fib_trie.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <asm/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <net/net_namespace.h>
  75. #include <net/ip.h>
  76. #include <net/protocol.h>
  77. #include <net/route.h>
  78. #include <net/tcp.h>
  79. #include <net/sock.h>
  80. #include <net/ip_fib.h>
  81. #include <net/switchdev.h>
  82. #include <trace/events/fib.h>
  83. #include "fib_lookup.h"
  84. #define MAX_STAT_DEPTH 32
  85. #define KEYLENGTH (8*sizeof(t_key))
  86. #define KEY_MAX ((t_key)~0)
  87. typedef unsigned int t_key;
  88. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  89. #define IS_TNODE(n) ((n)->bits)
  90. #define IS_LEAF(n) (!(n)->bits)
  91. struct key_vector {
  92. t_key key;
  93. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  94. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  95. unsigned char slen;
  96. union {
  97. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  98. struct hlist_head leaf;
  99. /* This array is valid if (pos | bits) > 0 (TNODE) */
  100. struct key_vector __rcu *tnode[0];
  101. };
  102. };
  103. struct tnode {
  104. struct rcu_head rcu;
  105. t_key empty_children; /* KEYLENGTH bits needed */
  106. t_key full_children; /* KEYLENGTH bits needed */
  107. struct key_vector __rcu *parent;
  108. struct key_vector kv[1];
  109. #define tn_bits kv[0].bits
  110. };
  111. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  112. #define LEAF_SIZE TNODE_SIZE(1)
  113. #ifdef CONFIG_IP_FIB_TRIE_STATS
  114. struct trie_use_stats {
  115. unsigned int gets;
  116. unsigned int backtrack;
  117. unsigned int semantic_match_passed;
  118. unsigned int semantic_match_miss;
  119. unsigned int null_node_hit;
  120. unsigned int resize_node_skipped;
  121. };
  122. #endif
  123. struct trie_stat {
  124. unsigned int totdepth;
  125. unsigned int maxdepth;
  126. unsigned int tnodes;
  127. unsigned int leaves;
  128. unsigned int nullpointers;
  129. unsigned int prefixes;
  130. unsigned int nodesizes[MAX_STAT_DEPTH];
  131. };
  132. struct trie {
  133. struct key_vector kv[1];
  134. #ifdef CONFIG_IP_FIB_TRIE_STATS
  135. struct trie_use_stats __percpu *stats;
  136. #endif
  137. };
  138. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  139. static size_t tnode_free_size;
  140. /*
  141. * synchronize_rcu after call_rcu for that many pages; it should be especially
  142. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  143. * obtained experimentally, aiming to avoid visible slowdown.
  144. */
  145. static const int sync_pages = 128;
  146. static struct kmem_cache *fn_alias_kmem __read_mostly;
  147. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  148. static inline struct tnode *tn_info(struct key_vector *kv)
  149. {
  150. return container_of(kv, struct tnode, kv[0]);
  151. }
  152. /* caller must hold RTNL */
  153. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  154. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  155. /* caller must hold RCU read lock or RTNL */
  156. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  157. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  158. /* wrapper for rcu_assign_pointer */
  159. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  160. {
  161. if (n)
  162. rcu_assign_pointer(tn_info(n)->parent, tp);
  163. }
  164. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  165. /* This provides us with the number of children in this node, in the case of a
  166. * leaf this will return 0 meaning none of the children are accessible.
  167. */
  168. static inline unsigned long child_length(const struct key_vector *tn)
  169. {
  170. return (1ul << tn->bits) & ~(1ul);
  171. }
  172. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  173. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  174. {
  175. unsigned long index = key ^ kv->key;
  176. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  177. return 0;
  178. return index >> kv->pos;
  179. }
  180. /* To understand this stuff, an understanding of keys and all their bits is
  181. * necessary. Every node in the trie has a key associated with it, but not
  182. * all of the bits in that key are significant.
  183. *
  184. * Consider a node 'n' and its parent 'tp'.
  185. *
  186. * If n is a leaf, every bit in its key is significant. Its presence is
  187. * necessitated by path compression, since during a tree traversal (when
  188. * searching for a leaf - unless we are doing an insertion) we will completely
  189. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  190. * a potentially successful search, that we have indeed been walking the
  191. * correct key path.
  192. *
  193. * Note that we can never "miss" the correct key in the tree if present by
  194. * following the wrong path. Path compression ensures that segments of the key
  195. * that are the same for all keys with a given prefix are skipped, but the
  196. * skipped part *is* identical for each node in the subtrie below the skipped
  197. * bit! trie_insert() in this implementation takes care of that.
  198. *
  199. * if n is an internal node - a 'tnode' here, the various parts of its key
  200. * have many different meanings.
  201. *
  202. * Example:
  203. * _________________________________________________________________
  204. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  205. * -----------------------------------------------------------------
  206. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  207. *
  208. * _________________________________________________________________
  209. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  210. * -----------------------------------------------------------------
  211. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  212. *
  213. * tp->pos = 22
  214. * tp->bits = 3
  215. * n->pos = 13
  216. * n->bits = 4
  217. *
  218. * First, let's just ignore the bits that come before the parent tp, that is
  219. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  220. * point we do not use them for anything.
  221. *
  222. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  223. * index into the parent's child array. That is, they will be used to find
  224. * 'n' among tp's children.
  225. *
  226. * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
  227. * for the node n.
  228. *
  229. * All the bits we have seen so far are significant to the node n. The rest
  230. * of the bits are really not needed or indeed known in n->key.
  231. *
  232. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  233. * n's child array, and will of course be different for each child.
  234. *
  235. * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
  236. * at this point.
  237. */
  238. static const int halve_threshold = 25;
  239. static const int inflate_threshold = 50;
  240. static const int halve_threshold_root = 15;
  241. static const int inflate_threshold_root = 30;
  242. static void __alias_free_mem(struct rcu_head *head)
  243. {
  244. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  245. kmem_cache_free(fn_alias_kmem, fa);
  246. }
  247. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  248. {
  249. call_rcu(&fa->rcu, __alias_free_mem);
  250. }
  251. #define TNODE_KMALLOC_MAX \
  252. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  253. #define TNODE_VMALLOC_MAX \
  254. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  255. static void __node_free_rcu(struct rcu_head *head)
  256. {
  257. struct tnode *n = container_of(head, struct tnode, rcu);
  258. if (!n->tn_bits)
  259. kmem_cache_free(trie_leaf_kmem, n);
  260. else
  261. kvfree(n);
  262. }
  263. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  264. static struct tnode *tnode_alloc(int bits)
  265. {
  266. size_t size;
  267. /* verify bits is within bounds */
  268. if (bits > TNODE_VMALLOC_MAX)
  269. return NULL;
  270. /* determine size and verify it is non-zero and didn't overflow */
  271. size = TNODE_SIZE(1ul << bits);
  272. if (size <= PAGE_SIZE)
  273. return kzalloc(size, GFP_KERNEL);
  274. else
  275. return vzalloc(size);
  276. }
  277. static inline void empty_child_inc(struct key_vector *n)
  278. {
  279. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  280. }
  281. static inline void empty_child_dec(struct key_vector *n)
  282. {
  283. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  284. }
  285. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  286. {
  287. struct key_vector *l;
  288. struct tnode *kv;
  289. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  290. if (!kv)
  291. return NULL;
  292. /* initialize key vector */
  293. l = kv->kv;
  294. l->key = key;
  295. l->pos = 0;
  296. l->bits = 0;
  297. l->slen = fa->fa_slen;
  298. /* link leaf to fib alias */
  299. INIT_HLIST_HEAD(&l->leaf);
  300. hlist_add_head(&fa->fa_list, &l->leaf);
  301. return l;
  302. }
  303. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  304. {
  305. unsigned int shift = pos + bits;
  306. struct key_vector *tn;
  307. struct tnode *tnode;
  308. /* verify bits and pos their msb bits clear and values are valid */
  309. BUG_ON(!bits || (shift > KEYLENGTH));
  310. tnode = tnode_alloc(bits);
  311. if (!tnode)
  312. return NULL;
  313. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  314. sizeof(struct key_vector *) << bits);
  315. if (bits == KEYLENGTH)
  316. tnode->full_children = 1;
  317. else
  318. tnode->empty_children = 1ul << bits;
  319. tn = tnode->kv;
  320. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  321. tn->pos = pos;
  322. tn->bits = bits;
  323. tn->slen = pos;
  324. return tn;
  325. }
  326. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  327. * and no bits are skipped. See discussion in dyntree paper p. 6
  328. */
  329. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  330. {
  331. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  332. }
  333. /* Add a child at position i overwriting the old value.
  334. * Update the value of full_children and empty_children.
  335. */
  336. static void put_child(struct key_vector *tn, unsigned long i,
  337. struct key_vector *n)
  338. {
  339. struct key_vector *chi = get_child(tn, i);
  340. int isfull, wasfull;
  341. BUG_ON(i >= child_length(tn));
  342. /* update emptyChildren, overflow into fullChildren */
  343. if (!n && chi)
  344. empty_child_inc(tn);
  345. if (n && !chi)
  346. empty_child_dec(tn);
  347. /* update fullChildren */
  348. wasfull = tnode_full(tn, chi);
  349. isfull = tnode_full(tn, n);
  350. if (wasfull && !isfull)
  351. tn_info(tn)->full_children--;
  352. else if (!wasfull && isfull)
  353. tn_info(tn)->full_children++;
  354. if (n && (tn->slen < n->slen))
  355. tn->slen = n->slen;
  356. rcu_assign_pointer(tn->tnode[i], n);
  357. }
  358. static void update_children(struct key_vector *tn)
  359. {
  360. unsigned long i;
  361. /* update all of the child parent pointers */
  362. for (i = child_length(tn); i;) {
  363. struct key_vector *inode = get_child(tn, --i);
  364. if (!inode)
  365. continue;
  366. /* Either update the children of a tnode that
  367. * already belongs to us or update the child
  368. * to point to ourselves.
  369. */
  370. if (node_parent(inode) == tn)
  371. update_children(inode);
  372. else
  373. node_set_parent(inode, tn);
  374. }
  375. }
  376. static inline void put_child_root(struct key_vector *tp, t_key key,
  377. struct key_vector *n)
  378. {
  379. if (IS_TRIE(tp))
  380. rcu_assign_pointer(tp->tnode[0], n);
  381. else
  382. put_child(tp, get_index(key, tp), n);
  383. }
  384. static inline void tnode_free_init(struct key_vector *tn)
  385. {
  386. tn_info(tn)->rcu.next = NULL;
  387. }
  388. static inline void tnode_free_append(struct key_vector *tn,
  389. struct key_vector *n)
  390. {
  391. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  392. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  393. }
  394. static void tnode_free(struct key_vector *tn)
  395. {
  396. struct callback_head *head = &tn_info(tn)->rcu;
  397. while (head) {
  398. head = head->next;
  399. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  400. node_free(tn);
  401. tn = container_of(head, struct tnode, rcu)->kv;
  402. }
  403. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  404. tnode_free_size = 0;
  405. synchronize_rcu();
  406. }
  407. }
  408. static struct key_vector *replace(struct trie *t,
  409. struct key_vector *oldtnode,
  410. struct key_vector *tn)
  411. {
  412. struct key_vector *tp = node_parent(oldtnode);
  413. unsigned long i;
  414. /* setup the parent pointer out of and back into this node */
  415. NODE_INIT_PARENT(tn, tp);
  416. put_child_root(tp, tn->key, tn);
  417. /* update all of the child parent pointers */
  418. update_children(tn);
  419. /* all pointers should be clean so we are done */
  420. tnode_free(oldtnode);
  421. /* resize children now that oldtnode is freed */
  422. for (i = child_length(tn); i;) {
  423. struct key_vector *inode = get_child(tn, --i);
  424. /* resize child node */
  425. if (tnode_full(tn, inode))
  426. tn = resize(t, inode);
  427. }
  428. return tp;
  429. }
  430. static struct key_vector *inflate(struct trie *t,
  431. struct key_vector *oldtnode)
  432. {
  433. struct key_vector *tn;
  434. unsigned long i;
  435. t_key m;
  436. pr_debug("In inflate\n");
  437. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  438. if (!tn)
  439. goto notnode;
  440. /* prepare oldtnode to be freed */
  441. tnode_free_init(oldtnode);
  442. /* Assemble all of the pointers in our cluster, in this case that
  443. * represents all of the pointers out of our allocated nodes that
  444. * point to existing tnodes and the links between our allocated
  445. * nodes.
  446. */
  447. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  448. struct key_vector *inode = get_child(oldtnode, --i);
  449. struct key_vector *node0, *node1;
  450. unsigned long j, k;
  451. /* An empty child */
  452. if (!inode)
  453. continue;
  454. /* A leaf or an internal node with skipped bits */
  455. if (!tnode_full(oldtnode, inode)) {
  456. put_child(tn, get_index(inode->key, tn), inode);
  457. continue;
  458. }
  459. /* drop the node in the old tnode free list */
  460. tnode_free_append(oldtnode, inode);
  461. /* An internal node with two children */
  462. if (inode->bits == 1) {
  463. put_child(tn, 2 * i + 1, get_child(inode, 1));
  464. put_child(tn, 2 * i, get_child(inode, 0));
  465. continue;
  466. }
  467. /* We will replace this node 'inode' with two new
  468. * ones, 'node0' and 'node1', each with half of the
  469. * original children. The two new nodes will have
  470. * a position one bit further down the key and this
  471. * means that the "significant" part of their keys
  472. * (see the discussion near the top of this file)
  473. * will differ by one bit, which will be "0" in
  474. * node0's key and "1" in node1's key. Since we are
  475. * moving the key position by one step, the bit that
  476. * we are moving away from - the bit at position
  477. * (tn->pos) - is the one that will differ between
  478. * node0 and node1. So... we synthesize that bit in the
  479. * two new keys.
  480. */
  481. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  482. if (!node1)
  483. goto nomem;
  484. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  485. tnode_free_append(tn, node1);
  486. if (!node0)
  487. goto nomem;
  488. tnode_free_append(tn, node0);
  489. /* populate child pointers in new nodes */
  490. for (k = child_length(inode), j = k / 2; j;) {
  491. put_child(node1, --j, get_child(inode, --k));
  492. put_child(node0, j, get_child(inode, j));
  493. put_child(node1, --j, get_child(inode, --k));
  494. put_child(node0, j, get_child(inode, j));
  495. }
  496. /* link new nodes to parent */
  497. NODE_INIT_PARENT(node1, tn);
  498. NODE_INIT_PARENT(node0, tn);
  499. /* link parent to nodes */
  500. put_child(tn, 2 * i + 1, node1);
  501. put_child(tn, 2 * i, node0);
  502. }
  503. /* setup the parent pointers into and out of this node */
  504. return replace(t, oldtnode, tn);
  505. nomem:
  506. /* all pointers should be clean so we are done */
  507. tnode_free(tn);
  508. notnode:
  509. return NULL;
  510. }
  511. static struct key_vector *halve(struct trie *t,
  512. struct key_vector *oldtnode)
  513. {
  514. struct key_vector *tn;
  515. unsigned long i;
  516. pr_debug("In halve\n");
  517. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  518. if (!tn)
  519. goto notnode;
  520. /* prepare oldtnode to be freed */
  521. tnode_free_init(oldtnode);
  522. /* Assemble all of the pointers in our cluster, in this case that
  523. * represents all of the pointers out of our allocated nodes that
  524. * point to existing tnodes and the links between our allocated
  525. * nodes.
  526. */
  527. for (i = child_length(oldtnode); i;) {
  528. struct key_vector *node1 = get_child(oldtnode, --i);
  529. struct key_vector *node0 = get_child(oldtnode, --i);
  530. struct key_vector *inode;
  531. /* At least one of the children is empty */
  532. if (!node1 || !node0) {
  533. put_child(tn, i / 2, node1 ? : node0);
  534. continue;
  535. }
  536. /* Two nonempty children */
  537. inode = tnode_new(node0->key, oldtnode->pos, 1);
  538. if (!inode)
  539. goto nomem;
  540. tnode_free_append(tn, inode);
  541. /* initialize pointers out of node */
  542. put_child(inode, 1, node1);
  543. put_child(inode, 0, node0);
  544. NODE_INIT_PARENT(inode, tn);
  545. /* link parent to node */
  546. put_child(tn, i / 2, inode);
  547. }
  548. /* setup the parent pointers into and out of this node */
  549. return replace(t, oldtnode, tn);
  550. nomem:
  551. /* all pointers should be clean so we are done */
  552. tnode_free(tn);
  553. notnode:
  554. return NULL;
  555. }
  556. static struct key_vector *collapse(struct trie *t,
  557. struct key_vector *oldtnode)
  558. {
  559. struct key_vector *n, *tp;
  560. unsigned long i;
  561. /* scan the tnode looking for that one child that might still exist */
  562. for (n = NULL, i = child_length(oldtnode); !n && i;)
  563. n = get_child(oldtnode, --i);
  564. /* compress one level */
  565. tp = node_parent(oldtnode);
  566. put_child_root(tp, oldtnode->key, n);
  567. node_set_parent(n, tp);
  568. /* drop dead node */
  569. node_free(oldtnode);
  570. return tp;
  571. }
  572. static unsigned char update_suffix(struct key_vector *tn)
  573. {
  574. unsigned char slen = tn->pos;
  575. unsigned long stride, i;
  576. /* search though the list of children looking for nodes that might
  577. * have a suffix greater than the one we currently have. This is
  578. * why we start with a stride of 2 since a stride of 1 would
  579. * represent the nodes with suffix length equal to tn->pos
  580. */
  581. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  582. struct key_vector *n = get_child(tn, i);
  583. if (!n || (n->slen <= slen))
  584. continue;
  585. /* update stride and slen based on new value */
  586. stride <<= (n->slen - slen);
  587. slen = n->slen;
  588. i &= ~(stride - 1);
  589. /* if slen covers all but the last bit we can stop here
  590. * there will be nothing longer than that since only node
  591. * 0 and 1 << (bits - 1) could have that as their suffix
  592. * length.
  593. */
  594. if ((slen + 1) >= (tn->pos + tn->bits))
  595. break;
  596. }
  597. tn->slen = slen;
  598. return slen;
  599. }
  600. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  601. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  602. * Telecommunications, page 6:
  603. * "A node is doubled if the ratio of non-empty children to all
  604. * children in the *doubled* node is at least 'high'."
  605. *
  606. * 'high' in this instance is the variable 'inflate_threshold'. It
  607. * is expressed as a percentage, so we multiply it with
  608. * child_length() and instead of multiplying by 2 (since the
  609. * child array will be doubled by inflate()) and multiplying
  610. * the left-hand side by 100 (to handle the percentage thing) we
  611. * multiply the left-hand side by 50.
  612. *
  613. * The left-hand side may look a bit weird: child_length(tn)
  614. * - tn->empty_children is of course the number of non-null children
  615. * in the current node. tn->full_children is the number of "full"
  616. * children, that is non-null tnodes with a skip value of 0.
  617. * All of those will be doubled in the resulting inflated tnode, so
  618. * we just count them one extra time here.
  619. *
  620. * A clearer way to write this would be:
  621. *
  622. * to_be_doubled = tn->full_children;
  623. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  624. * tn->full_children;
  625. *
  626. * new_child_length = child_length(tn) * 2;
  627. *
  628. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  629. * new_child_length;
  630. * if (new_fill_factor >= inflate_threshold)
  631. *
  632. * ...and so on, tho it would mess up the while () loop.
  633. *
  634. * anyway,
  635. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  636. * inflate_threshold
  637. *
  638. * avoid a division:
  639. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  640. * inflate_threshold * new_child_length
  641. *
  642. * expand not_to_be_doubled and to_be_doubled, and shorten:
  643. * 100 * (child_length(tn) - tn->empty_children +
  644. * tn->full_children) >= inflate_threshold * new_child_length
  645. *
  646. * expand new_child_length:
  647. * 100 * (child_length(tn) - tn->empty_children +
  648. * tn->full_children) >=
  649. * inflate_threshold * child_length(tn) * 2
  650. *
  651. * shorten again:
  652. * 50 * (tn->full_children + child_length(tn) -
  653. * tn->empty_children) >= inflate_threshold *
  654. * child_length(tn)
  655. *
  656. */
  657. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  658. {
  659. unsigned long used = child_length(tn);
  660. unsigned long threshold = used;
  661. /* Keep root node larger */
  662. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  663. used -= tn_info(tn)->empty_children;
  664. used += tn_info(tn)->full_children;
  665. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  666. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  667. }
  668. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  669. {
  670. unsigned long used = child_length(tn);
  671. unsigned long threshold = used;
  672. /* Keep root node larger */
  673. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  674. used -= tn_info(tn)->empty_children;
  675. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  676. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  677. }
  678. static inline bool should_collapse(struct key_vector *tn)
  679. {
  680. unsigned long used = child_length(tn);
  681. used -= tn_info(tn)->empty_children;
  682. /* account for bits == KEYLENGTH case */
  683. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  684. used -= KEY_MAX;
  685. /* One child or none, time to drop us from the trie */
  686. return used < 2;
  687. }
  688. #define MAX_WORK 10
  689. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  690. {
  691. #ifdef CONFIG_IP_FIB_TRIE_STATS
  692. struct trie_use_stats __percpu *stats = t->stats;
  693. #endif
  694. struct key_vector *tp = node_parent(tn);
  695. unsigned long cindex = get_index(tn->key, tp);
  696. int max_work = MAX_WORK;
  697. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  698. tn, inflate_threshold, halve_threshold);
  699. /* track the tnode via the pointer from the parent instead of
  700. * doing it ourselves. This way we can let RCU fully do its
  701. * thing without us interfering
  702. */
  703. BUG_ON(tn != get_child(tp, cindex));
  704. /* Double as long as the resulting node has a number of
  705. * nonempty nodes that are above the threshold.
  706. */
  707. while (should_inflate(tp, tn) && max_work) {
  708. tp = inflate(t, tn);
  709. if (!tp) {
  710. #ifdef CONFIG_IP_FIB_TRIE_STATS
  711. this_cpu_inc(stats->resize_node_skipped);
  712. #endif
  713. break;
  714. }
  715. max_work--;
  716. tn = get_child(tp, cindex);
  717. }
  718. /* update parent in case inflate failed */
  719. tp = node_parent(tn);
  720. /* Return if at least one inflate is run */
  721. if (max_work != MAX_WORK)
  722. return tp;
  723. /* Halve as long as the number of empty children in this
  724. * node is above threshold.
  725. */
  726. while (should_halve(tp, tn) && max_work) {
  727. tp = halve(t, tn);
  728. if (!tp) {
  729. #ifdef CONFIG_IP_FIB_TRIE_STATS
  730. this_cpu_inc(stats->resize_node_skipped);
  731. #endif
  732. break;
  733. }
  734. max_work--;
  735. tn = get_child(tp, cindex);
  736. }
  737. /* Only one child remains */
  738. if (should_collapse(tn))
  739. return collapse(t, tn);
  740. /* update parent in case halve failed */
  741. tp = node_parent(tn);
  742. /* Return if at least one deflate was run */
  743. if (max_work != MAX_WORK)
  744. return tp;
  745. /* push the suffix length to the parent node */
  746. if (tn->slen > tn->pos) {
  747. unsigned char slen = update_suffix(tn);
  748. if (slen > tp->slen)
  749. tp->slen = slen;
  750. }
  751. return tp;
  752. }
  753. static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
  754. {
  755. while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
  756. if (update_suffix(tp) > l->slen)
  757. break;
  758. tp = node_parent(tp);
  759. }
  760. }
  761. static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
  762. {
  763. /* if this is a new leaf then tn will be NULL and we can sort
  764. * out parent suffix lengths as a part of trie_rebalance
  765. */
  766. while (tn->slen < l->slen) {
  767. tn->slen = l->slen;
  768. tn = node_parent(tn);
  769. }
  770. }
  771. /* rcu_read_lock needs to be hold by caller from readside */
  772. static struct key_vector *fib_find_node(struct trie *t,
  773. struct key_vector **tp, u32 key)
  774. {
  775. struct key_vector *pn, *n = t->kv;
  776. unsigned long index = 0;
  777. do {
  778. pn = n;
  779. n = get_child_rcu(n, index);
  780. if (!n)
  781. break;
  782. index = get_cindex(key, n);
  783. /* This bit of code is a bit tricky but it combines multiple
  784. * checks into a single check. The prefix consists of the
  785. * prefix plus zeros for the bits in the cindex. The index
  786. * is the difference between the key and this value. From
  787. * this we can actually derive several pieces of data.
  788. * if (index >= (1ul << bits))
  789. * we have a mismatch in skip bits and failed
  790. * else
  791. * we know the value is cindex
  792. *
  793. * This check is safe even if bits == KEYLENGTH due to the
  794. * fact that we can only allocate a node with 32 bits if a
  795. * long is greater than 32 bits.
  796. */
  797. if (index >= (1ul << n->bits)) {
  798. n = NULL;
  799. break;
  800. }
  801. /* keep searching until we find a perfect match leaf or NULL */
  802. } while (IS_TNODE(n));
  803. *tp = pn;
  804. return n;
  805. }
  806. /* Return the first fib alias matching TOS with
  807. * priority less than or equal to PRIO.
  808. */
  809. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  810. u8 tos, u32 prio, u32 tb_id)
  811. {
  812. struct fib_alias *fa;
  813. if (!fah)
  814. return NULL;
  815. hlist_for_each_entry(fa, fah, fa_list) {
  816. if (fa->fa_slen < slen)
  817. continue;
  818. if (fa->fa_slen != slen)
  819. break;
  820. if (fa->tb_id > tb_id)
  821. continue;
  822. if (fa->tb_id != tb_id)
  823. break;
  824. if (fa->fa_tos > tos)
  825. continue;
  826. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  827. return fa;
  828. }
  829. return NULL;
  830. }
  831. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  832. {
  833. while (!IS_TRIE(tn))
  834. tn = resize(t, tn);
  835. }
  836. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  837. struct fib_alias *new, t_key key)
  838. {
  839. struct key_vector *n, *l;
  840. l = leaf_new(key, new);
  841. if (!l)
  842. goto noleaf;
  843. /* retrieve child from parent node */
  844. n = get_child(tp, get_index(key, tp));
  845. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  846. *
  847. * Add a new tnode here
  848. * first tnode need some special handling
  849. * leaves us in position for handling as case 3
  850. */
  851. if (n) {
  852. struct key_vector *tn;
  853. tn = tnode_new(key, __fls(key ^ n->key), 1);
  854. if (!tn)
  855. goto notnode;
  856. /* initialize routes out of node */
  857. NODE_INIT_PARENT(tn, tp);
  858. put_child(tn, get_index(key, tn) ^ 1, n);
  859. /* start adding routes into the node */
  860. put_child_root(tp, key, tn);
  861. node_set_parent(n, tn);
  862. /* parent now has a NULL spot where the leaf can go */
  863. tp = tn;
  864. }
  865. /* Case 3: n is NULL, and will just insert a new leaf */
  866. NODE_INIT_PARENT(l, tp);
  867. put_child_root(tp, key, l);
  868. trie_rebalance(t, tp);
  869. return 0;
  870. notnode:
  871. node_free(l);
  872. noleaf:
  873. return -ENOMEM;
  874. }
  875. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  876. struct key_vector *l, struct fib_alias *new,
  877. struct fib_alias *fa, t_key key)
  878. {
  879. if (!l)
  880. return fib_insert_node(t, tp, new, key);
  881. if (fa) {
  882. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  883. } else {
  884. struct fib_alias *last;
  885. hlist_for_each_entry(last, &l->leaf, fa_list) {
  886. if (new->fa_slen < last->fa_slen)
  887. break;
  888. if ((new->fa_slen == last->fa_slen) &&
  889. (new->tb_id > last->tb_id))
  890. break;
  891. fa = last;
  892. }
  893. if (fa)
  894. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  895. else
  896. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  897. }
  898. /* if we added to the tail node then we need to update slen */
  899. if (l->slen < new->fa_slen) {
  900. l->slen = new->fa_slen;
  901. leaf_push_suffix(tp, l);
  902. }
  903. return 0;
  904. }
  905. /* Caller must hold RTNL. */
  906. int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
  907. {
  908. struct trie *t = (struct trie *)tb->tb_data;
  909. struct fib_alias *fa, *new_fa;
  910. struct key_vector *l, *tp;
  911. unsigned int nlflags = 0;
  912. struct fib_info *fi;
  913. u8 plen = cfg->fc_dst_len;
  914. u8 slen = KEYLENGTH - plen;
  915. u8 tos = cfg->fc_tos;
  916. u32 key;
  917. int err;
  918. if (plen > KEYLENGTH)
  919. return -EINVAL;
  920. key = ntohl(cfg->fc_dst);
  921. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  922. if ((plen < KEYLENGTH) && (key << plen))
  923. return -EINVAL;
  924. fi = fib_create_info(cfg);
  925. if (IS_ERR(fi)) {
  926. err = PTR_ERR(fi);
  927. goto err;
  928. }
  929. l = fib_find_node(t, &tp, key);
  930. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  931. tb->tb_id) : NULL;
  932. /* Now fa, if non-NULL, points to the first fib alias
  933. * with the same keys [prefix,tos,priority], if such key already
  934. * exists or to the node before which we will insert new one.
  935. *
  936. * If fa is NULL, we will need to allocate a new one and
  937. * insert to the tail of the section matching the suffix length
  938. * of the new alias.
  939. */
  940. if (fa && fa->fa_tos == tos &&
  941. fa->fa_info->fib_priority == fi->fib_priority) {
  942. struct fib_alias *fa_first, *fa_match;
  943. err = -EEXIST;
  944. if (cfg->fc_nlflags & NLM_F_EXCL)
  945. goto out;
  946. /* We have 2 goals:
  947. * 1. Find exact match for type, scope, fib_info to avoid
  948. * duplicate routes
  949. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  950. */
  951. fa_match = NULL;
  952. fa_first = fa;
  953. hlist_for_each_entry_from(fa, fa_list) {
  954. if ((fa->fa_slen != slen) ||
  955. (fa->tb_id != tb->tb_id) ||
  956. (fa->fa_tos != tos))
  957. break;
  958. if (fa->fa_info->fib_priority != fi->fib_priority)
  959. break;
  960. if (fa->fa_type == cfg->fc_type &&
  961. fa->fa_info == fi) {
  962. fa_match = fa;
  963. break;
  964. }
  965. }
  966. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  967. struct fib_info *fi_drop;
  968. u8 state;
  969. fa = fa_first;
  970. if (fa_match) {
  971. if (fa == fa_match)
  972. err = 0;
  973. goto out;
  974. }
  975. err = -ENOBUFS;
  976. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  977. if (!new_fa)
  978. goto out;
  979. fi_drop = fa->fa_info;
  980. new_fa->fa_tos = fa->fa_tos;
  981. new_fa->fa_info = fi;
  982. new_fa->fa_type = cfg->fc_type;
  983. state = fa->fa_state;
  984. new_fa->fa_state = state & ~FA_S_ACCESSED;
  985. new_fa->fa_slen = fa->fa_slen;
  986. new_fa->tb_id = tb->tb_id;
  987. new_fa->fa_default = -1;
  988. err = switchdev_fib_ipv4_add(key, plen, fi,
  989. new_fa->fa_tos,
  990. cfg->fc_type,
  991. cfg->fc_nlflags,
  992. tb->tb_id);
  993. if (err) {
  994. switchdev_fib_ipv4_abort(fi);
  995. kmem_cache_free(fn_alias_kmem, new_fa);
  996. goto out;
  997. }
  998. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  999. alias_free_mem_rcu(fa);
  1000. fib_release_info(fi_drop);
  1001. if (state & FA_S_ACCESSED)
  1002. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1003. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1004. tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
  1005. goto succeeded;
  1006. }
  1007. /* Error if we find a perfect match which
  1008. * uses the same scope, type, and nexthop
  1009. * information.
  1010. */
  1011. if (fa_match)
  1012. goto out;
  1013. if (cfg->fc_nlflags & NLM_F_APPEND)
  1014. nlflags = NLM_F_APPEND;
  1015. else
  1016. fa = fa_first;
  1017. }
  1018. err = -ENOENT;
  1019. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1020. goto out;
  1021. err = -ENOBUFS;
  1022. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1023. if (!new_fa)
  1024. goto out;
  1025. new_fa->fa_info = fi;
  1026. new_fa->fa_tos = tos;
  1027. new_fa->fa_type = cfg->fc_type;
  1028. new_fa->fa_state = 0;
  1029. new_fa->fa_slen = slen;
  1030. new_fa->tb_id = tb->tb_id;
  1031. new_fa->fa_default = -1;
  1032. /* (Optionally) offload fib entry to switch hardware. */
  1033. err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
  1034. cfg->fc_nlflags, tb->tb_id);
  1035. if (err) {
  1036. switchdev_fib_ipv4_abort(fi);
  1037. goto out_free_new_fa;
  1038. }
  1039. /* Insert new entry to the list. */
  1040. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1041. if (err)
  1042. goto out_sw_fib_del;
  1043. if (!plen)
  1044. tb->tb_num_default++;
  1045. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1046. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1047. &cfg->fc_nlinfo, nlflags);
  1048. succeeded:
  1049. return 0;
  1050. out_sw_fib_del:
  1051. switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
  1052. out_free_new_fa:
  1053. kmem_cache_free(fn_alias_kmem, new_fa);
  1054. out:
  1055. fib_release_info(fi);
  1056. err:
  1057. return err;
  1058. }
  1059. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1060. {
  1061. t_key prefix = n->key;
  1062. return (key ^ prefix) & (prefix | -prefix);
  1063. }
  1064. /* should be called with rcu_read_lock */
  1065. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1066. struct fib_result *res, int fib_flags)
  1067. {
  1068. struct trie *t = (struct trie *) tb->tb_data;
  1069. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1070. struct trie_use_stats __percpu *stats = t->stats;
  1071. #endif
  1072. const t_key key = ntohl(flp->daddr);
  1073. struct key_vector *n, *pn;
  1074. struct fib_alias *fa;
  1075. unsigned long index;
  1076. t_key cindex;
  1077. trace_fib_table_lookup(tb->tb_id, flp);
  1078. pn = t->kv;
  1079. cindex = 0;
  1080. n = get_child_rcu(pn, cindex);
  1081. if (!n)
  1082. return -EAGAIN;
  1083. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1084. this_cpu_inc(stats->gets);
  1085. #endif
  1086. /* Step 1: Travel to the longest prefix match in the trie */
  1087. for (;;) {
  1088. index = get_cindex(key, n);
  1089. /* This bit of code is a bit tricky but it combines multiple
  1090. * checks into a single check. The prefix consists of the
  1091. * prefix plus zeros for the "bits" in the prefix. The index
  1092. * is the difference between the key and this value. From
  1093. * this we can actually derive several pieces of data.
  1094. * if (index >= (1ul << bits))
  1095. * we have a mismatch in skip bits and failed
  1096. * else
  1097. * we know the value is cindex
  1098. *
  1099. * This check is safe even if bits == KEYLENGTH due to the
  1100. * fact that we can only allocate a node with 32 bits if a
  1101. * long is greater than 32 bits.
  1102. */
  1103. if (index >= (1ul << n->bits))
  1104. break;
  1105. /* we have found a leaf. Prefixes have already been compared */
  1106. if (IS_LEAF(n))
  1107. goto found;
  1108. /* only record pn and cindex if we are going to be chopping
  1109. * bits later. Otherwise we are just wasting cycles.
  1110. */
  1111. if (n->slen > n->pos) {
  1112. pn = n;
  1113. cindex = index;
  1114. }
  1115. n = get_child_rcu(n, index);
  1116. if (unlikely(!n))
  1117. goto backtrace;
  1118. }
  1119. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1120. for (;;) {
  1121. /* record the pointer where our next node pointer is stored */
  1122. struct key_vector __rcu **cptr = n->tnode;
  1123. /* This test verifies that none of the bits that differ
  1124. * between the key and the prefix exist in the region of
  1125. * the lsb and higher in the prefix.
  1126. */
  1127. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1128. goto backtrace;
  1129. /* exit out and process leaf */
  1130. if (unlikely(IS_LEAF(n)))
  1131. break;
  1132. /* Don't bother recording parent info. Since we are in
  1133. * prefix match mode we will have to come back to wherever
  1134. * we started this traversal anyway
  1135. */
  1136. while ((n = rcu_dereference(*cptr)) == NULL) {
  1137. backtrace:
  1138. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1139. if (!n)
  1140. this_cpu_inc(stats->null_node_hit);
  1141. #endif
  1142. /* If we are at cindex 0 there are no more bits for
  1143. * us to strip at this level so we must ascend back
  1144. * up one level to see if there are any more bits to
  1145. * be stripped there.
  1146. */
  1147. while (!cindex) {
  1148. t_key pkey = pn->key;
  1149. /* If we don't have a parent then there is
  1150. * nothing for us to do as we do not have any
  1151. * further nodes to parse.
  1152. */
  1153. if (IS_TRIE(pn))
  1154. return -EAGAIN;
  1155. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1156. this_cpu_inc(stats->backtrack);
  1157. #endif
  1158. /* Get Child's index */
  1159. pn = node_parent_rcu(pn);
  1160. cindex = get_index(pkey, pn);
  1161. }
  1162. /* strip the least significant bit from the cindex */
  1163. cindex &= cindex - 1;
  1164. /* grab pointer for next child node */
  1165. cptr = &pn->tnode[cindex];
  1166. }
  1167. }
  1168. found:
  1169. /* this line carries forward the xor from earlier in the function */
  1170. index = key ^ n->key;
  1171. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1172. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1173. struct fib_info *fi = fa->fa_info;
  1174. int nhsel, err;
  1175. if ((index >= (1ul << fa->fa_slen)) &&
  1176. ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
  1177. continue;
  1178. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1179. continue;
  1180. if (fi->fib_dead)
  1181. continue;
  1182. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1183. continue;
  1184. fib_alias_accessed(fa);
  1185. err = fib_props[fa->fa_type].error;
  1186. if (unlikely(err < 0)) {
  1187. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1188. this_cpu_inc(stats->semantic_match_passed);
  1189. #endif
  1190. return err;
  1191. }
  1192. if (fi->fib_flags & RTNH_F_DEAD)
  1193. continue;
  1194. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1195. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1196. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1197. if (nh->nh_flags & RTNH_F_DEAD)
  1198. continue;
  1199. if (in_dev &&
  1200. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1201. nh->nh_flags & RTNH_F_LINKDOWN &&
  1202. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1203. continue;
  1204. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1205. if (flp->flowi4_oif &&
  1206. flp->flowi4_oif != nh->nh_oif)
  1207. continue;
  1208. }
  1209. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1210. atomic_inc(&fi->fib_clntref);
  1211. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1212. res->nh_sel = nhsel;
  1213. res->type = fa->fa_type;
  1214. res->scope = fi->fib_scope;
  1215. res->fi = fi;
  1216. res->table = tb;
  1217. res->fa_head = &n->leaf;
  1218. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1219. this_cpu_inc(stats->semantic_match_passed);
  1220. #endif
  1221. trace_fib_table_lookup_nh(nh);
  1222. return err;
  1223. }
  1224. }
  1225. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1226. this_cpu_inc(stats->semantic_match_miss);
  1227. #endif
  1228. goto backtrace;
  1229. }
  1230. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1231. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1232. struct key_vector *l, struct fib_alias *old)
  1233. {
  1234. /* record the location of the previous list_info entry */
  1235. struct hlist_node **pprev = old->fa_list.pprev;
  1236. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1237. /* remove the fib_alias from the list */
  1238. hlist_del_rcu(&old->fa_list);
  1239. /* if we emptied the list this leaf will be freed and we can sort
  1240. * out parent suffix lengths as a part of trie_rebalance
  1241. */
  1242. if (hlist_empty(&l->leaf)) {
  1243. put_child_root(tp, l->key, NULL);
  1244. node_free(l);
  1245. trie_rebalance(t, tp);
  1246. return;
  1247. }
  1248. /* only access fa if it is pointing at the last valid hlist_node */
  1249. if (*pprev)
  1250. return;
  1251. /* update the trie with the latest suffix length */
  1252. l->slen = fa->fa_slen;
  1253. leaf_pull_suffix(tp, l);
  1254. }
  1255. /* Caller must hold RTNL. */
  1256. int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
  1257. {
  1258. struct trie *t = (struct trie *) tb->tb_data;
  1259. struct fib_alias *fa, *fa_to_delete;
  1260. struct key_vector *l, *tp;
  1261. u8 plen = cfg->fc_dst_len;
  1262. u8 slen = KEYLENGTH - plen;
  1263. u8 tos = cfg->fc_tos;
  1264. u32 key;
  1265. if (plen > KEYLENGTH)
  1266. return -EINVAL;
  1267. key = ntohl(cfg->fc_dst);
  1268. if ((plen < KEYLENGTH) && (key << plen))
  1269. return -EINVAL;
  1270. l = fib_find_node(t, &tp, key);
  1271. if (!l)
  1272. return -ESRCH;
  1273. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1274. if (!fa)
  1275. return -ESRCH;
  1276. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1277. fa_to_delete = NULL;
  1278. hlist_for_each_entry_from(fa, fa_list) {
  1279. struct fib_info *fi = fa->fa_info;
  1280. if ((fa->fa_slen != slen) ||
  1281. (fa->tb_id != tb->tb_id) ||
  1282. (fa->fa_tos != tos))
  1283. break;
  1284. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1285. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1286. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1287. (!cfg->fc_prefsrc ||
  1288. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1289. (!cfg->fc_protocol ||
  1290. fi->fib_protocol == cfg->fc_protocol) &&
  1291. fib_nh_match(cfg, fi) == 0) {
  1292. fa_to_delete = fa;
  1293. break;
  1294. }
  1295. }
  1296. if (!fa_to_delete)
  1297. return -ESRCH;
  1298. switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
  1299. cfg->fc_type, tb->tb_id);
  1300. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1301. &cfg->fc_nlinfo, 0);
  1302. if (!plen)
  1303. tb->tb_num_default--;
  1304. fib_remove_alias(t, tp, l, fa_to_delete);
  1305. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1306. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1307. fib_release_info(fa_to_delete->fa_info);
  1308. alias_free_mem_rcu(fa_to_delete);
  1309. return 0;
  1310. }
  1311. /* Scan for the next leaf starting at the provided key value */
  1312. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1313. {
  1314. struct key_vector *pn, *n = *tn;
  1315. unsigned long cindex;
  1316. /* this loop is meant to try and find the key in the trie */
  1317. do {
  1318. /* record parent and next child index */
  1319. pn = n;
  1320. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1321. if (cindex >> pn->bits)
  1322. break;
  1323. /* descend into the next child */
  1324. n = get_child_rcu(pn, cindex++);
  1325. if (!n)
  1326. break;
  1327. /* guarantee forward progress on the keys */
  1328. if (IS_LEAF(n) && (n->key >= key))
  1329. goto found;
  1330. } while (IS_TNODE(n));
  1331. /* this loop will search for the next leaf with a greater key */
  1332. while (!IS_TRIE(pn)) {
  1333. /* if we exhausted the parent node we will need to climb */
  1334. if (cindex >= (1ul << pn->bits)) {
  1335. t_key pkey = pn->key;
  1336. pn = node_parent_rcu(pn);
  1337. cindex = get_index(pkey, pn) + 1;
  1338. continue;
  1339. }
  1340. /* grab the next available node */
  1341. n = get_child_rcu(pn, cindex++);
  1342. if (!n)
  1343. continue;
  1344. /* no need to compare keys since we bumped the index */
  1345. if (IS_LEAF(n))
  1346. goto found;
  1347. /* Rescan start scanning in new node */
  1348. pn = n;
  1349. cindex = 0;
  1350. }
  1351. *tn = pn;
  1352. return NULL; /* Root of trie */
  1353. found:
  1354. /* if we are at the limit for keys just return NULL for the tnode */
  1355. *tn = pn;
  1356. return n;
  1357. }
  1358. static void fib_trie_free(struct fib_table *tb)
  1359. {
  1360. struct trie *t = (struct trie *)tb->tb_data;
  1361. struct key_vector *pn = t->kv;
  1362. unsigned long cindex = 1;
  1363. struct hlist_node *tmp;
  1364. struct fib_alias *fa;
  1365. /* walk trie in reverse order and free everything */
  1366. for (;;) {
  1367. struct key_vector *n;
  1368. if (!(cindex--)) {
  1369. t_key pkey = pn->key;
  1370. if (IS_TRIE(pn))
  1371. break;
  1372. n = pn;
  1373. pn = node_parent(pn);
  1374. /* drop emptied tnode */
  1375. put_child_root(pn, n->key, NULL);
  1376. node_free(n);
  1377. cindex = get_index(pkey, pn);
  1378. continue;
  1379. }
  1380. /* grab the next available node */
  1381. n = get_child(pn, cindex);
  1382. if (!n)
  1383. continue;
  1384. if (IS_TNODE(n)) {
  1385. /* record pn and cindex for leaf walking */
  1386. pn = n;
  1387. cindex = 1ul << n->bits;
  1388. continue;
  1389. }
  1390. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1391. hlist_del_rcu(&fa->fa_list);
  1392. alias_free_mem_rcu(fa);
  1393. }
  1394. put_child_root(pn, n->key, NULL);
  1395. node_free(n);
  1396. }
  1397. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1398. free_percpu(t->stats);
  1399. #endif
  1400. kfree(tb);
  1401. }
  1402. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1403. {
  1404. struct trie *ot = (struct trie *)oldtb->tb_data;
  1405. struct key_vector *l, *tp = ot->kv;
  1406. struct fib_table *local_tb;
  1407. struct fib_alias *fa;
  1408. struct trie *lt;
  1409. t_key key = 0;
  1410. if (oldtb->tb_data == oldtb->__data)
  1411. return oldtb;
  1412. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1413. if (!local_tb)
  1414. return NULL;
  1415. lt = (struct trie *)local_tb->tb_data;
  1416. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1417. struct key_vector *local_l = NULL, *local_tp;
  1418. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1419. struct fib_alias *new_fa;
  1420. if (local_tb->tb_id != fa->tb_id)
  1421. continue;
  1422. /* clone fa for new local table */
  1423. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1424. if (!new_fa)
  1425. goto out;
  1426. memcpy(new_fa, fa, sizeof(*fa));
  1427. /* insert clone into table */
  1428. if (!local_l)
  1429. local_l = fib_find_node(lt, &local_tp, l->key);
  1430. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1431. NULL, l->key))
  1432. goto out;
  1433. }
  1434. /* stop loop if key wrapped back to 0 */
  1435. key = l->key + 1;
  1436. if (key < l->key)
  1437. break;
  1438. }
  1439. return local_tb;
  1440. out:
  1441. fib_trie_free(local_tb);
  1442. return NULL;
  1443. }
  1444. /* Caller must hold RTNL */
  1445. void fib_table_flush_external(struct fib_table *tb)
  1446. {
  1447. struct trie *t = (struct trie *)tb->tb_data;
  1448. struct key_vector *pn = t->kv;
  1449. unsigned long cindex = 1;
  1450. struct hlist_node *tmp;
  1451. struct fib_alias *fa;
  1452. /* walk trie in reverse order */
  1453. for (;;) {
  1454. unsigned char slen = 0;
  1455. struct key_vector *n;
  1456. if (!(cindex--)) {
  1457. t_key pkey = pn->key;
  1458. /* cannot resize the trie vector */
  1459. if (IS_TRIE(pn))
  1460. break;
  1461. /* resize completed node */
  1462. pn = resize(t, pn);
  1463. cindex = get_index(pkey, pn);
  1464. continue;
  1465. }
  1466. /* grab the next available node */
  1467. n = get_child(pn, cindex);
  1468. if (!n)
  1469. continue;
  1470. if (IS_TNODE(n)) {
  1471. /* record pn and cindex for leaf walking */
  1472. pn = n;
  1473. cindex = 1ul << n->bits;
  1474. continue;
  1475. }
  1476. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1477. struct fib_info *fi = fa->fa_info;
  1478. /* if alias was cloned to local then we just
  1479. * need to remove the local copy from main
  1480. */
  1481. if (tb->tb_id != fa->tb_id) {
  1482. hlist_del_rcu(&fa->fa_list);
  1483. alias_free_mem_rcu(fa);
  1484. continue;
  1485. }
  1486. /* record local slen */
  1487. slen = fa->fa_slen;
  1488. if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
  1489. continue;
  1490. switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
  1491. fi, fa->fa_tos, fa->fa_type,
  1492. tb->tb_id);
  1493. }
  1494. /* update leaf slen */
  1495. n->slen = slen;
  1496. if (hlist_empty(&n->leaf)) {
  1497. put_child_root(pn, n->key, NULL);
  1498. node_free(n);
  1499. }
  1500. }
  1501. }
  1502. /* Caller must hold RTNL. */
  1503. int fib_table_flush(struct fib_table *tb)
  1504. {
  1505. struct trie *t = (struct trie *)tb->tb_data;
  1506. struct key_vector *pn = t->kv;
  1507. unsigned long cindex = 1;
  1508. struct hlist_node *tmp;
  1509. struct fib_alias *fa;
  1510. int found = 0;
  1511. /* walk trie in reverse order */
  1512. for (;;) {
  1513. unsigned char slen = 0;
  1514. struct key_vector *n;
  1515. if (!(cindex--)) {
  1516. t_key pkey = pn->key;
  1517. /* cannot resize the trie vector */
  1518. if (IS_TRIE(pn))
  1519. break;
  1520. /* resize completed node */
  1521. pn = resize(t, pn);
  1522. cindex = get_index(pkey, pn);
  1523. continue;
  1524. }
  1525. /* grab the next available node */
  1526. n = get_child(pn, cindex);
  1527. if (!n)
  1528. continue;
  1529. if (IS_TNODE(n)) {
  1530. /* record pn and cindex for leaf walking */
  1531. pn = n;
  1532. cindex = 1ul << n->bits;
  1533. continue;
  1534. }
  1535. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1536. struct fib_info *fi = fa->fa_info;
  1537. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1538. slen = fa->fa_slen;
  1539. continue;
  1540. }
  1541. switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
  1542. fi, fa->fa_tos, fa->fa_type,
  1543. tb->tb_id);
  1544. hlist_del_rcu(&fa->fa_list);
  1545. fib_release_info(fa->fa_info);
  1546. alias_free_mem_rcu(fa);
  1547. found++;
  1548. }
  1549. /* update leaf slen */
  1550. n->slen = slen;
  1551. if (hlist_empty(&n->leaf)) {
  1552. put_child_root(pn, n->key, NULL);
  1553. node_free(n);
  1554. }
  1555. }
  1556. pr_debug("trie_flush found=%d\n", found);
  1557. return found;
  1558. }
  1559. static void __trie_free_rcu(struct rcu_head *head)
  1560. {
  1561. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1562. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1563. struct trie *t = (struct trie *)tb->tb_data;
  1564. if (tb->tb_data == tb->__data)
  1565. free_percpu(t->stats);
  1566. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1567. kfree(tb);
  1568. }
  1569. void fib_free_table(struct fib_table *tb)
  1570. {
  1571. call_rcu(&tb->rcu, __trie_free_rcu);
  1572. }
  1573. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1574. struct sk_buff *skb, struct netlink_callback *cb)
  1575. {
  1576. __be32 xkey = htonl(l->key);
  1577. struct fib_alias *fa;
  1578. int i, s_i;
  1579. s_i = cb->args[4];
  1580. i = 0;
  1581. /* rcu_read_lock is hold by caller */
  1582. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1583. if (i < s_i) {
  1584. i++;
  1585. continue;
  1586. }
  1587. if (tb->tb_id != fa->tb_id) {
  1588. i++;
  1589. continue;
  1590. }
  1591. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1592. cb->nlh->nlmsg_seq,
  1593. RTM_NEWROUTE,
  1594. tb->tb_id,
  1595. fa->fa_type,
  1596. xkey,
  1597. KEYLENGTH - fa->fa_slen,
  1598. fa->fa_tos,
  1599. fa->fa_info, NLM_F_MULTI) < 0) {
  1600. cb->args[4] = i;
  1601. return -1;
  1602. }
  1603. i++;
  1604. }
  1605. cb->args[4] = i;
  1606. return skb->len;
  1607. }
  1608. /* rcu_read_lock needs to be hold by caller from readside */
  1609. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1610. struct netlink_callback *cb)
  1611. {
  1612. struct trie *t = (struct trie *)tb->tb_data;
  1613. struct key_vector *l, *tp = t->kv;
  1614. /* Dump starting at last key.
  1615. * Note: 0.0.0.0/0 (ie default) is first key.
  1616. */
  1617. int count = cb->args[2];
  1618. t_key key = cb->args[3];
  1619. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1620. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1621. cb->args[3] = key;
  1622. cb->args[2] = count;
  1623. return -1;
  1624. }
  1625. ++count;
  1626. key = l->key + 1;
  1627. memset(&cb->args[4], 0,
  1628. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1629. /* stop loop if key wrapped back to 0 */
  1630. if (key < l->key)
  1631. break;
  1632. }
  1633. cb->args[3] = key;
  1634. cb->args[2] = count;
  1635. return skb->len;
  1636. }
  1637. void __init fib_trie_init(void)
  1638. {
  1639. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1640. sizeof(struct fib_alias),
  1641. 0, SLAB_PANIC, NULL);
  1642. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1643. LEAF_SIZE,
  1644. 0, SLAB_PANIC, NULL);
  1645. }
  1646. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1647. {
  1648. struct fib_table *tb;
  1649. struct trie *t;
  1650. size_t sz = sizeof(*tb);
  1651. if (!alias)
  1652. sz += sizeof(struct trie);
  1653. tb = kzalloc(sz, GFP_KERNEL);
  1654. if (!tb)
  1655. return NULL;
  1656. tb->tb_id = id;
  1657. tb->tb_num_default = 0;
  1658. tb->tb_data = (alias ? alias->__data : tb->__data);
  1659. if (alias)
  1660. return tb;
  1661. t = (struct trie *) tb->tb_data;
  1662. t->kv[0].pos = KEYLENGTH;
  1663. t->kv[0].slen = KEYLENGTH;
  1664. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1665. t->stats = alloc_percpu(struct trie_use_stats);
  1666. if (!t->stats) {
  1667. kfree(tb);
  1668. tb = NULL;
  1669. }
  1670. #endif
  1671. return tb;
  1672. }
  1673. #ifdef CONFIG_PROC_FS
  1674. /* Depth first Trie walk iterator */
  1675. struct fib_trie_iter {
  1676. struct seq_net_private p;
  1677. struct fib_table *tb;
  1678. struct key_vector *tnode;
  1679. unsigned int index;
  1680. unsigned int depth;
  1681. };
  1682. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1683. {
  1684. unsigned long cindex = iter->index;
  1685. struct key_vector *pn = iter->tnode;
  1686. t_key pkey;
  1687. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1688. iter->tnode, iter->index, iter->depth);
  1689. while (!IS_TRIE(pn)) {
  1690. while (cindex < child_length(pn)) {
  1691. struct key_vector *n = get_child_rcu(pn, cindex++);
  1692. if (!n)
  1693. continue;
  1694. if (IS_LEAF(n)) {
  1695. iter->tnode = pn;
  1696. iter->index = cindex;
  1697. } else {
  1698. /* push down one level */
  1699. iter->tnode = n;
  1700. iter->index = 0;
  1701. ++iter->depth;
  1702. }
  1703. return n;
  1704. }
  1705. /* Current node exhausted, pop back up */
  1706. pkey = pn->key;
  1707. pn = node_parent_rcu(pn);
  1708. cindex = get_index(pkey, pn) + 1;
  1709. --iter->depth;
  1710. }
  1711. /* record root node so further searches know we are done */
  1712. iter->tnode = pn;
  1713. iter->index = 0;
  1714. return NULL;
  1715. }
  1716. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1717. struct trie *t)
  1718. {
  1719. struct key_vector *n, *pn;
  1720. if (!t)
  1721. return NULL;
  1722. pn = t->kv;
  1723. n = rcu_dereference(pn->tnode[0]);
  1724. if (!n)
  1725. return NULL;
  1726. if (IS_TNODE(n)) {
  1727. iter->tnode = n;
  1728. iter->index = 0;
  1729. iter->depth = 1;
  1730. } else {
  1731. iter->tnode = pn;
  1732. iter->index = 0;
  1733. iter->depth = 0;
  1734. }
  1735. return n;
  1736. }
  1737. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1738. {
  1739. struct key_vector *n;
  1740. struct fib_trie_iter iter;
  1741. memset(s, 0, sizeof(*s));
  1742. rcu_read_lock();
  1743. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1744. if (IS_LEAF(n)) {
  1745. struct fib_alias *fa;
  1746. s->leaves++;
  1747. s->totdepth += iter.depth;
  1748. if (iter.depth > s->maxdepth)
  1749. s->maxdepth = iter.depth;
  1750. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1751. ++s->prefixes;
  1752. } else {
  1753. s->tnodes++;
  1754. if (n->bits < MAX_STAT_DEPTH)
  1755. s->nodesizes[n->bits]++;
  1756. s->nullpointers += tn_info(n)->empty_children;
  1757. }
  1758. }
  1759. rcu_read_unlock();
  1760. }
  1761. /*
  1762. * This outputs /proc/net/fib_triestats
  1763. */
  1764. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1765. {
  1766. unsigned int i, max, pointers, bytes, avdepth;
  1767. if (stat->leaves)
  1768. avdepth = stat->totdepth*100 / stat->leaves;
  1769. else
  1770. avdepth = 0;
  1771. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1772. avdepth / 100, avdepth % 100);
  1773. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1774. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1775. bytes = LEAF_SIZE * stat->leaves;
  1776. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1777. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1778. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1779. bytes += TNODE_SIZE(0) * stat->tnodes;
  1780. max = MAX_STAT_DEPTH;
  1781. while (max > 0 && stat->nodesizes[max-1] == 0)
  1782. max--;
  1783. pointers = 0;
  1784. for (i = 1; i < max; i++)
  1785. if (stat->nodesizes[i] != 0) {
  1786. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1787. pointers += (1<<i) * stat->nodesizes[i];
  1788. }
  1789. seq_putc(seq, '\n');
  1790. seq_printf(seq, "\tPointers: %u\n", pointers);
  1791. bytes += sizeof(struct key_vector *) * pointers;
  1792. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1793. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1794. }
  1795. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1796. static void trie_show_usage(struct seq_file *seq,
  1797. const struct trie_use_stats __percpu *stats)
  1798. {
  1799. struct trie_use_stats s = { 0 };
  1800. int cpu;
  1801. /* loop through all of the CPUs and gather up the stats */
  1802. for_each_possible_cpu(cpu) {
  1803. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1804. s.gets += pcpu->gets;
  1805. s.backtrack += pcpu->backtrack;
  1806. s.semantic_match_passed += pcpu->semantic_match_passed;
  1807. s.semantic_match_miss += pcpu->semantic_match_miss;
  1808. s.null_node_hit += pcpu->null_node_hit;
  1809. s.resize_node_skipped += pcpu->resize_node_skipped;
  1810. }
  1811. seq_printf(seq, "\nCounters:\n---------\n");
  1812. seq_printf(seq, "gets = %u\n", s.gets);
  1813. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1814. seq_printf(seq, "semantic match passed = %u\n",
  1815. s.semantic_match_passed);
  1816. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1817. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1818. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1819. }
  1820. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1821. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1822. {
  1823. if (tb->tb_id == RT_TABLE_LOCAL)
  1824. seq_puts(seq, "Local:\n");
  1825. else if (tb->tb_id == RT_TABLE_MAIN)
  1826. seq_puts(seq, "Main:\n");
  1827. else
  1828. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1829. }
  1830. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1831. {
  1832. struct net *net = (struct net *)seq->private;
  1833. unsigned int h;
  1834. seq_printf(seq,
  1835. "Basic info: size of leaf:"
  1836. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1837. LEAF_SIZE, TNODE_SIZE(0));
  1838. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1839. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1840. struct fib_table *tb;
  1841. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1842. struct trie *t = (struct trie *) tb->tb_data;
  1843. struct trie_stat stat;
  1844. if (!t)
  1845. continue;
  1846. fib_table_print(seq, tb);
  1847. trie_collect_stats(t, &stat);
  1848. trie_show_stats(seq, &stat);
  1849. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1850. trie_show_usage(seq, t->stats);
  1851. #endif
  1852. }
  1853. }
  1854. return 0;
  1855. }
  1856. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1857. {
  1858. return single_open_net(inode, file, fib_triestat_seq_show);
  1859. }
  1860. static const struct file_operations fib_triestat_fops = {
  1861. .owner = THIS_MODULE,
  1862. .open = fib_triestat_seq_open,
  1863. .read = seq_read,
  1864. .llseek = seq_lseek,
  1865. .release = single_release_net,
  1866. };
  1867. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1868. {
  1869. struct fib_trie_iter *iter = seq->private;
  1870. struct net *net = seq_file_net(seq);
  1871. loff_t idx = 0;
  1872. unsigned int h;
  1873. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1874. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1875. struct fib_table *tb;
  1876. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1877. struct key_vector *n;
  1878. for (n = fib_trie_get_first(iter,
  1879. (struct trie *) tb->tb_data);
  1880. n; n = fib_trie_get_next(iter))
  1881. if (pos == idx++) {
  1882. iter->tb = tb;
  1883. return n;
  1884. }
  1885. }
  1886. }
  1887. return NULL;
  1888. }
  1889. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1890. __acquires(RCU)
  1891. {
  1892. rcu_read_lock();
  1893. return fib_trie_get_idx(seq, *pos);
  1894. }
  1895. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1896. {
  1897. struct fib_trie_iter *iter = seq->private;
  1898. struct net *net = seq_file_net(seq);
  1899. struct fib_table *tb = iter->tb;
  1900. struct hlist_node *tb_node;
  1901. unsigned int h;
  1902. struct key_vector *n;
  1903. ++*pos;
  1904. /* next node in same table */
  1905. n = fib_trie_get_next(iter);
  1906. if (n)
  1907. return n;
  1908. /* walk rest of this hash chain */
  1909. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1910. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1911. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1912. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1913. if (n)
  1914. goto found;
  1915. }
  1916. /* new hash chain */
  1917. while (++h < FIB_TABLE_HASHSZ) {
  1918. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1919. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1920. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1921. if (n)
  1922. goto found;
  1923. }
  1924. }
  1925. return NULL;
  1926. found:
  1927. iter->tb = tb;
  1928. return n;
  1929. }
  1930. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  1931. __releases(RCU)
  1932. {
  1933. rcu_read_unlock();
  1934. }
  1935. static void seq_indent(struct seq_file *seq, int n)
  1936. {
  1937. while (n-- > 0)
  1938. seq_puts(seq, " ");
  1939. }
  1940. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  1941. {
  1942. switch (s) {
  1943. case RT_SCOPE_UNIVERSE: return "universe";
  1944. case RT_SCOPE_SITE: return "site";
  1945. case RT_SCOPE_LINK: return "link";
  1946. case RT_SCOPE_HOST: return "host";
  1947. case RT_SCOPE_NOWHERE: return "nowhere";
  1948. default:
  1949. snprintf(buf, len, "scope=%d", s);
  1950. return buf;
  1951. }
  1952. }
  1953. static const char *const rtn_type_names[__RTN_MAX] = {
  1954. [RTN_UNSPEC] = "UNSPEC",
  1955. [RTN_UNICAST] = "UNICAST",
  1956. [RTN_LOCAL] = "LOCAL",
  1957. [RTN_BROADCAST] = "BROADCAST",
  1958. [RTN_ANYCAST] = "ANYCAST",
  1959. [RTN_MULTICAST] = "MULTICAST",
  1960. [RTN_BLACKHOLE] = "BLACKHOLE",
  1961. [RTN_UNREACHABLE] = "UNREACHABLE",
  1962. [RTN_PROHIBIT] = "PROHIBIT",
  1963. [RTN_THROW] = "THROW",
  1964. [RTN_NAT] = "NAT",
  1965. [RTN_XRESOLVE] = "XRESOLVE",
  1966. };
  1967. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  1968. {
  1969. if (t < __RTN_MAX && rtn_type_names[t])
  1970. return rtn_type_names[t];
  1971. snprintf(buf, len, "type %u", t);
  1972. return buf;
  1973. }
  1974. /* Pretty print the trie */
  1975. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  1976. {
  1977. const struct fib_trie_iter *iter = seq->private;
  1978. struct key_vector *n = v;
  1979. if (IS_TRIE(node_parent_rcu(n)))
  1980. fib_table_print(seq, iter->tb);
  1981. if (IS_TNODE(n)) {
  1982. __be32 prf = htonl(n->key);
  1983. seq_indent(seq, iter->depth-1);
  1984. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  1985. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  1986. tn_info(n)->full_children,
  1987. tn_info(n)->empty_children);
  1988. } else {
  1989. __be32 val = htonl(n->key);
  1990. struct fib_alias *fa;
  1991. seq_indent(seq, iter->depth);
  1992. seq_printf(seq, " |-- %pI4\n", &val);
  1993. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1994. char buf1[32], buf2[32];
  1995. seq_indent(seq, iter->depth + 1);
  1996. seq_printf(seq, " /%zu %s %s",
  1997. KEYLENGTH - fa->fa_slen,
  1998. rtn_scope(buf1, sizeof(buf1),
  1999. fa->fa_info->fib_scope),
  2000. rtn_type(buf2, sizeof(buf2),
  2001. fa->fa_type));
  2002. if (fa->fa_tos)
  2003. seq_printf(seq, " tos=%d", fa->fa_tos);
  2004. seq_putc(seq, '\n');
  2005. }
  2006. }
  2007. return 0;
  2008. }
  2009. static const struct seq_operations fib_trie_seq_ops = {
  2010. .start = fib_trie_seq_start,
  2011. .next = fib_trie_seq_next,
  2012. .stop = fib_trie_seq_stop,
  2013. .show = fib_trie_seq_show,
  2014. };
  2015. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2016. {
  2017. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2018. sizeof(struct fib_trie_iter));
  2019. }
  2020. static const struct file_operations fib_trie_fops = {
  2021. .owner = THIS_MODULE,
  2022. .open = fib_trie_seq_open,
  2023. .read = seq_read,
  2024. .llseek = seq_lseek,
  2025. .release = seq_release_net,
  2026. };
  2027. struct fib_route_iter {
  2028. struct seq_net_private p;
  2029. struct fib_table *main_tb;
  2030. struct key_vector *tnode;
  2031. loff_t pos;
  2032. t_key key;
  2033. };
  2034. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2035. loff_t pos)
  2036. {
  2037. struct fib_table *tb = iter->main_tb;
  2038. struct key_vector *l, **tp = &iter->tnode;
  2039. struct trie *t;
  2040. t_key key;
  2041. /* use cache location of next-to-find key */
  2042. if (iter->pos > 0 && pos >= iter->pos) {
  2043. pos -= iter->pos;
  2044. key = iter->key;
  2045. } else {
  2046. t = (struct trie *)tb->tb_data;
  2047. iter->tnode = t->kv;
  2048. iter->pos = 0;
  2049. key = 0;
  2050. }
  2051. while ((l = leaf_walk_rcu(tp, key)) != NULL) {
  2052. key = l->key + 1;
  2053. iter->pos++;
  2054. if (--pos <= 0)
  2055. break;
  2056. l = NULL;
  2057. /* handle unlikely case of a key wrap */
  2058. if (!key)
  2059. break;
  2060. }
  2061. if (l)
  2062. iter->key = key; /* remember it */
  2063. else
  2064. iter->pos = 0; /* forget it */
  2065. return l;
  2066. }
  2067. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2068. __acquires(RCU)
  2069. {
  2070. struct fib_route_iter *iter = seq->private;
  2071. struct fib_table *tb;
  2072. struct trie *t;
  2073. rcu_read_lock();
  2074. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2075. if (!tb)
  2076. return NULL;
  2077. iter->main_tb = tb;
  2078. if (*pos != 0)
  2079. return fib_route_get_idx(iter, *pos);
  2080. t = (struct trie *)tb->tb_data;
  2081. iter->tnode = t->kv;
  2082. iter->pos = 0;
  2083. iter->key = 0;
  2084. return SEQ_START_TOKEN;
  2085. }
  2086. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2087. {
  2088. struct fib_route_iter *iter = seq->private;
  2089. struct key_vector *l = NULL;
  2090. t_key key = iter->key;
  2091. ++*pos;
  2092. /* only allow key of 0 for start of sequence */
  2093. if ((v == SEQ_START_TOKEN) || key)
  2094. l = leaf_walk_rcu(&iter->tnode, key);
  2095. if (l) {
  2096. iter->key = l->key + 1;
  2097. iter->pos++;
  2098. } else {
  2099. iter->pos = 0;
  2100. }
  2101. return l;
  2102. }
  2103. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2104. __releases(RCU)
  2105. {
  2106. rcu_read_unlock();
  2107. }
  2108. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2109. {
  2110. unsigned int flags = 0;
  2111. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2112. flags = RTF_REJECT;
  2113. if (fi && fi->fib_nh->nh_gw)
  2114. flags |= RTF_GATEWAY;
  2115. if (mask == htonl(0xFFFFFFFF))
  2116. flags |= RTF_HOST;
  2117. flags |= RTF_UP;
  2118. return flags;
  2119. }
  2120. /*
  2121. * This outputs /proc/net/route.
  2122. * The format of the file is not supposed to be changed
  2123. * and needs to be same as fib_hash output to avoid breaking
  2124. * legacy utilities
  2125. */
  2126. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2127. {
  2128. struct fib_route_iter *iter = seq->private;
  2129. struct fib_table *tb = iter->main_tb;
  2130. struct fib_alias *fa;
  2131. struct key_vector *l = v;
  2132. __be32 prefix;
  2133. if (v == SEQ_START_TOKEN) {
  2134. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2135. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2136. "\tWindow\tIRTT");
  2137. return 0;
  2138. }
  2139. prefix = htonl(l->key);
  2140. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2141. const struct fib_info *fi = fa->fa_info;
  2142. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2143. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2144. if ((fa->fa_type == RTN_BROADCAST) ||
  2145. (fa->fa_type == RTN_MULTICAST))
  2146. continue;
  2147. if (fa->tb_id != tb->tb_id)
  2148. continue;
  2149. seq_setwidth(seq, 127);
  2150. if (fi)
  2151. seq_printf(seq,
  2152. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2153. "%d\t%08X\t%d\t%u\t%u",
  2154. fi->fib_dev ? fi->fib_dev->name : "*",
  2155. prefix,
  2156. fi->fib_nh->nh_gw, flags, 0, 0,
  2157. fi->fib_priority,
  2158. mask,
  2159. (fi->fib_advmss ?
  2160. fi->fib_advmss + 40 : 0),
  2161. fi->fib_window,
  2162. fi->fib_rtt >> 3);
  2163. else
  2164. seq_printf(seq,
  2165. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2166. "%d\t%08X\t%d\t%u\t%u",
  2167. prefix, 0, flags, 0, 0, 0,
  2168. mask, 0, 0, 0);
  2169. seq_pad(seq, '\n');
  2170. }
  2171. return 0;
  2172. }
  2173. static const struct seq_operations fib_route_seq_ops = {
  2174. .start = fib_route_seq_start,
  2175. .next = fib_route_seq_next,
  2176. .stop = fib_route_seq_stop,
  2177. .show = fib_route_seq_show,
  2178. };
  2179. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2180. {
  2181. return seq_open_net(inode, file, &fib_route_seq_ops,
  2182. sizeof(struct fib_route_iter));
  2183. }
  2184. static const struct file_operations fib_route_fops = {
  2185. .owner = THIS_MODULE,
  2186. .open = fib_route_seq_open,
  2187. .read = seq_read,
  2188. .llseek = seq_lseek,
  2189. .release = seq_release_net,
  2190. };
  2191. int __net_init fib_proc_init(struct net *net)
  2192. {
  2193. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2194. goto out1;
  2195. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2196. &fib_triestat_fops))
  2197. goto out2;
  2198. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2199. goto out3;
  2200. return 0;
  2201. out3:
  2202. remove_proc_entry("fib_triestat", net->proc_net);
  2203. out2:
  2204. remove_proc_entry("fib_trie", net->proc_net);
  2205. out1:
  2206. return -ENOMEM;
  2207. }
  2208. void __net_exit fib_proc_exit(struct net *net)
  2209. {
  2210. remove_proc_entry("fib_trie", net->proc_net);
  2211. remove_proc_entry("fib_triestat", net->proc_net);
  2212. remove_proc_entry("route", net->proc_net);
  2213. }
  2214. #endif /* CONFIG_PROC_FS */