. /* create control message to store iucv msg target class:
  1171. * get the trgcls from the control buffer of the skb due to
  1172. * fragmentation of original iucv message. */
  1173. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1174. sizeof(IUCV_SKB_CB(skb)->class),
  1175. (void *)&IUCV_SKB_CB(skb)->class);
  1176. if (err) {
  1177. if (!(flags & MSG_PEEK))
  1178. skb_queue_head(&sk->sk_receive_queue, skb);
  1179. return err;
  1180. }
  1181. /* Mark read part of skb as used */
  1182. if (!(flags & MSG_PEEK)) {
  1183. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1184. if (sk->sk_type == SOCK_STREAM) {
  1185. if (copied < rlen) {
  1186. IUCV_SKB_CB(skb)->offset = offset + copied;
  1187. skb_queue_head(&sk->sk_receive_queue, skb);
  1188. goto done;
  1189. }
  1190. }
  1191. kfree_skb(skb);
  1192. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1193. atomic_inc(&iucv->msg_recv);
  1194. if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
  1195. WARN_ON(1);
  1196. iucv_sock_close(sk);
  1197. return -EFAULT;
  1198. }
  1199. }
  1200. /* Queue backlog skbs */
  1201. spin_lock_bh(&iucv->message_q.lock);
  1202. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1203. while (rskb) {
  1204. IUCV_SKB_CB(rskb)->offset = 0;
  1205. if (sock_queue_rcv_skb(sk, rskb)) {
  1206. skb_queue_head(&iucv->backlog_skb_q,
  1207. rskb);
  1208. break;
  1209. } else {
  1210. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1211. }
  1212. }
  1213. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1214. if (!list_empty(&iucv->message_q.list))
  1215. iucv_process_message_q(sk);
  1216. if (atomic_read(&iucv->msg_recv) >=
  1217. iucv->msglimit / 2) {
  1218. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
  1219. if (err) {
  1220. sk->sk_state = IUCV_DISCONN;
  1221. sk->sk_state_change(sk);
  1222. }
  1223. }
  1224. }
  1225. spin_unlock_bh(&iucv->message_q.lock);
  1226. }
  1227. done:
  1228. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1229. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1230. copied = rlen;
  1231. return copied;
  1232. }
  1233. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1234. {
  1235. struct iucv_sock *isk, *n;
  1236. struct sock *sk;
  1237. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1238. sk = (struct sock *) isk;
  1239. if (sk->sk_state == IUCV_CONNECTED)
  1240. return POLLIN | POLLRDNORM;
  1241. }
  1242. return 0;
  1243. }
  1244. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1245. poll_table *wait)
  1246. {
  1247. struct sock *sk = sock->sk;
  1248. unsigned int mask = 0;
  1249. sock_poll_wait(file, sk_sleep(sk), wait);
  1250. if (sk->sk_state == IUCV_LISTEN)
  1251. return iucv_accept_poll(sk);
  1252. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1253. mask |= POLLERR |
  1254. (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
  1255. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1256. mask |= POLLRDHUP;
  1257. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1258. mask |= POLLHUP;
  1259. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1260. (sk->sk_shutdown & RCV_SHUTDOWN))
  1261. mask |= POLLIN | POLLRDNORM;
  1262. if (sk->sk_state == IUCV_CLOSED)
  1263. mask |= POLLHUP;
  1264. if (sk->sk_state == IUCV_DISCONN)
  1265. mask |= POLLIN;
  1266. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1267. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1268. else
  1269. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1270. return mask;
  1271. }
  1272. static int iucv_sock_shutdown(struct socket *sock, int how)
  1273. {
  1274. struct sock *sk = sock->sk;
  1275. struct iucv_sock *iucv = iucv_sk(sk);
  1276. struct iucv_message txmsg;
  1277. int err = 0;
  1278. how++;
  1279. if ((how & ~SHUTDOWN_MASK) || !how)
  1280. return -EINVAL;
  1281. lock_sock(sk);
  1282. switch (sk->sk_state) {
  1283. case IUCV_LISTEN:
  1284. case IUCV_DISCONN:
  1285. case IUCV_CLOSING:
  1286. case IUCV_CLOSED:
  1287. err = -ENOTCONN;
  1288. goto fail;
  1289. default:
  1290. break;
  1291. }
  1292. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1293. if (iucv->transport == AF_IUCV_TRANS_IUCV) {
  1294. txmsg.class = 0;
  1295. txmsg.tag = 0;
  1296. err = pr_iucv->message_send(iucv->path, &txmsg,
  1297. IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
  1298. if (err) {
  1299. switch (err) {
  1300. case 1:
  1301. err = -ENOTCONN;
  1302. break;
  1303. case 2:
  1304. err = -ECONNRESET;
  1305. break;
  1306. default:
  1307. err = -ENOTCONN;
  1308. break;
  1309. }
  1310. }
  1311. } else
  1312. iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
  1313. }
  1314. sk->sk_shutdown |= how;
  1315. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1316. if ((iucv->transport == AF_IUCV_TRANS_IUCV) &&
  1317. iucv->path) {
  1318. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1319. if (err)
  1320. err = -ENOTCONN;
  1321. /* skb_queue_purge(&sk->sk_receive_queue); */
  1322. }
  1323. skb_queue_purge(&sk->sk_receive_queue);
  1324. }
  1325. /* Wake up anyone sleeping in poll */
  1326. sk->sk_state_change(sk);
  1327. fail:
  1328. release_sock(sk);
  1329. return err;
  1330. }
  1331. static int iucv_sock_release(struct socket *sock)
  1332. {
  1333. struct sock *sk = sock->sk;
  1334. int err = 0;
  1335. if (!sk)
  1336. return 0;
  1337. iucv_sock_close(sk);
  1338. sock_orphan(sk);
  1339. iucv_sock_kill(sk);
  1340. return err;
  1341. }
  1342. /* getsockopt and setsockopt */
  1343. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1344. char __user *optval, unsigned int optlen)
  1345. {
  1346. struct sock *sk = sock->sk;
  1347. struct iucv_sock *iucv = iucv_sk(sk);
  1348. int val;
  1349. int rc;
  1350. if (level != SOL_IUCV)
  1351. return -ENOPROTOOPT;
  1352. if (optlen < sizeof(int))
  1353. return -EINVAL;
  1354. if (get_user(val, (int __user *) optval))
  1355. return -EFAULT;
  1356. rc = 0;
  1357. lock_sock(sk);
  1358. switch (optname) {
  1359. case SO_IPRMDATA_MSG:
  1360. if (val)
  1361. iucv->flags |= IUCV_IPRMDATA;
  1362. else
  1363. iucv->flags &= ~IUCV_IPRMDATA;
  1364. break;
  1365. case SO_MSGLIMIT:
  1366. switch (sk->sk_state) {
  1367. case IUCV_OPEN:
  1368. case IUCV_BOUND:
  1369. if (val < 1 || val > (u16)(~0))
  1370. rc = -EINVAL;
  1371. else
  1372. iucv->msglimit = val;
  1373. break;
  1374. default:
  1375. rc = -EINVAL;
  1376. break;
  1377. }
  1378. break;
  1379. default:
  1380. rc = -ENOPROTOOPT;
  1381. break;
  1382. }
  1383. release_sock(sk);
  1384. return rc;
  1385. }
  1386. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1387. char __user *optval, int __user *optlen)
  1388. {
  1389. struct sock *sk = sock->sk;
  1390. struct iucv_sock *iucv = iucv_sk(sk);
  1391. unsigned int val;
  1392. int len;
  1393. if (level != SOL_IUCV)
  1394. return -ENOPROTOOPT;
  1395. if (get_user(len, optlen))
  1396. return -EFAULT;
  1397. if (len < 0)
  1398. return -EINVAL;
  1399. len = min_t(unsigned int, len, sizeof(int));
  1400. switch (optname) {
  1401. case SO_IPRMDATA_MSG:
  1402. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1403. break;
  1404. case SO_MSGLIMIT:
  1405. lock_sock(sk);
  1406. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1407. : iucv->msglimit; /* default */
  1408. release_sock(sk);
  1409. break;
  1410. case SO_MSGSIZE:
  1411. if (sk->sk_state == IUCV_OPEN)
  1412. return -EBADFD;
  1413. val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
  1414. sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
  1415. 0x7fffffff;
  1416. break;
  1417. default:
  1418. return -ENOPROTOOPT;
  1419. }
  1420. if (put_user(len, optlen))
  1421. return -EFAULT;
  1422. if (copy_to_user(optval, &val, len))
  1423. return -EFAULT;
  1424. return 0;
  1425. }
  1426. /* Callback wrappers - called from iucv base support */
  1427. static int iucv_callback_connreq(struct iucv_path *path,
  1428. u8 ipvmid[8], u8 ipuser[16])
  1429. {
  1430. unsigned char user_data[16];
  1431. unsigned char nuser_data[16];
  1432. unsigned char src_name[8];
  1433. struct sock *sk, *nsk;
  1434. struct iucv_sock *iucv, *niucv;
  1435. int err;
  1436. memcpy(src_name, ipuser, 8);
  1437. EBCASC(src_name, 8);
  1438. /* Find out if this path belongs to af_iucv. */
  1439. read_lock(&iucv_sk_list.lock);
  1440. iucv = NULL;
  1441. sk = NULL;
  1442. sk_for_each(sk, &iucv_sk_list.head)
  1443. if (sk->sk_state == IUCV_LISTEN &&
  1444. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1445. /*
  1446. * Found a listening socket with
  1447. * src_name == ipuser[0-7].
  1448. */
  1449. iucv = iucv_sk(sk);
  1450. break;
  1451. }
  1452. read_unlock(&iucv_sk_list.lock);
  1453. if (!iucv)
  1454. /* No socket found, not one of our paths. */
  1455. return -EINVAL;
  1456. bh_lock_sock(sk);
  1457. /* Check if parent socket is listening */
  1458. low_nmcpy(user_data, iucv->src_name);
  1459. high_nmcpy(user_data, iucv->dst_name);
  1460. ASCEBC(user_data, sizeof(user_data));
  1461. if (sk->sk_state != IUCV_LISTEN) {
  1462. err = pr_iucv->path_sever(path, user_data);
  1463. iucv_path_free(path);
  1464. goto fail;
  1465. }
  1466. /* Check for backlog size */
  1467. if (sk_acceptq_is_full(sk)) {
  1468. err = pr_iucv->path_sever(path, user_data);
  1469. iucv_path_free(path);
  1470. goto fail;
  1471. }
  1472. /* Create the new socket */
  1473. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1474. if (!nsk) {
  1475. err = pr_iucv->path_sever(path, user_data);
  1476. iucv_path_free(path);
  1477. goto fail;
  1478. }
  1479. niucv = iucv_sk(nsk);
  1480. iucv_sock_init(nsk, sk);
  1481. /* Set the new iucv_sock */
  1482. memcpy(niucv->dst_name, ipuser + 8, 8);
  1483. EBCASC(niucv->dst_name, 8);
  1484. memcpy(niucv->dst_user_id, ipvmid, 8);
  1485. memcpy(niucv->src_name, iucv->src_name, 8);
  1486. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1487. niucv->path = path;
  1488. /* Call iucv_accept */
  1489. high_nmcpy(nuser_data, ipuser + 8);
  1490. memcpy(nuser_data + 8, niucv->src_name, 8);
  1491. ASCEBC(nuser_data + 8, 8);
  1492. /* set message limit for path based on msglimit of accepting socket */
  1493. niucv->msglimit = iucv->msglimit;
  1494. path->msglim = iucv->msglimit;
  1495. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1496. if (err) {
  1497. iucv_sever_path(nsk, 1);
  1498. iucv_sock_kill(nsk);
  1499. goto fail;
  1500. }
  1501. iucv_accept_enqueue(sk, nsk);
  1502. /* Wake up accept */
  1503. nsk->sk_state = IUCV_CONNECTED;
  1504. sk->sk_data_ready(sk);
  1505. err = 0;
  1506. fail:
  1507. bh_unlock_sock(sk);
  1508. return 0;
  1509. }
  1510. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1511. {
  1512. struct sock *sk = path->private;
  1513. sk->sk_state = IUCV_CONNECTED;
  1514. sk->sk_state_change(sk);
  1515. }
  1516. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1517. {
  1518. struct sock *sk = path->private;
  1519. struct iucv_sock *iucv = iucv_sk(sk);
  1520. struct sk_buff *skb;
  1521. struct sock_msg_q *save_msg;
  1522. int len;
  1523. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1524. pr_iucv->message_reject(path, msg);
  1525. return;
  1526. }
  1527. spin_lock(&iucv->message_q.lock);
  1528. if (!list_empty(&iucv->message_q.list) ||
  1529. !skb_queue_empty(&iucv->backlog_skb_q))
  1530. goto save_message;
  1531. len = atomic_read(&sk->sk_rmem_alloc);
  1532. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1533. if (len > sk->sk_rcvbuf)
  1534. goto save_message;
  1535. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1536. if (!skb)
  1537. goto save_message;
  1538. iucv_process_message(sk, skb, path, msg);
  1539. goto out_unlock;
  1540. save_message:
  1541. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1542. if (!save_msg)
  1543. goto out_unlock;
  1544. save_msg->path = path;
  1545. save_msg->msg = *msg;
  1546. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1547. out_unlock:
  1548. spin_unlock(&iucv->message_q.lock);
  1549. }
  1550. static void iucv_callback_txdone(struct iucv_path *path,
  1551. struct iucv_message *msg)
  1552. {
  1553. struct sock *sk = path->private;
  1554. struct sk_buff *this = NULL;
  1555. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1556. struct sk_buff *list_skb = list->next;
  1557. unsigned long flags;
  1558. bh_lock_sock(sk);
  1559. if (!skb_queue_empty(list)) {
  1560. spin_lock_irqsave(&list->lock, flags);
  1561. while (list_skb != (struct sk_buff *)list) {
  1562. if (msg->tag == IUCV_SKB_CB(list_skb)->tag) {
  1563. this = list_skb;
  1564. break;
  1565. }
  1566. list_skb = list_skb->next;
  1567. }
  1568. if (this)
  1569. __skb_unlink(this, list);
  1570. spin_unlock_irqrestore(&list->lock, flags);
  1571. if (this) {
  1572. kfree_skb(this);
  1573. /* wake up any process waiting for sending */
  1574. iucv_sock_wake_msglim(sk);
  1575. }
  1576. }
  1577. if (sk->sk_state == IUCV_CLOSING) {
  1578. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1579. sk->sk_state = IUCV_CLOSED;
  1580. sk->sk_state_change(sk);
  1581. }
  1582. }
  1583. bh_unlock_sock(sk);
  1584. }
  1585. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1586. {
  1587. struct sock *sk = path->private;
  1588. if (sk->sk_state == IUCV_CLOSED)
  1589. return;
  1590. bh_lock_sock(sk);
  1591. iucv_sever_path(sk, 1);
  1592. sk->sk_state = IUCV_DISCONN;
  1593. sk->sk_state_change(sk);
  1594. bh_unlock_sock(sk);
  1595. }
  1596. /* called if the other communication side shuts down its RECV direction;
  1597. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1598. */
  1599. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1600. {
  1601. struct sock *sk = path->private;
  1602. bh_lock_sock(sk);
  1603. if (sk->sk_state != IUCV_CLOSED) {
  1604. sk->sk_shutdown |= SEND_SHUTDOWN;
  1605. sk->sk_state_change(sk);
  1606. }
  1607. bh_unlock_sock(sk);
  1608. }
  1609. /***************** HiperSockets transport callbacks ********************/
  1610. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1611. {
  1612. struct af_iucv_trans_hdr *trans_hdr =
  1613. (struct af_iucv_trans_hdr *)skb->data;
  1614. char tmpID[8];
  1615. char tmpName[8];
  1616. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1617. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1618. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1619. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1620. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1621. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1622. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1623. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1624. memcpy(trans_hdr->destUserID, tmpID, 8);
  1625. memcpy(trans_hdr->destAppName, tmpName, 8);
  1626. skb_push(skb, ETH_HLEN);
  1627. memset(skb->data, 0, ETH_HLEN);
  1628. }
  1629. /**
  1630. * afiucv_hs_callback_syn - react on received SYN
  1631. **/
  1632. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1633. {
  1634. struct sock *nsk;
  1635. struct iucv_sock *iucv, *niucv;
  1636. struct af_iucv_trans_hdr *trans_hdr;
  1637. int err;
  1638. iucv = iucv_sk(sk);
  1639. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1640. if (!iucv) {
  1641. /* no sock - connection refused */
  1642. afiucv_swap_src_dest(skb);
  1643. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1644. err = dev_queue_xmit(skb);
  1645. goto out;
  1646. }
  1647. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1648. bh_lock_sock(sk);
  1649. if ((sk->sk_state != IUCV_LISTEN) ||
  1650. sk_acceptq_is_full(sk) ||
  1651. !nsk) {
  1652. /* error on server socket - connection refused */
  1653. afiucv_swap_src_dest(skb);
  1654. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1655. err = dev_queue_xmit(skb);
  1656. iucv_sock_kill(nsk);
  1657. bh_unlock_sock(sk);
  1658. goto out;
  1659. }
  1660. niucv = iucv_sk(nsk);
  1661. iucv_sock_init(nsk, sk);
  1662. niucv->transport = AF_IUCV_TRANS_HIPER;
  1663. niucv->msglimit = iucv->msglimit;
  1664. if (!trans_hdr->window)
  1665. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1666. else
  1667. niucv->msglimit_peer = trans_hdr->window;
  1668. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1669. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1670. memcpy(niucv->src_name, iucv->src_name, 8);
  1671. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1672. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1673. niucv->hs_dev = iucv->hs_dev;
  1674. dev_hold(niucv->hs_dev);
  1675. afiucv_swap_src_dest(skb);
  1676. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1677. trans_hdr->window = niucv->msglimit;
  1678. /* if receiver acks the xmit connection is established */
  1679. err = dev_queue_xmit(skb);
  1680. if (!err) {
  1681. iucv_accept_enqueue(sk, nsk);
  1682. nsk->sk_state = IUCV_CONNECTED;
  1683. sk->sk_data_ready(sk);
  1684. } else
  1685. iucv_sock_kill(nsk);
  1686. bh_unlock_sock(sk);
  1687. out:
  1688. return NET_RX_SUCCESS;
  1689. }
  1690. /**
  1691. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1692. **/
  1693. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1694. {
  1695. struct iucv_sock *iucv = iucv_sk(sk);
  1696. struct af_iucv_trans_hdr *trans_hdr =
  1697. (struct af_iucv_trans_hdr *)skb->data;
  1698. if (!iucv)
  1699. goto out;
  1700. if (sk->sk_state != IUCV_BOUND)
  1701. goto out;
  1702. bh_lock_sock(sk);
  1703. iucv->msglimit_peer = trans_hdr->window;
  1704. sk->sk_state = IUCV_CONNECTED;
  1705. sk->sk_state_change(sk);
  1706. bh_unlock_sock(sk);
  1707. out:
  1708. kfree_skb(skb);
  1709. return NET_RX_SUCCESS;
  1710. }
  1711. /**
  1712. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1713. **/
  1714. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1715. {
  1716. struct iucv_sock *iucv = iucv_sk(sk);
  1717. if (!iucv)
  1718. goto out;
  1719. if (sk->sk_state != IUCV_BOUND)
  1720. goto out;
  1721. bh_lock_sock(sk);
  1722. sk->sk_state = IUCV_DISCONN;
  1723. sk->sk_state_change(sk);
  1724. bh_unlock_sock(sk);
  1725. out:
  1726. kfree_skb(skb);
  1727. return NET_RX_SUCCESS;
  1728. }
  1729. /**
  1730. * afiucv_hs_callback_fin() - react on received FIN
  1731. **/
  1732. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1733. {
  1734. struct iucv_sock *iucv = iucv_sk(sk);
  1735. /* other end of connection closed */
  1736. if (!iucv)
  1737. goto out;
  1738. bh_lock_sock(sk);
  1739. if (sk->sk_state == IUCV_CONNECTED) {
  1740. sk->sk_state = IUCV_DISCONN;
  1741. sk->sk_state_change(sk);
  1742. }
  1743. bh_unlock_sock(sk);
  1744. out:
  1745. kfree_skb(skb);
  1746. return NET_RX_SUCCESS;
  1747. }
  1748. /**
  1749. * afiucv_hs_callback_win() - react on received WIN
  1750. **/
  1751. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1752. {
  1753. struct iucv_sock *iucv = iucv_sk(sk);
  1754. struct af_iucv_trans_hdr *trans_hdr =
  1755. (struct af_iucv_trans_hdr *)skb->data;
  1756. if (!iucv)
  1757. return NET_RX_SUCCESS;
  1758. if (sk->sk_state != IUCV_CONNECTED)
  1759. return NET_RX_SUCCESS;
  1760. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1761. iucv_sock_wake_msglim(sk);
  1762. return NET_RX_SUCCESS;
  1763. }
  1764. /**
  1765. * afiucv_hs_callback_rx() - react on received data
  1766. **/
  1767. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1768. {
  1769. struct iucv_sock *iucv = iucv_sk(sk);
  1770. if (!iucv) {
  1771. kfree_skb(skb);
  1772. return NET_RX_SUCCESS;
  1773. }
  1774. if (sk->sk_state != IUCV_CONNECTED) {
  1775. kfree_skb(skb);
  1776. return NET_RX_SUCCESS;
  1777. }
  1778. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1779. kfree_skb(skb);
  1780. return NET_RX_SUCCESS;
  1781. }
  1782. /* write stuff from iucv_msg to skb cb */
  1783. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1784. skb_reset_transport_header(skb);
  1785. skb_reset_network_header(skb);
  1786. IUCV_SKB_CB(skb)->offset = 0;
  1787. spin_lock(&iucv->message_q.lock);
  1788. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1789. if (sock_queue_rcv_skb(sk, skb)) {
  1790. /* handle rcv queue full */
  1791. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1792. }
  1793. } else
  1794. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1795. spin_unlock(&iucv->message_q.lock);
  1796. return NET_RX_SUCCESS;
  1797. }
  1798. /**
  1799. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1800. * transport
  1801. * called from netif RX softirq
  1802. **/
  1803. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1804. struct packet_type *pt, struct net_device *orig_dev)
  1805. {
  1806. struct sock *sk;
  1807. struct iucv_sock *iucv;
  1808. struct af_iucv_trans_hdr *trans_hdr;
  1809. char nullstring[8];
  1810. int err = 0;
  1811. if (skb->len < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr))) {
  1812. WARN_ONCE(1, "AF_IUCV too short skb, len=%d, min=%d",
  1813. (int)skb->len,
  1814. (int)(ETH_HLEN + sizeof(struct af_iucv_trans_hdr)));
  1815. kfree_skb(skb);
  1816. return NET_RX_SUCCESS;
  1817. }
  1818. if (skb_headlen(skb) < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr)))
  1819. if (skb_linearize(skb)) {
  1820. WARN_ONCE(1, "AF_IUCV skb_linearize failed, len=%d",
  1821. (int)skb->len);
  1822. kfree_skb(skb);
  1823. return NET_RX_SUCCESS;
  1824. }
  1825. skb_pull(skb, ETH_HLEN);
  1826. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1827. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1828. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1829. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1830. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1831. memset(nullstring, 0, sizeof(nullstring));
  1832. iucv = NULL;
  1833. sk = NULL;
  1834. read_lock(&iucv_sk_list.lock);
  1835. sk_for_each(sk, &iucv_sk_list.head) {
  1836. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1837. if ((!memcmp(&iucv_sk(sk)->src_name,
  1838. trans_hdr->destAppName, 8)) &&
  1839. (!memcmp(&iucv_sk(sk)->src_user_id,
  1840. trans_hdr->destUserID, 8)) &&
  1841. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1842. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1843. nullstring, 8))) {
  1844. iucv = iucv_sk(sk);
  1845. break;
  1846. }
  1847. } else {
  1848. if ((!memcmp(&iucv_sk(sk)->src_name,
  1849. trans_hdr->destAppName, 8)) &&
  1850. (!memcmp(&iucv_sk(sk)->src_user_id,
  1851. trans_hdr->destUserID, 8)) &&
  1852. (!memcmp(&iucv_sk(sk)->dst_name,
  1853. trans_hdr->srcAppName, 8)) &&
  1854. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1855. trans_hdr->srcUserID, 8))) {
  1856. iucv = iucv_sk(sk);
  1857. break;
  1858. }
  1859. }
  1860. }
  1861. read_unlock(&iucv_sk_list.lock);
  1862. if (!iucv)
  1863. sk = NULL;
  1864. /* no sock
  1865. how should we send with no sock
  1866. 1) send without sock no send rc checking?
  1867. 2) introduce default sock to handle this cases
  1868. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1869. data -> send FIN
  1870. SYN|ACK, SYN|FIN, FIN -> no action? */
  1871. switch (trans_hdr->flags) {
  1872. case AF_IUCV_FLAG_SYN:
  1873. /* connect request */
  1874. err = afiucv_hs_callback_syn(sk, skb);
  1875. break;
  1876. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1877. /* connect request confirmed */
  1878. err = afiucv_hs_callback_synack(sk, skb);
  1879. break;
  1880. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1881. /* connect request refused */
  1882. err = afiucv_hs_callback_synfin(sk, skb);
  1883. break;
  1884. case (AF_IUCV_FLAG_FIN):
  1885. /* close request */
  1886. err = afiucv_hs_callback_fin(sk, skb);
  1887. break;
  1888. case (AF_IUCV_FLAG_WIN):
  1889. err = afiucv_hs_callback_win(sk, skb);
  1890. if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
  1891. kfree_skb(skb);
  1892. break;
  1893. }
  1894. /* fall through and receive non-zero length data */
  1895. case (AF_IUCV_FLAG_SHT):
  1896. /* shutdown request */
  1897. /* fall through and receive zero length data */
  1898. case 0:
  1899. /* plain data frame */
  1900. IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class;
  1901. err = afiucv_hs_callback_rx(sk, skb);
  1902. break;
  1903. default:
  1904. ;
  1905. }
  1906. return err;
  1907. }
  1908. /**
  1909. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1910. * transport
  1911. **/
  1912. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1913. enum iucv_tx_notify n)
  1914. {
  1915. struct sock *isk = skb->sk;
  1916. struct sock *sk = NULL;
  1917. struct iucv_sock *iucv = NULL;
  1918. struct sk_buff_head *list;
  1919. struct sk_buff *list_skb;
  1920. struct sk_buff *nskb;
  1921. unsigned long flags;
  1922. read_lock_irqsave(&iucv_sk_list.lock, flags);
  1923. sk_for_each(sk, &iucv_sk_list.head)
  1924. if (sk == isk) {
  1925. iucv = iucv_sk(sk);
  1926. break;
  1927. }
  1928. read_unlock_irqrestore(&iucv_sk_list.lock, flags);
  1929. if (!iucv || sock_flag(sk, SOCK_ZAPPED))
  1930. return;
  1931. list = &iucv->send_skb_q;
  1932. spin_lock_irqsave(&list->lock, flags);
  1933. if (skb_queue_empty(list))
  1934. goto out_unlock;
  1935. list_skb = list->next;
  1936. nskb = list_skb->next;
  1937. while (list_skb != (struct sk_buff *)list) {
  1938. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1939. switch (n) {
  1940. case TX_NOTIFY_OK:
  1941. __skb_unlink(list_skb, list);
  1942. kfree_skb(list_skb);
  1943. iucv_sock_wake_msglim(sk);
  1944. break;
  1945. case TX_NOTIFY_PENDING:
  1946. atomic_inc(&iucv->pendings);
  1947. break;
  1948. case TX_NOTIFY_DELAYED_OK:
  1949. __skb_unlink(list_skb, list);
  1950. atomic_dec(&iucv->pendings);
  1951. if (atomic_read(&iucv->pendings) <= 0)
  1952. iucv_sock_wake_msglim(sk);
  1953. kfree_skb(list_skb);
  1954. break;
  1955. case TX_NOTIFY_UNREACHABLE:
  1956. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1957. case TX_NOTIFY_TPQFULL: /* not yet used */
  1958. case TX_NOTIFY_GENERALERROR:
  1959. case TX_NOTIFY_DELAYED_GENERALERROR:
  1960. __skb_unlink(list_skb, list);
  1961. kfree_skb(list_skb);
  1962. if (sk->sk_state == IUCV_CONNECTED) {
  1963. sk->sk_state = IUCV_DISCONN;
  1964. sk->sk_state_change(sk);
  1965. }
  1966. break;
  1967. }
  1968. break;
  1969. }
  1970. list_skb = nskb;
  1971. nskb = nskb->next;
  1972. }
  1973. out_unlock:
  1974. spin_unlock_irqrestore(&list->lock, flags);
  1975. if (sk->sk_state == IUCV_CLOSING) {
  1976. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1977. sk->sk_state = IUCV_CLOSED;
  1978. sk->sk_state_change(sk);
  1979. }
  1980. }
  1981. }
  1982. /*
  1983. * afiucv_netdev_event: handle netdev notifier chain events
  1984. */
  1985. static int afiucv_netdev_event(struct notifier_block *this,
  1986. unsigned long event, void *ptr)
  1987. {
  1988. struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
  1989. struct sock *sk;
  1990. struct iucv_sock *iucv;
  1991. switch (event) {
  1992. case NETDEV_REBOOT:
  1993. case NETDEV_GOING_DOWN:
  1994. sk_for_each(sk, &iucv_sk_list.head) {
  1995. iucv = iucv_sk(sk);
  1996. if ((iucv->hs_dev == event_dev) &&
  1997. (sk->sk_state == IUCV_CONNECTED)) {
  1998. if (event == NETDEV_GOING_DOWN)
  1999. iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  2000. sk->sk_state = IUCV_DISCONN;
  2001. sk->sk_state_change(sk);
  2002. }
  2003. }
  2004. break;
  2005. case NETDEV_DOWN:
  2006. case NETDEV_UNREGISTER:
  2007. default:
  2008. break;
  2009. }
  2010. return NOTIFY_DONE;
  2011. }
  2012. static struct notifier_block afiucv_netdev_notifier = {
  2013. .notifier_call = afiucv_netdev_event,
  2014. };
  2015. static const struct proto_ops iucv_sock_ops = {
  2016. .family = PF_IUCV,
  2017. .owner = THIS_MODULE,
  2018. .release = iucv_sock_release,
  2019. .bind = iucv_sock_bind,
  2020. .connect = iucv_sock_connect,
  2021. .listen = iucv_sock_listen,
  2022. .accept = iucv_sock_accept,
  2023. .getname = iucv_sock_getname,
  2024. .sendmsg = iucv_sock_sendmsg,
  2025. .recvmsg = iucv_sock_recvmsg,
  2026. .poll = iucv_sock_poll,
  2027. .ioctl = sock_no_ioctl,
  2028. .mmap = sock_no_mmap,
  2029. .socketpair = sock_no_socketpair,
  2030. .shutdown = iucv_sock_shutdown,
  2031. .setsockopt = iucv_sock_setsockopt,
  2032. .getsockopt = iucv_sock_getsockopt,
  2033. };
  2034. static const struct net_proto_family iucv_sock_family_ops = {
  2035. .family = AF_IUCV,
  2036. .owner = THIS_MODULE,
  2037. .create = iucv_sock_create,
  2038. };
  2039. static struct packet_type iucv_packet_type = {
  2040. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2041. .func = afiucv_hs_rcv,
  2042. };
  2043. static int afiucv_iucv_init(void)
  2044. {
  2045. int err;
  2046. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2047. if (err)
  2048. goto out;
  2049. /* establish dummy device */
  2050. af_iucv_driver.bus = pr_iucv->bus;
  2051. err = driver_register(&af_iucv_driver);
  2052. if (err)
  2053. goto out_iucv;
  2054. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2055. if (!af_iucv_dev) {
  2056. err = -ENOMEM;
  2057. goto out_driver;
  2058. }
  2059. dev_set_name(af_iucv_dev, "af_iucv");
  2060. af_iucv_dev->bus = pr_iucv->bus;
  2061. af_iucv_dev->parent = pr_iucv->root;
  2062. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2063. af_iucv_dev->driver = &af_iucv_driver;
  2064. err = device_register(af_iucv_dev);
  2065. if (err)
  2066. goto out_driver;
  2067. return 0;
  2068. out_driver:
  2069. driver_unregister(&af_iucv_driver);
  2070. out_iucv:
  2071. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2072. out:
  2073. return err;
  2074. }
  2075. static int __init afiucv_init(void)
  2076. {
  2077. int err;
  2078. if (MACHINE_IS_VM) {
  2079. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2080. if (unlikely(err)) {
  2081. WARN_ON(err);
  2082. err = -EPROTONOSUPPORT;
  2083. goto out;
  2084. }
  2085. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2086. if (!pr_iucv) {
  2087. printk(KERN_WARNING "iucv_if lookup failed\n");
  2088. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2089. }
  2090. } else {
  2091. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2092. pr_iucv = NULL;
  2093. }
  2094. err = proto_register(&iucv_proto, 0);
  2095. if (err)
  2096. goto out;
  2097. err = sock_register(&iucv_sock_family_ops);
  2098. if (err)
  2099. goto out_proto;
  2100. if (pr_iucv) {
  2101. err = afiucv_iucv_init();
  2102. if (err)
  2103. goto out_sock;
  2104. } else
  2105. register_netdevice_notifier(&afiucv_netdev_notifier);
  2106. dev_add_pack(&iucv_packet_type);
  2107. return 0;
  2108. out_sock:
  2109. sock_unregister(PF_IUCV);
  2110. out_proto:
  2111. proto_unregister(&iucv_proto);
  2112. out:
  2113. if (pr_iucv)
  2114. symbol_put(iucv_if);
  2115. return err;
  2116. }
  2117. static void __exit afiucv_exit(void)
  2118. {
  2119. if (pr_iucv) {
  2120. device_unregister(af_iucv_dev);
  2121. driver_unregister(&af_iucv_driver);
  2122. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2123. symbol_put(iucv_if);
  2124. } else
  2125. unregister_netdevice_notifier(&afiucv_netdev_notifier);
  2126. dev_remove_pack(&iucv_packet_type);
  2127. sock_unregister(PF_IUCV);
  2128. proto_unregister(&iucv_proto);
  2129. }
  2130. module_init(afiucv_init);
  2131. module_exit(afiucv_exit);
  2132. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2133. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2134. MODULE_VERSION(VERSION);
  2135. MODULE_LICENSE("GPL");
  2136. MODULE_ALIAS_NETPROTO(PF_IUCV);