inline.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA)
  21. return false;
  22. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  23. return false;
  24. return true;
  25. }
  26. bool f2fs_may_inline_dentry(struct inode *inode)
  27. {
  28. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  29. return false;
  30. if (!S_ISDIR(inode->i_mode))
  31. return false;
  32. return true;
  33. }
  34. void read_inline_data(struct page *page, struct page *ipage)
  35. {
  36. void *src_addr, *dst_addr;
  37. if (PageUptodate(page))
  38. return;
  39. f2fs_bug_on(F2FS_P_SB(page), page->index);
  40. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  41. /* Copy the whole inline data block */
  42. src_addr = inline_data_addr(ipage);
  43. dst_addr = kmap_atomic(page);
  44. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  45. flush_dcache_page(page);
  46. kunmap_atomic(dst_addr);
  47. SetPageUptodate(page);
  48. }
  49. bool truncate_inline_inode(struct page *ipage, u64 from)
  50. {
  51. void *addr;
  52. if (from >= MAX_INLINE_DATA)
  53. return false;
  54. addr = inline_data_addr(ipage);
  55. f2fs_wait_on_page_writeback(ipage, NODE);
  56. memset(addr + from, 0, MAX_INLINE_DATA - from);
  57. return true;
  58. }
  59. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  60. {
  61. struct page *ipage;
  62. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  63. if (IS_ERR(ipage)) {
  64. unlock_page(page);
  65. return PTR_ERR(ipage);
  66. }
  67. if (!f2fs_has_inline_data(inode)) {
  68. f2fs_put_page(ipage, 1);
  69. return -EAGAIN;
  70. }
  71. if (page->index)
  72. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  73. else
  74. read_inline_data(page, ipage);
  75. SetPageUptodate(page);
  76. f2fs_put_page(ipage, 1);
  77. unlock_page(page);
  78. return 0;
  79. }
  80. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  81. {
  82. void *src_addr, *dst_addr;
  83. struct f2fs_io_info fio = {
  84. .sbi = F2FS_I_SB(dn->inode),
  85. .type = DATA,
  86. .rw = WRITE_SYNC | REQ_PRIO,
  87. .page = page,
  88. .encrypted_page = NULL,
  89. };
  90. int dirty, err;
  91. f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
  92. if (!f2fs_exist_data(dn->inode))
  93. goto clear_out;
  94. err = f2fs_reserve_block(dn, 0);
  95. if (err)
  96. return err;
  97. f2fs_wait_on_page_writeback(page, DATA);
  98. if (PageUptodate(page))
  99. goto no_update;
  100. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  101. /* Copy the whole inline data block */
  102. src_addr = inline_data_addr(dn->inode_page);
  103. dst_addr = kmap_atomic(page);
  104. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  105. flush_dcache_page(page);
  106. kunmap_atomic(dst_addr);
  107. SetPageUptodate(page);
  108. no_update:
  109. set_page_dirty(page);
  110. /* clear dirty state */
  111. dirty = clear_page_dirty_for_io(page);
  112. /* write data page to try to make data consistent */
  113. set_page_writeback(page);
  114. fio.blk_addr = dn->data_blkaddr;
  115. write_data_page(dn, &fio);
  116. set_data_blkaddr(dn);
  117. f2fs_update_extent_cache(dn);
  118. f2fs_wait_on_page_writeback(page, DATA);
  119. if (dirty)
  120. inode_dec_dirty_pages(dn->inode);
  121. /* this converted inline_data should be recovered. */
  122. set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
  123. /* clear inline data and flag after data writeback */
  124. truncate_inline_inode(dn->inode_page, 0);
  125. clear_out:
  126. stat_dec_inline_inode(dn->inode);
  127. f2fs_clear_inline_inode(dn->inode);
  128. sync_inode_page(dn);
  129. f2fs_put_dnode(dn);
  130. return 0;
  131. }
  132. int f2fs_convert_inline_inode(struct inode *inode)
  133. {
  134. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  135. struct dnode_of_data dn;
  136. struct page *ipage, *page;
  137. int err = 0;
  138. if (!f2fs_has_inline_data(inode))
  139. return 0;
  140. page = grab_cache_page(inode->i_mapping, 0);
  141. if (!page)
  142. return -ENOMEM;
  143. f2fs_lock_op(sbi);
  144. ipage = get_node_page(sbi, inode->i_ino);
  145. if (IS_ERR(ipage)) {
  146. err = PTR_ERR(ipage);
  147. goto out;
  148. }
  149. set_new_dnode(&dn, inode, ipage, ipage, 0);
  150. if (f2fs_has_inline_data(inode))
  151. err = f2fs_convert_inline_page(&dn, page);
  152. f2fs_put_dnode(&dn);
  153. out:
  154. f2fs_unlock_op(sbi);
  155. f2fs_put_page(page, 1);
  156. f2fs_balance_fs(sbi, dn.node_changed);
  157. return err;
  158. }
  159. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  160. {
  161. void *src_addr, *dst_addr;
  162. struct dnode_of_data dn;
  163. int err;
  164. set_new_dnode(&dn, inode, NULL, NULL, 0);
  165. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  166. if (err)
  167. return err;
  168. if (!f2fs_has_inline_data(inode)) {
  169. f2fs_put_dnode(&dn);
  170. return -EAGAIN;
  171. }
  172. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  173. f2fs_wait_on_page_writeback(dn.inode_page, NODE);
  174. src_addr = kmap_atomic(page);
  175. dst_addr = inline_data_addr(dn.inode_page);
  176. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  177. kunmap_atomic(src_addr);
  178. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  179. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  180. sync_inode_page(&dn);
  181. f2fs_put_dnode(&dn);
  182. return 0;
  183. }
  184. bool recover_inline_data(struct inode *inode, struct page *npage)
  185. {
  186. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  187. struct f2fs_inode *ri = NULL;
  188. void *src_addr, *dst_addr;
  189. struct page *ipage;
  190. /*
  191. * The inline_data recovery policy is as follows.
  192. * [prev.] [next] of inline_data flag
  193. * o o -> recover inline_data
  194. * o x -> remove inline_data, and then recover data blocks
  195. * x o -> remove inline_data, and then recover inline_data
  196. * x x -> recover data blocks
  197. */
  198. if (IS_INODE(npage))
  199. ri = F2FS_INODE(npage);
  200. if (f2fs_has_inline_data(inode) &&
  201. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  202. process_inline:
  203. ipage = get_node_page(sbi, inode->i_ino);
  204. f2fs_bug_on(sbi, IS_ERR(ipage));
  205. f2fs_wait_on_page_writeback(ipage, NODE);
  206. src_addr = inline_data_addr(npage);
  207. dst_addr = inline_data_addr(ipage);
  208. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  209. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  210. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  211. update_inode(inode, ipage);
  212. f2fs_put_page(ipage, 1);
  213. return true;
  214. }
  215. if (f2fs_has_inline_data(inode)) {
  216. ipage = get_node_page(sbi, inode->i_ino);
  217. f2fs_bug_on(sbi, IS_ERR(ipage));
  218. if (!truncate_inline_inode(ipage, 0))
  219. return false;
  220. f2fs_clear_inline_inode(inode);
  221. update_inode(inode, ipage);
  222. f2fs_put_page(ipage, 1);
  223. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  224. if (truncate_blocks(inode, 0, false))
  225. return false;
  226. goto process_inline;
  227. }
  228. return false;
  229. }
  230. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  231. struct f2fs_filename *fname, struct page **res_page)
  232. {
  233. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  234. struct f2fs_inline_dentry *inline_dentry;
  235. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  236. struct f2fs_dir_entry *de;
  237. struct f2fs_dentry_ptr d;
  238. struct page *ipage;
  239. f2fs_hash_t namehash;
  240. ipage = get_node_page(sbi, dir->i_ino);
  241. if (IS_ERR(ipage))
  242. return NULL;
  243. namehash = f2fs_dentry_hash(&name);
  244. inline_dentry = inline_data_addr(ipage);
  245. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  246. de = find_target_dentry(fname, namehash, NULL, &d);
  247. unlock_page(ipage);
  248. if (de)
  249. *res_page = ipage;
  250. else
  251. f2fs_put_page(ipage, 0);
  252. /*
  253. * For the most part, it should be a bug when name_len is zero.
  254. * We stop here for figuring out where the bugs has occurred.
  255. */
  256. f2fs_bug_on(sbi, d.max < 0);
  257. return de;
  258. }
  259. struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
  260. struct page **p)
  261. {
  262. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  263. struct page *ipage;
  264. struct f2fs_dir_entry *de;
  265. struct f2fs_inline_dentry *dentry_blk;
  266. ipage = get_node_page(sbi, dir->i_ino);
  267. if (IS_ERR(ipage))
  268. return NULL;
  269. dentry_blk = inline_data_addr(ipage);
  270. de = &dentry_blk->dentry[1];
  271. *p = ipage;
  272. unlock_page(ipage);
  273. return de;
  274. }
  275. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  276. struct page *ipage)
  277. {
  278. struct f2fs_inline_dentry *dentry_blk;
  279. struct f2fs_dentry_ptr d;
  280. dentry_blk = inline_data_addr(ipage);
  281. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  282. do_make_empty_dir(inode, parent, &d);
  283. set_page_dirty(ipage);
  284. /* update i_size to MAX_INLINE_DATA */
  285. if (i_size_read(inode) < MAX_INLINE_DATA) {
  286. i_size_write(inode, MAX_INLINE_DATA);
  287. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  288. }
  289. return 0;
  290. }
  291. /*
  292. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  293. * release ipage in this function.
  294. */
  295. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  296. struct f2fs_inline_dentry *inline_dentry)
  297. {
  298. struct page *page;
  299. struct dnode_of_data dn;
  300. struct f2fs_dentry_block *dentry_blk;
  301. int err;
  302. page = grab_cache_page(dir->i_mapping, 0);
  303. if (!page) {
  304. f2fs_put_page(ipage, 1);
  305. return -ENOMEM;
  306. }
  307. set_new_dnode(&dn, dir, ipage, NULL, 0);
  308. err = f2fs_reserve_block(&dn, 0);
  309. if (err)
  310. goto out;
  311. f2fs_wait_on_page_writeback(page, DATA);
  312. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  313. dentry_blk = kmap_atomic(page);
  314. /* copy data from inline dentry block to new dentry block */
  315. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  316. INLINE_DENTRY_BITMAP_SIZE);
  317. memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
  318. SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
  319. /*
  320. * we do not need to zero out remainder part of dentry and filename
  321. * field, since we have used bitmap for marking the usage status of
  322. * them, besides, we can also ignore copying/zeroing reserved space
  323. * of dentry block, because them haven't been used so far.
  324. */
  325. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  326. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  327. memcpy(dentry_blk->filename, inline_dentry->filename,
  328. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  329. kunmap_atomic(dentry_blk);
  330. SetPageUptodate(page);
  331. set_page_dirty(page);
  332. /* clear inline dir and flag after data writeback */
  333. truncate_inline_inode(ipage, 0);
  334. stat_dec_inline_dir(dir);
  335. clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
  336. if (i_size_read(dir) < PAGE_CACHE_SIZE) {
  337. i_size_write(dir, PAGE_CACHE_SIZE);
  338. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  339. }
  340. sync_inode_page(&dn);
  341. out:
  342. f2fs_put_page(page, 1);
  343. return err;
  344. }
  345. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
  346. struct inode *inode, nid_t ino, umode_t mode)
  347. {
  348. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  349. struct page *ipage;
  350. unsigned int bit_pos;
  351. f2fs_hash_t name_hash;
  352. size_t namelen = name->len;
  353. struct f2fs_inline_dentry *dentry_blk = NULL;
  354. struct f2fs_dentry_ptr d;
  355. int slots = GET_DENTRY_SLOTS(namelen);
  356. struct page *page = NULL;
  357. int err = 0;
  358. ipage = get_node_page(sbi, dir->i_ino);
  359. if (IS_ERR(ipage))
  360. return PTR_ERR(ipage);
  361. dentry_blk = inline_data_addr(ipage);
  362. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  363. slots, NR_INLINE_DENTRY);
  364. if (bit_pos >= NR_INLINE_DENTRY) {
  365. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  366. if (err)
  367. return err;
  368. err = -EAGAIN;
  369. goto out;
  370. }
  371. if (inode) {
  372. down_write(&F2FS_I(inode)->i_sem);
  373. page = init_inode_metadata(inode, dir, name, ipage);
  374. if (IS_ERR(page)) {
  375. err = PTR_ERR(page);
  376. goto fail;
  377. }
  378. }
  379. f2fs_wait_on_page_writeback(ipage, NODE);
  380. name_hash = f2fs_dentry_hash(name);
  381. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  382. f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
  383. set_page_dirty(ipage);
  384. /* we don't need to mark_inode_dirty now */
  385. if (inode) {
  386. F2FS_I(inode)->i_pino = dir->i_ino;
  387. update_inode(inode, page);
  388. f2fs_put_page(page, 1);
  389. }
  390. update_parent_metadata(dir, inode, 0);
  391. fail:
  392. if (inode)
  393. up_write(&F2FS_I(inode)->i_sem);
  394. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  395. update_inode(dir, ipage);
  396. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  397. }
  398. out:
  399. f2fs_put_page(ipage, 1);
  400. return err;
  401. }
  402. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  403. struct inode *dir, struct inode *inode)
  404. {
  405. struct f2fs_inline_dentry *inline_dentry;
  406. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  407. unsigned int bit_pos;
  408. int i;
  409. lock_page(page);
  410. f2fs_wait_on_page_writeback(page, NODE);
  411. inline_dentry = inline_data_addr(page);
  412. bit_pos = dentry - inline_dentry->dentry;
  413. for (i = 0; i < slots; i++)
  414. test_and_clear_bit_le(bit_pos + i,
  415. &inline_dentry->dentry_bitmap);
  416. set_page_dirty(page);
  417. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  418. if (inode)
  419. f2fs_drop_nlink(dir, inode, page);
  420. f2fs_put_page(page, 1);
  421. }
  422. bool f2fs_empty_inline_dir(struct inode *dir)
  423. {
  424. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  425. struct page *ipage;
  426. unsigned int bit_pos = 2;
  427. struct f2fs_inline_dentry *dentry_blk;
  428. ipage = get_node_page(sbi, dir->i_ino);
  429. if (IS_ERR(ipage))
  430. return false;
  431. dentry_blk = inline_data_addr(ipage);
  432. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  433. NR_INLINE_DENTRY,
  434. bit_pos);
  435. f2fs_put_page(ipage, 1);
  436. if (bit_pos < NR_INLINE_DENTRY)
  437. return false;
  438. return true;
  439. }
  440. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  441. struct f2fs_str *fstr)
  442. {
  443. struct inode *inode = file_inode(file);
  444. struct f2fs_inline_dentry *inline_dentry = NULL;
  445. struct page *ipage = NULL;
  446. struct f2fs_dentry_ptr d;
  447. if (ctx->pos == NR_INLINE_DENTRY)
  448. return 0;
  449. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  450. if (IS_ERR(ipage))
  451. return PTR_ERR(ipage);
  452. inline_dentry = inline_data_addr(ipage);
  453. make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
  454. if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
  455. ctx->pos = NR_INLINE_DENTRY;
  456. f2fs_put_page(ipage, 1);
  457. return 0;
  458. }
  459. int f2fs_inline_data_fiemap(struct inode *inode,
  460. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  461. {
  462. __u64 byteaddr, ilen;
  463. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  464. FIEMAP_EXTENT_LAST;
  465. struct node_info ni;
  466. struct page *ipage;
  467. int err = 0;
  468. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  469. if (IS_ERR(ipage))
  470. return PTR_ERR(ipage);
  471. if (!f2fs_has_inline_data(inode)) {
  472. err = -EAGAIN;
  473. goto out;
  474. }
  475. ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
  476. if (start >= ilen)
  477. goto out;
  478. if (start + len < ilen)
  479. ilen = start + len;
  480. ilen -= start;
  481. get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  482. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  483. byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
  484. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  485. out:
  486. f2fs_put_page(ipage, 1);
  487. return err;
  488. }