recovery.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. /*
  17. * Roll forward recovery scenarios.
  18. *
  19. * [Term] F: fsync_mark, D: dentry_mark
  20. *
  21. * 1. inode(x) | CP | inode(x) | dnode(F)
  22. * -> Update the latest inode(x).
  23. *
  24. * 2. inode(x) | CP | inode(F) | dnode(F)
  25. * -> No problem.
  26. *
  27. * 3. inode(x) | CP | dnode(F) | inode(x)
  28. * -> Recover to the latest dnode(F), and drop the last inode(x)
  29. *
  30. * 4. inode(x) | CP | dnode(F) | inode(F)
  31. * -> No problem.
  32. *
  33. * 5. CP | inode(x) | dnode(F)
  34. * -> The inode(DF) was missing. Should drop this dnode(F).
  35. *
  36. * 6. CP | inode(DF) | dnode(F)
  37. * -> No problem.
  38. *
  39. * 7. CP | dnode(F) | inode(DF)
  40. * -> If f2fs_iget fails, then goto next to find inode(DF).
  41. *
  42. * 8. CP | dnode(F) | inode(x)
  43. * -> If f2fs_iget fails, then goto next to find inode(DF).
  44. * But it will fail due to no inode(DF).
  45. */
  46. static struct kmem_cache *fsync_entry_slab;
  47. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  48. {
  49. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  50. > sbi->user_block_count)
  51. return false;
  52. return true;
  53. }
  54. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  55. nid_t ino)
  56. {
  57. struct fsync_inode_entry *entry;
  58. list_for_each_entry(entry, head, list)
  59. if (entry->inode->i_ino == ino)
  60. return entry;
  61. return NULL;
  62. }
  63. static int recover_dentry(struct inode *inode, struct page *ipage)
  64. {
  65. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  66. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  67. struct f2fs_dir_entry *de;
  68. struct qstr name;
  69. struct page *page;
  70. struct inode *dir, *einode;
  71. int err = 0;
  72. dir = f2fs_iget(inode->i_sb, pino);
  73. if (IS_ERR(dir)) {
  74. err = PTR_ERR(dir);
  75. goto out;
  76. }
  77. if (file_enc_name(inode)) {
  78. iput(dir);
  79. return 0;
  80. }
  81. name.len = le32_to_cpu(raw_inode->i_namelen);
  82. name.name = raw_inode->i_name;
  83. if (unlikely(name.len > F2FS_NAME_LEN)) {
  84. WARN_ON(1);
  85. err = -ENAMETOOLONG;
  86. goto out_err;
  87. }
  88. retry:
  89. de = f2fs_find_entry(dir, &name, &page);
  90. if (de && inode->i_ino == le32_to_cpu(de->ino))
  91. goto out_unmap_put;
  92. if (de) {
  93. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  94. if (IS_ERR(einode)) {
  95. WARN_ON(1);
  96. err = PTR_ERR(einode);
  97. if (err == -ENOENT)
  98. err = -EEXIST;
  99. goto out_unmap_put;
  100. }
  101. err = acquire_orphan_inode(F2FS_I_SB(inode));
  102. if (err) {
  103. iput(einode);
  104. goto out_unmap_put;
  105. }
  106. f2fs_delete_entry(de, page, dir, einode);
  107. iput(einode);
  108. goto retry;
  109. }
  110. err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
  111. if (err)
  112. goto out_err;
  113. if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
  114. iput(dir);
  115. } else {
  116. add_dirty_dir_inode(dir);
  117. set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
  118. }
  119. goto out;
  120. out_unmap_put:
  121. f2fs_dentry_kunmap(dir, page);
  122. f2fs_put_page(page, 0);
  123. out_err:
  124. iput(dir);
  125. out:
  126. f2fs_msg(inode->i_sb, KERN_NOTICE,
  127. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  128. __func__, ino_of_node(ipage), raw_inode->i_name,
  129. IS_ERR(dir) ? 0 : dir->i_ino, err);
  130. return err;
  131. }
  132. static void recover_inode(struct inode *inode, struct page *page)
  133. {
  134. struct f2fs_inode *raw = F2FS_INODE(page);
  135. char *name;
  136. inode->i_mode = le16_to_cpu(raw->i_mode);
  137. i_size_write(inode, le64_to_cpu(raw->i_size));
  138. inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
  139. inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
  140. inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
  141. inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  142. inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
  143. inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  144. if (file_enc_name(inode))
  145. name = "<encrypted>";
  146. else
  147. name = F2FS_INODE(page)->i_name;
  148. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  149. ino_of_node(page), name);
  150. }
  151. static bool is_same_inode(struct inode *inode, struct page *ipage)
  152. {
  153. struct f2fs_inode *ri = F2FS_INODE(ipage);
  154. struct timespec disk;
  155. if (!IS_INODE(ipage))
  156. return true;
  157. disk.tv_sec = le64_to_cpu(ri->i_ctime);
  158. disk.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  159. if (timespec_compare(&inode->i_ctime, &disk) > 0)
  160. return false;
  161. disk.tv_sec = le64_to_cpu(ri->i_atime);
  162. disk.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  163. if (timespec_compare(&inode->i_atime, &disk) > 0)
  164. return false;
  165. disk.tv_sec = le64_to_cpu(ri->i_mtime);
  166. disk.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  167. if (timespec_compare(&inode->i_mtime, &disk) > 0)
  168. return false;
  169. return true;
  170. }
  171. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  172. {
  173. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  174. struct curseg_info *curseg;
  175. struct page *page = NULL;
  176. block_t blkaddr;
  177. int err = 0;
  178. /* get node pages in the current segment */
  179. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  180. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  181. ra_meta_pages(sbi, blkaddr, 1, META_POR, true);
  182. while (1) {
  183. struct fsync_inode_entry *entry;
  184. if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
  185. return 0;
  186. page = get_tmp_page(sbi, blkaddr);
  187. if (cp_ver != cpver_of_node(page))
  188. break;
  189. if (!is_fsync_dnode(page))
  190. goto next;
  191. entry = get_fsync_inode(head, ino_of_node(page));
  192. if (entry) {
  193. if (!is_same_inode(entry->inode, page))
  194. goto next;
  195. } else {
  196. if (IS_INODE(page) && is_dent_dnode(page)) {
  197. err = recover_inode_page(sbi, page);
  198. if (err)
  199. break;
  200. }
  201. /* add this fsync inode to the list */
  202. entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
  203. if (!entry) {
  204. err = -ENOMEM;
  205. break;
  206. }
  207. /*
  208. * CP | dnode(F) | inode(DF)
  209. * For this case, we should not give up now.
  210. */
  211. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  212. if (IS_ERR(entry->inode)) {
  213. err = PTR_ERR(entry->inode);
  214. kmem_cache_free(fsync_entry_slab, entry);
  215. if (err == -ENOENT) {
  216. err = 0;
  217. goto next;
  218. }
  219. break;
  220. }
  221. list_add_tail(&entry->list, head);
  222. }
  223. entry->blkaddr = blkaddr;
  224. if (IS_INODE(page)) {
  225. entry->last_inode = blkaddr;
  226. if (is_dent_dnode(page))
  227. entry->last_dentry = blkaddr;
  228. }
  229. next:
  230. /* check next segment */
  231. blkaddr = next_blkaddr_of_node(page);
  232. f2fs_put_page(page, 1);
  233. ra_meta_pages_cond(sbi, blkaddr);
  234. }
  235. f2fs_put_page(page, 1);
  236. return err;
  237. }
  238. static void destroy_fsync_dnodes(struct list_head *head)
  239. {
  240. struct fsync_inode_entry *entry, *tmp;
  241. list_for_each_entry_safe(entry, tmp, head, list) {
  242. iput(entry->inode);
  243. list_del(&entry->list);
  244. kmem_cache_free(fsync_entry_slab, entry);
  245. }
  246. }
  247. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  248. block_t blkaddr, struct dnode_of_data *dn)
  249. {
  250. struct seg_entry *sentry;
  251. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  252. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  253. struct f2fs_summary_block *sum_node;
  254. struct f2fs_summary sum;
  255. struct page *sum_page, *node_page;
  256. struct dnode_of_data tdn = *dn;
  257. nid_t ino, nid;
  258. struct inode *inode;
  259. unsigned int offset;
  260. block_t bidx;
  261. int i;
  262. sentry = get_seg_entry(sbi, segno);
  263. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  264. return 0;
  265. /* Get the previous summary */
  266. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  267. struct curseg_info *curseg = CURSEG_I(sbi, i);
  268. if (curseg->segno == segno) {
  269. sum = curseg->sum_blk->entries[blkoff];
  270. goto got_it;
  271. }
  272. }
  273. sum_page = get_sum_page(sbi, segno);
  274. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  275. sum = sum_node->entries[blkoff];
  276. f2fs_put_page(sum_page, 1);
  277. got_it:
  278. /* Use the locked dnode page and inode */
  279. nid = le32_to_cpu(sum.nid);
  280. if (dn->inode->i_ino == nid) {
  281. tdn.nid = nid;
  282. if (!dn->inode_page_locked)
  283. lock_page(dn->inode_page);
  284. tdn.node_page = dn->inode_page;
  285. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  286. goto truncate_out;
  287. } else if (dn->nid == nid) {
  288. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  289. goto truncate_out;
  290. }
  291. /* Get the node page */
  292. node_page = get_node_page(sbi, nid);
  293. if (IS_ERR(node_page))
  294. return PTR_ERR(node_page);
  295. offset = ofs_of_node(node_page);
  296. ino = ino_of_node(node_page);
  297. f2fs_put_page(node_page, 1);
  298. if (ino != dn->inode->i_ino) {
  299. /* Deallocate previous index in the node page */
  300. inode = f2fs_iget(sbi->sb, ino);
  301. if (IS_ERR(inode))
  302. return PTR_ERR(inode);
  303. } else {
  304. inode = dn->inode;
  305. }
  306. bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
  307. le16_to_cpu(sum.ofs_in_node);
  308. /*
  309. * if inode page is locked, unlock temporarily, but its reference
  310. * count keeps alive.
  311. */
  312. if (ino == dn->inode->i_ino && dn->inode_page_locked)
  313. unlock_page(dn->inode_page);
  314. set_new_dnode(&tdn, inode, NULL, NULL, 0);
  315. if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
  316. goto out;
  317. if (tdn.data_blkaddr == blkaddr)
  318. truncate_data_blocks_range(&tdn, 1);
  319. f2fs_put_dnode(&tdn);
  320. out:
  321. if (ino != dn->inode->i_ino)
  322. iput(inode);
  323. else if (dn->inode_page_locked)
  324. lock_page(dn->inode_page);
  325. return 0;
  326. truncate_out:
  327. if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
  328. truncate_data_blocks_range(&tdn, 1);
  329. if (dn->inode->i_ino == nid && !dn->inode_page_locked)
  330. unlock_page(dn->inode_page);
  331. return 0;
  332. }
  333. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  334. struct page *page, block_t blkaddr)
  335. {
  336. struct f2fs_inode_info *fi = F2FS_I(inode);
  337. unsigned int start, end;
  338. struct dnode_of_data dn;
  339. struct node_info ni;
  340. int err = 0, recovered = 0;
  341. /* step 1: recover xattr */
  342. if (IS_INODE(page)) {
  343. recover_inline_xattr(inode, page);
  344. } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
  345. /*
  346. * Deprecated; xattr blocks should be found from cold log.
  347. * But, we should remain this for backward compatibility.
  348. */
  349. recover_xattr_data(inode, page, blkaddr);
  350. goto out;
  351. }
  352. /* step 2: recover inline data */
  353. if (recover_inline_data(inode, page))
  354. goto out;
  355. /* step 3: recover data indices */
  356. start = start_bidx_of_node(ofs_of_node(page), fi);
  357. end = start + ADDRS_PER_PAGE(page, fi);
  358. set_new_dnode(&dn, inode, NULL, NULL, 0);
  359. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  360. if (err)
  361. goto out;
  362. f2fs_wait_on_page_writeback(dn.node_page, NODE);
  363. get_node_info(sbi, dn.nid, &ni);
  364. f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
  365. f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
  366. for (; start < end; start++, dn.ofs_in_node++) {
  367. block_t src, dest;
  368. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  369. dest = datablock_addr(page, dn.ofs_in_node);
  370. /* skip recovering if dest is the same as src */
  371. if (src == dest)
  372. continue;
  373. /* dest is invalid, just invalidate src block */
  374. if (dest == NULL_ADDR) {
  375. truncate_data_blocks_range(&dn, 1);
  376. continue;
  377. }
  378. /*
  379. * dest is reserved block, invalidate src block
  380. * and then reserve one new block in dnode page.
  381. */
  382. if (dest == NEW_ADDR) {
  383. truncate_data_blocks_range(&dn, 1);
  384. err = reserve_new_block(&dn);
  385. f2fs_bug_on(sbi, err);
  386. continue;
  387. }
  388. /* dest is valid block, try to recover from src to dest */
  389. if (is_valid_blkaddr(sbi, dest, META_POR)) {
  390. if (src == NULL_ADDR) {
  391. err = reserve_new_block(&dn);
  392. /* We should not get -ENOSPC */
  393. f2fs_bug_on(sbi, err);
  394. }
  395. /* Check the previous node page having this index */
  396. err = check_index_in_prev_nodes(sbi, dest, &dn);
  397. if (err)
  398. goto err;
  399. /* write dummy data page */
  400. f2fs_replace_block(sbi, &dn, src, dest,
  401. ni.version, false);
  402. recovered++;
  403. }
  404. }
  405. if (IS_INODE(dn.node_page))
  406. sync_inode_page(&dn);
  407. copy_node_footer(dn.node_page, page);
  408. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  409. ofs_of_node(page), false);
  410. set_page_dirty(dn.node_page);
  411. err:
  412. f2fs_put_dnode(&dn);
  413. out:
  414. f2fs_msg(sbi->sb, KERN_NOTICE,
  415. "recover_data: ino = %lx, recovered = %d blocks, err = %d",
  416. inode->i_ino, recovered, err);
  417. return err;
  418. }
  419. static int recover_data(struct f2fs_sb_info *sbi, struct list_head *head)
  420. {
  421. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  422. struct curseg_info *curseg;
  423. struct page *page = NULL;
  424. int err = 0;
  425. block_t blkaddr;
  426. /* get node pages in the current segment */
  427. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  428. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  429. while (1) {
  430. struct fsync_inode_entry *entry;
  431. if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
  432. break;
  433. ra_meta_pages_cond(sbi, blkaddr);
  434. page = get_tmp_page(sbi, blkaddr);
  435. if (cp_ver != cpver_of_node(page)) {
  436. f2fs_put_page(page, 1);
  437. break;
  438. }
  439. entry = get_fsync_inode(head, ino_of_node(page));
  440. if (!entry)
  441. goto next;
  442. /*
  443. * inode(x) | CP | inode(x) | dnode(F)
  444. * In this case, we can lose the latest inode(x).
  445. * So, call recover_inode for the inode update.
  446. */
  447. if (entry->last_inode == blkaddr)
  448. recover_inode(entry->inode, page);
  449. if (entry->last_dentry == blkaddr) {
  450. err = recover_dentry(entry->inode, page);
  451. if (err) {
  452. f2fs_put_page(page, 1);
  453. break;
  454. }
  455. }
  456. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  457. if (err) {
  458. f2fs_put_page(page, 1);
  459. break;
  460. }
  461. if (entry->blkaddr == blkaddr) {
  462. iput(entry->inode);
  463. list_del(&entry->list);
  464. kmem_cache_free(fsync_entry_slab, entry);
  465. }
  466. next:
  467. /* check next segment */
  468. blkaddr = next_blkaddr_of_node(page);
  469. f2fs_put_page(page, 1);
  470. }
  471. if (!err)
  472. allocate_new_segments(sbi);
  473. return err;
  474. }
  475. int recover_fsync_data(struct f2fs_sb_info *sbi)
  476. {
  477. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  478. struct list_head inode_list;
  479. block_t blkaddr;
  480. int err;
  481. bool need_writecp = false;
  482. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  483. sizeof(struct fsync_inode_entry));
  484. if (!fsync_entry_slab)
  485. return -ENOMEM;
  486. INIT_LIST_HEAD(&inode_list);
  487. /* prevent checkpoint */
  488. mutex_lock(&sbi->cp_mutex);
  489. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  490. /* step #1: find fsynced inode numbers */
  491. err = find_fsync_dnodes(sbi, &inode_list);
  492. if (err)
  493. goto out;
  494. if (list_empty(&inode_list))
  495. goto out;
  496. need_writecp = true;
  497. /* step #2: recover data */
  498. err = recover_data(sbi, &inode_list);
  499. if (!err)
  500. f2fs_bug_on(sbi, !list_empty(&inode_list));
  501. out:
  502. destroy_fsync_dnodes(&inode_list);
  503. kmem_cache_destroy(fsync_entry_slab);
  504. /* truncate meta pages to be used by the recovery */
  505. truncate_inode_pages_range(META_MAPPING(sbi),
  506. (loff_t)MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1);
  507. if (err) {
  508. truncate_inode_pages_final(NODE_MAPPING(sbi));
  509. truncate_inode_pages_final(META_MAPPING(sbi));
  510. }
  511. clear_sbi_flag(sbi, SBI_POR_DOING);
  512. if (err) {
  513. bool invalidate = false;
  514. if (discard_next_dnode(sbi, blkaddr))
  515. invalidate = true;
  516. /* Flush all the NAT/SIT pages */
  517. while (get_pages(sbi, F2FS_DIRTY_META))
  518. sync_meta_pages(sbi, META, LONG_MAX);
  519. /* invalidate temporary meta page */
  520. if (invalidate)
  521. invalidate_mapping_pages(META_MAPPING(sbi),
  522. blkaddr, blkaddr);
  523. set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
  524. mutex_unlock(&sbi->cp_mutex);
  525. } else if (need_writecp) {
  526. struct cp_control cpc = {
  527. .reason = CP_RECOVERY,
  528. };
  529. mutex_unlock(&sbi->cp_mutex);
  530. err = write_checkpoint(sbi, &cpc);
  531. } else {
  532. mutex_unlock(&sbi->cp_mutex);
  533. }
  534. return err;
  535. }