dir.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "acl.h"
  16. #include "xattr.h"
  17. static unsigned long dir_blocks(struct inode *inode)
  18. {
  19. return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1))
  20. >> PAGE_CACHE_SHIFT;
  21. }
  22. static unsigned int dir_buckets(unsigned int level, int dir_level)
  23. {
  24. if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
  25. return 1 << (level + dir_level);
  26. else
  27. return MAX_DIR_BUCKETS;
  28. }
  29. static unsigned int bucket_blocks(unsigned int level)
  30. {
  31. if (level < MAX_DIR_HASH_DEPTH / 2)
  32. return 2;
  33. else
  34. return 4;
  35. }
  36. unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  37. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  38. [F2FS_FT_REG_FILE] = DT_REG,
  39. [F2FS_FT_DIR] = DT_DIR,
  40. [F2FS_FT_CHRDEV] = DT_CHR,
  41. [F2FS_FT_BLKDEV] = DT_BLK,
  42. [F2FS_FT_FIFO] = DT_FIFO,
  43. [F2FS_FT_SOCK] = DT_SOCK,
  44. [F2FS_FT_SYMLINK] = DT_LNK,
  45. };
  46. #define S_SHIFT 12
  47. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  48. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  49. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  50. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  51. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  52. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  53. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  54. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  55. };
  56. void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
  57. {
  58. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  59. }
  60. static unsigned long dir_block_index(unsigned int level,
  61. int dir_level, unsigned int idx)
  62. {
  63. unsigned long i;
  64. unsigned long bidx = 0;
  65. for (i = 0; i < level; i++)
  66. bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
  67. bidx += idx * bucket_blocks(level);
  68. return bidx;
  69. }
  70. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  71. struct f2fs_filename *fname,
  72. f2fs_hash_t namehash,
  73. int *max_slots,
  74. struct page **res_page)
  75. {
  76. struct f2fs_dentry_block *dentry_blk;
  77. struct f2fs_dir_entry *de;
  78. struct f2fs_dentry_ptr d;
  79. dentry_blk = (struct f2fs_dentry_block *)kmap(dentry_page);
  80. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 1);
  81. de = find_target_dentry(fname, namehash, max_slots, &d);
  82. if (de)
  83. *res_page = dentry_page;
  84. else
  85. kunmap(dentry_page);
  86. /*
  87. * For the most part, it should be a bug when name_len is zero.
  88. * We stop here for figuring out where the bugs has occurred.
  89. */
  90. f2fs_bug_on(F2FS_P_SB(dentry_page), d.max < 0);
  91. return de;
  92. }
  93. struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *fname,
  94. f2fs_hash_t namehash, int *max_slots,
  95. struct f2fs_dentry_ptr *d)
  96. {
  97. struct f2fs_dir_entry *de;
  98. unsigned long bit_pos = 0;
  99. int max_len = 0;
  100. struct f2fs_str de_name = FSTR_INIT(NULL, 0);
  101. struct f2fs_str *name = &fname->disk_name;
  102. if (max_slots)
  103. *max_slots = 0;
  104. while (bit_pos < d->max) {
  105. if (!test_bit_le(bit_pos, d->bitmap)) {
  106. bit_pos++;
  107. max_len++;
  108. continue;
  109. }
  110. de = &d->dentry[bit_pos];
  111. /* encrypted case */
  112. de_name.name = d->filename[bit_pos];
  113. de_name.len = le16_to_cpu(de->name_len);
  114. /* show encrypted name */
  115. if (fname->hash) {
  116. if (de->hash_code == fname->hash)
  117. goto found;
  118. } else if (de_name.len == name->len &&
  119. de->hash_code == namehash &&
  120. !memcmp(de_name.name, name->name, name->len))
  121. goto found;
  122. if (max_slots && max_len > *max_slots)
  123. *max_slots = max_len;
  124. max_len = 0;
  125. /* remain bug on condition */
  126. if (unlikely(!de->name_len))
  127. d->max = -1;
  128. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  129. }
  130. de = NULL;
  131. found:
  132. if (max_slots && max_len > *max_slots)
  133. *max_slots = max_len;
  134. return de;
  135. }
  136. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  137. unsigned int level,
  138. struct f2fs_filename *fname,
  139. struct page **res_page)
  140. {
  141. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  142. int s = GET_DENTRY_SLOTS(name.len);
  143. unsigned int nbucket, nblock;
  144. unsigned int bidx, end_block;
  145. struct page *dentry_page;
  146. struct f2fs_dir_entry *de = NULL;
  147. bool room = false;
  148. int max_slots;
  149. f2fs_hash_t namehash;
  150. namehash = f2fs_dentry_hash(&name);
  151. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  152. nblock = bucket_blocks(level);
  153. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  154. le32_to_cpu(namehash) % nbucket);
  155. end_block = bidx + nblock;
  156. for (; bidx < end_block; bidx++) {
  157. /* no need to allocate new dentry pages to all the indices */
  158. dentry_page = find_data_page(dir, bidx);
  159. if (IS_ERR(dentry_page)) {
  160. room = true;
  161. continue;
  162. }
  163. de = find_in_block(dentry_page, fname, namehash, &max_slots,
  164. res_page);
  165. if (de)
  166. break;
  167. if (max_slots >= s)
  168. room = true;
  169. f2fs_put_page(dentry_page, 0);
  170. }
  171. if (!de && room && F2FS_I(dir)->chash != namehash) {
  172. F2FS_I(dir)->chash = namehash;
  173. F2FS_I(dir)->clevel = level;
  174. }
  175. return de;
  176. }
  177. /*
  178. * Find an entry in the specified directory with the wanted name.
  179. * It returns the page where the entry was found (as a parameter - res_page),
  180. * and the entry itself. Page is returned mapped and unlocked.
  181. * Entry is guaranteed to be valid.
  182. */
  183. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  184. struct qstr *child, struct page **res_page)
  185. {
  186. unsigned long npages = dir_blocks(dir);
  187. struct f2fs_dir_entry *de = NULL;
  188. unsigned int max_depth;
  189. unsigned int level;
  190. struct f2fs_filename fname;
  191. int err;
  192. *res_page = NULL;
  193. err = f2fs_fname_setup_filename(dir, child, 1, &fname);
  194. if (err)
  195. return NULL;
  196. if (f2fs_has_inline_dentry(dir)) {
  197. de = find_in_inline_dir(dir, &fname, res_page);
  198. goto out;
  199. }
  200. if (npages == 0)
  201. goto out;
  202. max_depth = F2FS_I(dir)->i_current_depth;
  203. if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
  204. f2fs_msg(F2FS_I_SB(dir)->sb, KERN_WARNING,
  205. "Corrupted max_depth of %lu: %u",
  206. dir->i_ino, max_depth);
  207. max_depth = MAX_DIR_HASH_DEPTH;
  208. F2FS_I(dir)->i_current_depth = max_depth;
  209. mark_inode_dirty(dir);
  210. }
  211. for (level = 0; level < max_depth; level++) {
  212. de = find_in_level(dir, level, &fname, res_page);
  213. if (de)
  214. break;
  215. }
  216. out:
  217. f2fs_fname_free_filename(&fname);
  218. return de;
  219. }
  220. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  221. {
  222. struct page *page;
  223. struct f2fs_dir_entry *de;
  224. struct f2fs_dentry_block *dentry_blk;
  225. if (f2fs_has_inline_dentry(dir))
  226. return f2fs_parent_inline_dir(dir, p);
  227. page = get_lock_data_page(dir, 0, false);
  228. if (IS_ERR(page))
  229. return NULL;
  230. dentry_blk = kmap(page);
  231. de = &dentry_blk->dentry[1];
  232. *p = page;
  233. unlock_page(page);
  234. return de;
  235. }
  236. ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr)
  237. {
  238. ino_t res = 0;
  239. struct f2fs_dir_entry *de;
  240. struct page *page;
  241. de = f2fs_find_entry(dir, qstr, &page);
  242. if (de) {
  243. res = le32_to_cpu(de->ino);
  244. f2fs_dentry_kunmap(dir, page);
  245. f2fs_put_page(page, 0);
  246. }
  247. return res;
  248. }
  249. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  250. struct page *page, struct inode *inode)
  251. {
  252. enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
  253. lock_page(page);
  254. f2fs_wait_on_page_writeback(page, type);
  255. de->ino = cpu_to_le32(inode->i_ino);
  256. set_de_type(de, inode->i_mode);
  257. f2fs_dentry_kunmap(dir, page);
  258. set_page_dirty(page);
  259. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  260. mark_inode_dirty(dir);
  261. f2fs_put_page(page, 1);
  262. }
  263. static void init_dent_inode(const struct qstr *name, struct page *ipage)
  264. {
  265. struct f2fs_inode *ri;
  266. f2fs_wait_on_page_writeback(ipage, NODE);
  267. /* copy name info. to this inode page */
  268. ri = F2FS_INODE(ipage);
  269. ri->i_namelen = cpu_to_le32(name->len);
  270. memcpy(ri->i_name, name->name, name->len);
  271. set_page_dirty(ipage);
  272. }
  273. int update_dent_inode(struct inode *inode, struct inode *to,
  274. const struct qstr *name)
  275. {
  276. struct page *page;
  277. if (file_enc_name(to))
  278. return 0;
  279. page = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  280. if (IS_ERR(page))
  281. return PTR_ERR(page);
  282. init_dent_inode(name, page);
  283. f2fs_put_page(page, 1);
  284. return 0;
  285. }
  286. void do_make_empty_dir(struct inode *inode, struct inode *parent,
  287. struct f2fs_dentry_ptr *d)
  288. {
  289. struct f2fs_dir_entry *de;
  290. de = &d->dentry[0];
  291. de->name_len = cpu_to_le16(1);
  292. de->hash_code = 0;
  293. de->ino = cpu_to_le32(inode->i_ino);
  294. memcpy(d->filename[0], ".", 1);
  295. set_de_type(de, inode->i_mode);
  296. de = &d->dentry[1];
  297. de->hash_code = 0;
  298. de->name_len = cpu_to_le16(2);
  299. de->ino = cpu_to_le32(parent->i_ino);
  300. memcpy(d->filename[1], "..", 2);
  301. set_de_type(de, parent->i_mode);
  302. test_and_set_bit_le(0, (void *)d->bitmap);
  303. test_and_set_bit_le(1, (void *)d->bitmap);
  304. }
  305. static int make_empty_dir(struct inode *inode,
  306. struct inode *parent, struct page *page)
  307. {
  308. struct page *dentry_page;
  309. struct f2fs_dentry_block *dentry_blk;
  310. struct f2fs_dentry_ptr d;
  311. if (f2fs_has_inline_dentry(inode))
  312. return make_empty_inline_dir(inode, parent, page);
  313. dentry_page = get_new_data_page(inode, page, 0, true);
  314. if (IS_ERR(dentry_page))
  315. return PTR_ERR(dentry_page);
  316. dentry_blk = kmap_atomic(dentry_page);
  317. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 1);
  318. do_make_empty_dir(inode, parent, &d);
  319. kunmap_atomic(dentry_blk);
  320. set_page_dirty(dentry_page);
  321. f2fs_put_page(dentry_page, 1);
  322. return 0;
  323. }
  324. struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
  325. const struct qstr *name, struct page *dpage)
  326. {
  327. struct page *page;
  328. int err;
  329. if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
  330. page = new_inode_page(inode);
  331. if (IS_ERR(page))
  332. return page;
  333. if (S_ISDIR(inode->i_mode)) {
  334. err = make_empty_dir(inode, dir, page);
  335. if (err)
  336. goto error;
  337. }
  338. err = f2fs_init_acl(inode, dir, page, dpage);
  339. if (err)
  340. goto put_error;
  341. err = f2fs_init_security(inode, dir, name, page);
  342. if (err)
  343. goto put_error;
  344. if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode)) {
  345. err = f2fs_inherit_context(dir, inode, page);
  346. if (err)
  347. goto put_error;
  348. }
  349. } else {
  350. page = get_node_page(F2FS_I_SB(dir), inode->i_ino);
  351. if (IS_ERR(page))
  352. return page;
  353. set_cold_node(inode, page);
  354. }
  355. if (name)
  356. init_dent_inode(name, page);
  357. /*
  358. * This file should be checkpointed during fsync.
  359. * We lost i_pino from now on.
  360. */
  361. if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) {
  362. file_lost_pino(inode);
  363. /*
  364. * If link the tmpfile to alias through linkat path,
  365. * we should remove this inode from orphan list.
  366. */
  367. if (inode->i_nlink == 0)
  368. remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
  369. inc_nlink(inode);
  370. }
  371. return page;
  372. put_error:
  373. f2fs_put_page(page, 1);
  374. error:
  375. /* once the failed inode becomes a bad inode, i_mode is S_IFREG */
  376. truncate_inode_pages(&inode->i_data, 0);
  377. truncate_blocks(inode, 0, false);
  378. remove_dirty_inode(inode);
  379. remove_inode_page(inode);
  380. return ERR_PTR(err);
  381. }
  382. void update_parent_metadata(struct inode *dir, struct inode *inode,
  383. unsigned int current_depth)
  384. {
  385. if (inode && is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
  386. if (S_ISDIR(inode->i_mode)) {
  387. inc_nlink(dir);
  388. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  389. }
  390. clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
  391. }
  392. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  393. mark_inode_dirty(dir);
  394. if (F2FS_I(dir)->i_current_depth != current_depth) {
  395. F2FS_I(dir)->i_current_depth = current_depth;
  396. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  397. }
  398. if (inode && is_inode_flag_set(F2FS_I(inode), FI_INC_LINK))
  399. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  400. }
  401. int room_for_filename(const void *bitmap, int slots, int max_slots)
  402. {
  403. int bit_start = 0;
  404. int zero_start, zero_end;
  405. next:
  406. zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
  407. if (zero_start >= max_slots)
  408. return max_slots;
  409. zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
  410. if (zero_end - zero_start >= slots)
  411. return zero_start;
  412. bit_start = zero_end + 1;
  413. if (zero_end + 1 >= max_slots)
  414. return max_slots;
  415. goto next;
  416. }
  417. void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
  418. const struct qstr *name, f2fs_hash_t name_hash,
  419. unsigned int bit_pos)
  420. {
  421. struct f2fs_dir_entry *de;
  422. int slots = GET_DENTRY_SLOTS(name->len);
  423. int i;
  424. de = &d->dentry[bit_pos];
  425. de->hash_code = name_hash;
  426. de->name_len = cpu_to_le16(name->len);
  427. memcpy(d->filename[bit_pos], name->name, name->len);
  428. de->ino = cpu_to_le32(ino);
  429. set_de_type(de, mode);
  430. for (i = 0; i < slots; i++)
  431. test_and_set_bit_le(bit_pos + i, (void *)d->bitmap);
  432. }
  433. /*
  434. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  435. * f2fs_unlock_op().
  436. */
  437. int __f2fs_add_link(struct inode *dir, const struct qstr *name,
  438. struct inode *inode, nid_t ino, umode_t mode)
  439. {
  440. unsigned int bit_pos;
  441. unsigned int level;
  442. unsigned int current_depth;
  443. unsigned long bidx, block;
  444. f2fs_hash_t dentry_hash;
  445. unsigned int nbucket, nblock;
  446. struct page *dentry_page = NULL;
  447. struct f2fs_dentry_block *dentry_blk = NULL;
  448. struct f2fs_dentry_ptr d;
  449. struct page *page = NULL;
  450. struct f2fs_filename fname;
  451. struct qstr new_name;
  452. int slots, err;
  453. err = f2fs_fname_setup_filename(dir, name, 0, &fname);
  454. if (err)
  455. return err;
  456. new_name.name = fname_name(&fname);
  457. new_name.len = fname_len(&fname);
  458. if (f2fs_has_inline_dentry(dir)) {
  459. err = f2fs_add_inline_entry(dir, &new_name, inode, ino, mode);
  460. if (!err || err != -EAGAIN)
  461. goto out;
  462. else
  463. err = 0;
  464. }
  465. level = 0;
  466. slots = GET_DENTRY_SLOTS(new_name.len);
  467. dentry_hash = f2fs_dentry_hash(&new_name);
  468. current_depth = F2FS_I(dir)->i_current_depth;
  469. if (F2FS_I(dir)->chash == dentry_hash) {
  470. level = F2FS_I(dir)->clevel;
  471. F2FS_I(dir)->chash = 0;
  472. }
  473. start:
  474. if (unlikely(current_depth == MAX_DIR_HASH_DEPTH)) {
  475. err = -ENOSPC;
  476. goto out;
  477. }
  478. /* Increase the depth, if required */
  479. if (level == current_depth)
  480. ++current_depth;
  481. nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
  482. nblock = bucket_blocks(level);
  483. bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
  484. (le32_to_cpu(dentry_hash) % nbucket));
  485. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  486. dentry_page = get_new_data_page(dir, NULL, block, true);
  487. if (IS_ERR(dentry_page)) {
  488. err = PTR_ERR(dentry_page);
  489. goto out;
  490. }
  491. dentry_blk = kmap(dentry_page);
  492. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  493. slots, NR_DENTRY_IN_BLOCK);
  494. if (bit_pos < NR_DENTRY_IN_BLOCK)
  495. goto add_dentry;
  496. kunmap(dentry_page);
  497. f2fs_put_page(dentry_page, 1);
  498. }
  499. /* Move to next level to find the empty slot for new dentry */
  500. ++level;
  501. goto start;
  502. add_dentry:
  503. f2fs_wait_on_page_writeback(dentry_page, DATA);
  504. if (inode) {
  505. down_write(&F2FS_I(inode)->i_sem);
  506. page = init_inode_metadata(inode, dir, &new_name, NULL);
  507. if (IS_ERR(page)) {
  508. err = PTR_ERR(page);
  509. goto fail;
  510. }
  511. if (f2fs_encrypted_inode(dir))
  512. file_set_enc_name(inode);
  513. }
  514. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 1);
  515. f2fs_update_dentry(ino, mode, &d, &new_name, dentry_hash, bit_pos);
  516. set_page_dirty(dentry_page);
  517. if (inode) {
  518. /* we don't need to mark_inode_dirty now */
  519. F2FS_I(inode)->i_pino = dir->i_ino;
  520. update_inode(inode, page);
  521. f2fs_put_page(page, 1);
  522. }
  523. update_parent_metadata(dir, inode, current_depth);
  524. fail:
  525. if (inode)
  526. up_write(&F2FS_I(inode)->i_sem);
  527. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  528. update_inode_page(dir);
  529. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  530. }
  531. kunmap(dentry_page);
  532. f2fs_put_page(dentry_page, 1);
  533. out:
  534. f2fs_fname_free_filename(&fname);
  535. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  536. return err;
  537. }
  538. int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
  539. {
  540. struct page *page;
  541. int err = 0;
  542. down_write(&F2FS_I(inode)->i_sem);
  543. page = init_inode_metadata(inode, dir, NULL, NULL);
  544. if (IS_ERR(page)) {
  545. err = PTR_ERR(page);
  546. goto fail;
  547. }
  548. /* we don't need to mark_inode_dirty now */
  549. update_inode(inode, page);
  550. f2fs_put_page(page, 1);
  551. clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
  552. fail:
  553. up_write(&F2FS_I(inode)->i_sem);
  554. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  555. return err;
  556. }
  557. void f2fs_drop_nlink(struct inode *dir, struct inode *inode, struct page *page)
  558. {
  559. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  560. down_write(&F2FS_I(inode)->i_sem);
  561. if (S_ISDIR(inode->i_mode)) {
  562. drop_nlink(dir);
  563. if (page)
  564. update_inode(dir, page);
  565. else
  566. update_inode_page(dir);
  567. }
  568. inode->i_ctime = CURRENT_TIME;
  569. drop_nlink(inode);
  570. if (S_ISDIR(inode->i_mode)) {
  571. drop_nlink(inode);
  572. i_size_write(inode, 0);
  573. }
  574. up_write(&F2FS_I(inode)->i_sem);
  575. update_inode_page(inode);
  576. if (inode->i_nlink == 0)
  577. add_orphan_inode(sbi, inode->i_ino);
  578. else
  579. release_orphan_inode(sbi);
  580. }
  581. /*
  582. * It only removes the dentry from the dentry page, corresponding name
  583. * entry in name page does not need to be touched during deletion.
  584. */
  585. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  586. struct inode *dir, struct inode *inode)
  587. {
  588. struct f2fs_dentry_block *dentry_blk;
  589. unsigned int bit_pos;
  590. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  591. int i;
  592. f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
  593. if (f2fs_has_inline_dentry(dir))
  594. return f2fs_delete_inline_entry(dentry, page, dir, inode);
  595. lock_page(page);
  596. f2fs_wait_on_page_writeback(page, DATA);
  597. dentry_blk = page_address(page);
  598. bit_pos = dentry - dentry_blk->dentry;
  599. for (i = 0; i < slots; i++)
  600. clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  601. /* Let's check and deallocate this dentry page */
  602. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  603. NR_DENTRY_IN_BLOCK,
  604. 0);
  605. kunmap(page); /* kunmap - pair of f2fs_find_entry */
  606. set_page_dirty(page);
  607. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  608. if (inode)
  609. f2fs_drop_nlink(dir, inode, NULL);
  610. if (bit_pos == NR_DENTRY_IN_BLOCK &&
  611. !truncate_hole(dir, page->index, page->index + 1)) {
  612. clear_page_dirty_for_io(page);
  613. ClearPagePrivate(page);
  614. ClearPageUptodate(page);
  615. inode_dec_dirty_pages(dir);
  616. }
  617. f2fs_put_page(page, 1);
  618. }
  619. bool f2fs_empty_dir(struct inode *dir)
  620. {
  621. unsigned long bidx;
  622. struct page *dentry_page;
  623. unsigned int bit_pos;
  624. struct f2fs_dentry_block *dentry_blk;
  625. unsigned long nblock = dir_blocks(dir);
  626. if (f2fs_has_inline_dentry(dir))
  627. return f2fs_empty_inline_dir(dir);
  628. for (bidx = 0; bidx < nblock; bidx++) {
  629. dentry_page = get_lock_data_page(dir, bidx, false);
  630. if (IS_ERR(dentry_page)) {
  631. if (PTR_ERR(dentry_page) == -ENOENT)
  632. continue;
  633. else
  634. return false;
  635. }
  636. dentry_blk = kmap_atomic(dentry_page);
  637. if (bidx == 0)
  638. bit_pos = 2;
  639. else
  640. bit_pos = 0;
  641. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  642. NR_DENTRY_IN_BLOCK,
  643. bit_pos);
  644. kunmap_atomic(dentry_blk);
  645. f2fs_put_page(dentry_page, 1);
  646. if (bit_pos < NR_DENTRY_IN_BLOCK)
  647. return false;
  648. }
  649. return true;
  650. }
  651. bool f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
  652. unsigned int start_pos, struct f2fs_str *fstr)
  653. {
  654. unsigned char d_type = DT_UNKNOWN;
  655. unsigned int bit_pos;
  656. struct f2fs_dir_entry *de = NULL;
  657. struct f2fs_str de_name = FSTR_INIT(NULL, 0);
  658. bit_pos = ((unsigned long)ctx->pos % d->max);
  659. while (bit_pos < d->max) {
  660. bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
  661. if (bit_pos >= d->max)
  662. break;
  663. de = &d->dentry[bit_pos];
  664. if (de->file_type < F2FS_FT_MAX)
  665. d_type = f2fs_filetype_table[de->file_type];
  666. else
  667. d_type = DT_UNKNOWN;
  668. de_name.name = d->filename[bit_pos];
  669. de_name.len = le16_to_cpu(de->name_len);
  670. if (f2fs_encrypted_inode(d->inode)) {
  671. int save_len = fstr->len;
  672. int ret;
  673. de_name.name = kmalloc(de_name.len, GFP_NOFS);
  674. if (!de_name.name)
  675. return false;
  676. memcpy(de_name.name, d->filename[bit_pos], de_name.len);
  677. ret = f2fs_fname_disk_to_usr(d->inode, &de->hash_code,
  678. &de_name, fstr);
  679. kfree(de_name.name);
  680. if (ret < 0)
  681. return true;
  682. de_name = *fstr;
  683. fstr->len = save_len;
  684. }
  685. if (!dir_emit(ctx, de_name.name, de_name.len,
  686. le32_to_cpu(de->ino), d_type))
  687. return true;
  688. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  689. ctx->pos = start_pos + bit_pos;
  690. }
  691. return false;
  692. }
  693. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  694. {
  695. struct inode *inode = file_inode(file);
  696. unsigned long npages = dir_blocks(inode);
  697. struct f2fs_dentry_block *dentry_blk = NULL;
  698. struct page *dentry_page = NULL;
  699. struct file_ra_state *ra = &file->f_ra;
  700. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  701. struct f2fs_dentry_ptr d;
  702. struct f2fs_str fstr = FSTR_INIT(NULL, 0);
  703. int err = 0;
  704. if (f2fs_encrypted_inode(inode)) {
  705. err = f2fs_get_encryption_info(inode);
  706. if (err)
  707. return err;
  708. err = f2fs_fname_crypto_alloc_buffer(inode, F2FS_NAME_LEN,
  709. &fstr);
  710. if (err < 0)
  711. return err;
  712. }
  713. if (f2fs_has_inline_dentry(inode)) {
  714. err = f2fs_read_inline_dir(file, ctx, &fstr);
  715. goto out;
  716. }
  717. /* readahead for multi pages of dir */
  718. if (npages - n > 1 && !ra_has_index(ra, n))
  719. page_cache_sync_readahead(inode->i_mapping, ra, file, n,
  720. min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
  721. for (; n < npages; n++) {
  722. dentry_page = get_lock_data_page(inode, n, false);
  723. if (IS_ERR(dentry_page)) {
  724. err = PTR_ERR(dentry_page);
  725. if (err == -ENOENT)
  726. continue;
  727. else
  728. goto out;
  729. }
  730. dentry_blk = kmap(dentry_page);
  731. make_dentry_ptr(inode, &d, (void *)dentry_blk, 1);
  732. if (f2fs_fill_dentries(ctx, &d, n * NR_DENTRY_IN_BLOCK, &fstr)) {
  733. kunmap(dentry_page);
  734. f2fs_put_page(dentry_page, 1);
  735. break;
  736. }
  737. ctx->pos = (n + 1) * NR_DENTRY_IN_BLOCK;
  738. kunmap(dentry_page);
  739. f2fs_put_page(dentry_page, 1);
  740. }
  741. out:
  742. f2fs_fname_crypto_free_buffer(&fstr);
  743. return err;
  744. }
  745. const struct file_operations f2fs_dir_operations = {
  746. .llseek = generic_file_llseek,
  747. .read = generic_read_dir,
  748. .iterate = f2fs_readdir,
  749. .fsync = f2fs_sync_file,
  750. .unlocked_ioctl = f2fs_ioctl,
  751. #ifdef CONFIG_COMPAT
  752. .compat_ioctl = f2fs_compat_ioctl,
  753. #endif
  754. };