checkpoint.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. /*
  27. * We guarantee no failure on the returned page.
  28. */
  29. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  30. {
  31. struct address_space *mapping = META_MAPPING(sbi);
  32. struct page *page = NULL;
  33. repeat:
  34. page = grab_cache_page(mapping, index);
  35. if (!page) {
  36. cond_resched();
  37. goto repeat;
  38. }
  39. f2fs_wait_on_page_writeback(page, META);
  40. SetPageUptodate(page);
  41. return page;
  42. }
  43. /*
  44. * We guarantee no failure on the returned page.
  45. */
  46. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  47. bool is_meta)
  48. {
  49. struct address_space *mapping = META_MAPPING(sbi);
  50. struct page *page;
  51. struct f2fs_io_info fio = {
  52. .sbi = sbi,
  53. .type = META,
  54. .rw = READ_SYNC | REQ_META | REQ_PRIO,
  55. .blk_addr = index,
  56. .encrypted_page = NULL,
  57. };
  58. if (unlikely(!is_meta))
  59. fio.rw &= ~REQ_META;
  60. repeat:
  61. page = grab_cache_page(mapping, index);
  62. if (!page) {
  63. cond_resched();
  64. goto repeat;
  65. }
  66. if (PageUptodate(page))
  67. goto out;
  68. fio.page = page;
  69. if (f2fs_submit_page_bio(&fio)) {
  70. f2fs_put_page(page, 1);
  71. goto repeat;
  72. }
  73. lock_page(page);
  74. if (unlikely(page->mapping != mapping)) {
  75. f2fs_put_page(page, 1);
  76. goto repeat;
  77. }
  78. /*
  79. * if there is any IO error when accessing device, make our filesystem
  80. * readonly and make sure do not write checkpoint with non-uptodate
  81. * meta page.
  82. */
  83. if (unlikely(!PageUptodate(page)))
  84. f2fs_stop_checkpoint(sbi);
  85. out:
  86. return page;
  87. }
  88. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  89. {
  90. return __get_meta_page(sbi, index, true);
  91. }
  92. /* for POR only */
  93. struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  94. {
  95. return __get_meta_page(sbi, index, false);
  96. }
  97. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  98. {
  99. switch (type) {
  100. case META_NAT:
  101. break;
  102. case META_SIT:
  103. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  104. return false;
  105. break;
  106. case META_SSA:
  107. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  108. blkaddr < SM_I(sbi)->ssa_blkaddr))
  109. return false;
  110. break;
  111. case META_CP:
  112. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  113. blkaddr < __start_cp_addr(sbi)))
  114. return false;
  115. break;
  116. case META_POR:
  117. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  118. blkaddr < MAIN_BLKADDR(sbi)))
  119. return false;
  120. break;
  121. default:
  122. BUG();
  123. }
  124. return true;
  125. }
  126. /*
  127. * Readahead CP/NAT/SIT/SSA pages
  128. */
  129. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  130. int type, bool sync)
  131. {
  132. block_t prev_blk_addr = 0;
  133. struct page *page;
  134. block_t blkno = start;
  135. struct f2fs_io_info fio = {
  136. .sbi = sbi,
  137. .type = META,
  138. .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
  139. .encrypted_page = NULL,
  140. };
  141. if (unlikely(type == META_POR))
  142. fio.rw &= ~REQ_META;
  143. for (; nrpages-- > 0; blkno++) {
  144. if (!is_valid_blkaddr(sbi, blkno, type))
  145. goto out;
  146. switch (type) {
  147. case META_NAT:
  148. if (unlikely(blkno >=
  149. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  150. blkno = 0;
  151. /* get nat block addr */
  152. fio.blk_addr = current_nat_addr(sbi,
  153. blkno * NAT_ENTRY_PER_BLOCK);
  154. break;
  155. case META_SIT:
  156. /* get sit block addr */
  157. fio.blk_addr = current_sit_addr(sbi,
  158. blkno * SIT_ENTRY_PER_BLOCK);
  159. if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
  160. goto out;
  161. prev_blk_addr = fio.blk_addr;
  162. break;
  163. case META_SSA:
  164. case META_CP:
  165. case META_POR:
  166. fio.blk_addr = blkno;
  167. break;
  168. default:
  169. BUG();
  170. }
  171. page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
  172. if (!page)
  173. continue;
  174. if (PageUptodate(page)) {
  175. f2fs_put_page(page, 1);
  176. continue;
  177. }
  178. fio.page = page;
  179. f2fs_submit_page_mbio(&fio);
  180. f2fs_put_page(page, 0);
  181. }
  182. out:
  183. f2fs_submit_merged_bio(sbi, META, READ);
  184. return blkno - start;
  185. }
  186. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  187. {
  188. struct page *page;
  189. bool readahead = false;
  190. page = find_get_page(META_MAPPING(sbi), index);
  191. if (!page || (page && !PageUptodate(page)))
  192. readahead = true;
  193. f2fs_put_page(page, 0);
  194. if (readahead)
  195. ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
  196. }
  197. static int f2fs_write_meta_page(struct page *page,
  198. struct writeback_control *wbc)
  199. {
  200. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  201. trace_f2fs_writepage(page, META);
  202. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  203. goto redirty_out;
  204. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  205. goto redirty_out;
  206. if (unlikely(f2fs_cp_error(sbi)))
  207. goto redirty_out;
  208. f2fs_wait_on_page_writeback(page, META);
  209. write_meta_page(sbi, page);
  210. dec_page_count(sbi, F2FS_DIRTY_META);
  211. unlock_page(page);
  212. if (wbc->for_reclaim || unlikely(f2fs_cp_error(sbi)))
  213. f2fs_submit_merged_bio(sbi, META, WRITE);
  214. return 0;
  215. redirty_out:
  216. redirty_page_for_writepage(wbc, page);
  217. return AOP_WRITEPAGE_ACTIVATE;
  218. }
  219. static int f2fs_write_meta_pages(struct address_space *mapping,
  220. struct writeback_control *wbc)
  221. {
  222. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  223. long diff, written;
  224. trace_f2fs_writepages(mapping->host, wbc, META);
  225. /* collect a number of dirty meta pages and write together */
  226. if (wbc->for_kupdate ||
  227. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  228. goto skip_write;
  229. /* if mounting is failed, skip writing node pages */
  230. mutex_lock(&sbi->cp_mutex);
  231. diff = nr_pages_to_write(sbi, META, wbc);
  232. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  233. mutex_unlock(&sbi->cp_mutex);
  234. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  235. return 0;
  236. skip_write:
  237. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  238. return 0;
  239. }
  240. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  241. long nr_to_write)
  242. {
  243. struct address_space *mapping = META_MAPPING(sbi);
  244. pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX;
  245. struct pagevec pvec;
  246. long nwritten = 0;
  247. struct writeback_control wbc = {
  248. .for_reclaim = 0,
  249. };
  250. pagevec_init(&pvec, 0);
  251. while (index <= end) {
  252. int i, nr_pages;
  253. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  254. PAGECACHE_TAG_DIRTY,
  255. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  256. if (unlikely(nr_pages == 0))
  257. break;
  258. for (i = 0; i < nr_pages; i++) {
  259. struct page *page = pvec.pages[i];
  260. if (prev == LONG_MAX)
  261. prev = page->index - 1;
  262. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  263. pagevec_release(&pvec);
  264. goto stop;
  265. }
  266. lock_page(page);
  267. if (unlikely(page->mapping != mapping)) {
  268. continue_unlock:
  269. unlock_page(page);
  270. continue;
  271. }
  272. if (!PageDirty(page)) {
  273. /* someone wrote it for us */
  274. goto continue_unlock;
  275. }
  276. if (!clear_page_dirty_for_io(page))
  277. goto continue_unlock;
  278. if (mapping->a_ops->writepage(page, &wbc)) {
  279. unlock_page(page);
  280. break;
  281. }
  282. nwritten++;
  283. prev = page->index;
  284. if (unlikely(nwritten >= nr_to_write))
  285. break;
  286. }
  287. pagevec_release(&pvec);
  288. cond_resched();
  289. }
  290. stop:
  291. if (nwritten)
  292. f2fs_submit_merged_bio(sbi, type, WRITE);
  293. return nwritten;
  294. }
  295. static int f2fs_set_meta_page_dirty(struct page *page)
  296. {
  297. trace_f2fs_set_page_dirty(page, META);
  298. SetPageUptodate(page);
  299. if (!PageDirty(page)) {
  300. __set_page_dirty_nobuffers(page);
  301. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  302. SetPagePrivate(page);
  303. f2fs_trace_pid(page);
  304. return 1;
  305. }
  306. return 0;
  307. }
  308. const struct address_space_operations f2fs_meta_aops = {
  309. .writepage = f2fs_write_meta_page,
  310. .writepages = f2fs_write_meta_pages,
  311. .set_page_dirty = f2fs_set_meta_page_dirty,
  312. .invalidatepage = f2fs_invalidate_page,
  313. .releasepage = f2fs_release_page,
  314. };
  315. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  316. {
  317. struct inode_management *im = &sbi->im[type];
  318. struct ino_entry *e, *tmp;
  319. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  320. retry:
  321. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  322. spin_lock(&im->ino_lock);
  323. e = radix_tree_lookup(&im->ino_root, ino);
  324. if (!e) {
  325. e = tmp;
  326. if (radix_tree_insert(&im->ino_root, ino, e)) {
  327. spin_unlock(&im->ino_lock);
  328. radix_tree_preload_end();
  329. goto retry;
  330. }
  331. memset(e, 0, sizeof(struct ino_entry));
  332. e->ino = ino;
  333. list_add_tail(&e->list, &im->ino_list);
  334. if (type != ORPHAN_INO)
  335. im->ino_num++;
  336. }
  337. spin_unlock(&im->ino_lock);
  338. radix_tree_preload_end();
  339. if (e != tmp)
  340. kmem_cache_free(ino_entry_slab, tmp);
  341. }
  342. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  343. {
  344. struct inode_management *im = &sbi->im[type];
  345. struct ino_entry *e;
  346. spin_lock(&im->ino_lock);
  347. e = radix_tree_lookup(&im->ino_root, ino);
  348. if (e) {
  349. list_del(&e->list);
  350. radix_tree_delete(&im->ino_root, ino);
  351. im->ino_num--;
  352. spin_unlock(&im->ino_lock);
  353. kmem_cache_free(ino_entry_slab, e);
  354. return;
  355. }
  356. spin_unlock(&im->ino_lock);
  357. }
  358. void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  359. {
  360. /* add new dirty ino entry into list */
  361. __add_ino_entry(sbi, ino, type);
  362. }
  363. void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  364. {
  365. /* remove dirty ino entry from list */
  366. __remove_ino_entry(sbi, ino, type);
  367. }
  368. /* mode should be APPEND_INO or UPDATE_INO */
  369. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  370. {
  371. struct inode_management *im = &sbi->im[mode];
  372. struct ino_entry *e;
  373. spin_lock(&im->ino_lock);
  374. e = radix_tree_lookup(&im->ino_root, ino);
  375. spin_unlock(&im->ino_lock);
  376. return e ? true : false;
  377. }
  378. void release_ino_entry(struct f2fs_sb_info *sbi)
  379. {
  380. struct ino_entry *e, *tmp;
  381. int i;
  382. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  383. struct inode_management *im = &sbi->im[i];
  384. spin_lock(&im->ino_lock);
  385. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  386. list_del(&e->list);
  387. radix_tree_delete(&im->ino_root, e->ino);
  388. kmem_cache_free(ino_entry_slab, e);
  389. im->ino_num--;
  390. }
  391. spin_unlock(&im->ino_lock);
  392. }
  393. }
  394. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  395. {
  396. struct inode_management *im = &sbi->im[ORPHAN_INO];
  397. int err = 0;
  398. spin_lock(&im->ino_lock);
  399. if (unlikely(im->ino_num >= sbi->max_orphans))
  400. err = -ENOSPC;
  401. else
  402. im->ino_num++;
  403. spin_unlock(&im->ino_lock);
  404. return err;
  405. }
  406. void release_orphan_inode(struct f2fs_sb_info *sbi)
  407. {
  408. struct inode_management *im = &sbi->im[ORPHAN_INO];
  409. spin_lock(&im->ino_lock);
  410. f2fs_bug_on(sbi, im->ino_num == 0);
  411. im->ino_num--;
  412. spin_unlock(&im->ino_lock);
  413. }
  414. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  415. {
  416. /* add new orphan ino entry into list */
  417. __add_ino_entry(sbi, ino, ORPHAN_INO);
  418. }
  419. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  420. {
  421. /* remove orphan entry from orphan list */
  422. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  423. }
  424. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  425. {
  426. struct inode *inode;
  427. inode = f2fs_iget(sbi->sb, ino);
  428. if (IS_ERR(inode)) {
  429. /*
  430. * there should be a bug that we can't find the entry
  431. * to orphan inode.
  432. */
  433. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  434. return PTR_ERR(inode);
  435. }
  436. clear_nlink(inode);
  437. /* truncate all the data during iput */
  438. iput(inode);
  439. return 0;
  440. }
  441. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  442. {
  443. block_t start_blk, orphan_blocks, i, j;
  444. int err;
  445. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  446. return 0;
  447. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  448. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  449. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  450. for (i = 0; i < orphan_blocks; i++) {
  451. struct page *page = get_meta_page(sbi, start_blk + i);
  452. struct f2fs_orphan_block *orphan_blk;
  453. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  454. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  455. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  456. err = recover_orphan_inode(sbi, ino);
  457. if (err) {
  458. f2fs_put_page(page, 1);
  459. return err;
  460. }
  461. }
  462. f2fs_put_page(page, 1);
  463. }
  464. /* clear Orphan Flag */
  465. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  466. return 0;
  467. }
  468. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  469. {
  470. struct list_head *head;
  471. struct f2fs_orphan_block *orphan_blk = NULL;
  472. unsigned int nentries = 0;
  473. unsigned short index = 1;
  474. unsigned short orphan_blocks;
  475. struct page *page = NULL;
  476. struct ino_entry *orphan = NULL;
  477. struct inode_management *im = &sbi->im[ORPHAN_INO];
  478. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  479. /*
  480. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  481. * orphan inode operations are covered under f2fs_lock_op().
  482. * And, spin_lock should be avoided due to page operations below.
  483. */
  484. head = &im->ino_list;
  485. /* loop for each orphan inode entry and write them in Jornal block */
  486. list_for_each_entry(orphan, head, list) {
  487. if (!page) {
  488. page = grab_meta_page(sbi, start_blk++);
  489. orphan_blk =
  490. (struct f2fs_orphan_block *)page_address(page);
  491. memset(orphan_blk, 0, sizeof(*orphan_blk));
  492. }
  493. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  494. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  495. /*
  496. * an orphan block is full of 1020 entries,
  497. * then we need to flush current orphan blocks
  498. * and bring another one in memory
  499. */
  500. orphan_blk->blk_addr = cpu_to_le16(index);
  501. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  502. orphan_blk->entry_count = cpu_to_le32(nentries);
  503. set_page_dirty(page);
  504. f2fs_put_page(page, 1);
  505. index++;
  506. nentries = 0;
  507. page = NULL;
  508. }
  509. }
  510. if (page) {
  511. orphan_blk->blk_addr = cpu_to_le16(index);
  512. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  513. orphan_blk->entry_count = cpu_to_le32(nentries);
  514. set_page_dirty(page);
  515. f2fs_put_page(page, 1);
  516. }
  517. }
  518. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  519. block_t cp_addr, unsigned long long *version)
  520. {
  521. struct page *cp_page_1, *cp_page_2 = NULL;
  522. unsigned long blk_size = sbi->blocksize;
  523. struct f2fs_checkpoint *cp_block;
  524. unsigned long long cur_version = 0, pre_version = 0;
  525. size_t crc_offset;
  526. __u32 crc = 0;
  527. /* Read the 1st cp block in this CP pack */
  528. cp_page_1 = get_meta_page(sbi, cp_addr);
  529. /* get the version number */
  530. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  531. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  532. if (crc_offset >= blk_size)
  533. goto invalid_cp1;
  534. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  535. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  536. goto invalid_cp1;
  537. pre_version = cur_cp_version(cp_block);
  538. /* Read the 2nd cp block in this CP pack */
  539. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  540. cp_page_2 = get_meta_page(sbi, cp_addr);
  541. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  542. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  543. if (crc_offset >= blk_size)
  544. goto invalid_cp2;
  545. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  546. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  547. goto invalid_cp2;
  548. cur_version = cur_cp_version(cp_block);
  549. if (cur_version == pre_version) {
  550. *version = cur_version;
  551. f2fs_put_page(cp_page_2, 1);
  552. return cp_page_1;
  553. }
  554. invalid_cp2:
  555. f2fs_put_page(cp_page_2, 1);
  556. invalid_cp1:
  557. f2fs_put_page(cp_page_1, 1);
  558. return NULL;
  559. }
  560. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  561. {
  562. struct f2fs_checkpoint *cp_block;
  563. struct f2fs_super_block *fsb = sbi->raw_super;
  564. struct page *cp1, *cp2, *cur_page;
  565. unsigned long blk_size = sbi->blocksize;
  566. unsigned long long cp1_version = 0, cp2_version = 0;
  567. unsigned long long cp_start_blk_no;
  568. unsigned int cp_blks = 1 + __cp_payload(sbi);
  569. block_t cp_blk_no;
  570. int i;
  571. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  572. if (!sbi->ckpt)
  573. return -ENOMEM;
  574. /*
  575. * Finding out valid cp block involves read both
  576. * sets( cp pack1 and cp pack 2)
  577. */
  578. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  579. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  580. /* The second checkpoint pack should start at the next segment */
  581. cp_start_blk_no += ((unsigned long long)1) <<
  582. le32_to_cpu(fsb->log_blocks_per_seg);
  583. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  584. if (cp1 && cp2) {
  585. if (ver_after(cp2_version, cp1_version))
  586. cur_page = cp2;
  587. else
  588. cur_page = cp1;
  589. } else if (cp1) {
  590. cur_page = cp1;
  591. } else if (cp2) {
  592. cur_page = cp2;
  593. } else {
  594. goto fail_no_cp;
  595. }
  596. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  597. memcpy(sbi->ckpt, cp_block, blk_size);
  598. if (cp_blks <= 1)
  599. goto done;
  600. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  601. if (cur_page == cp2)
  602. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  603. for (i = 1; i < cp_blks; i++) {
  604. void *sit_bitmap_ptr;
  605. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  606. cur_page = get_meta_page(sbi, cp_blk_no + i);
  607. sit_bitmap_ptr = page_address(cur_page);
  608. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  609. f2fs_put_page(cur_page, 1);
  610. }
  611. done:
  612. f2fs_put_page(cp1, 1);
  613. f2fs_put_page(cp2, 1);
  614. return 0;
  615. fail_no_cp:
  616. kfree(sbi->ckpt);
  617. return -EINVAL;
  618. }
  619. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  620. {
  621. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  622. struct f2fs_inode_info *fi = F2FS_I(inode);
  623. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  624. if (is_inode_flag_set(fi, flag))
  625. return;
  626. set_inode_flag(fi, flag);
  627. list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
  628. stat_inc_dirty_inode(sbi, type);
  629. }
  630. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  631. {
  632. struct f2fs_inode_info *fi = F2FS_I(inode);
  633. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  634. if (get_dirty_pages(inode) ||
  635. !is_inode_flag_set(F2FS_I(inode), flag))
  636. return;
  637. list_del_init(&fi->dirty_list);
  638. clear_inode_flag(fi, flag);
  639. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  640. }
  641. void update_dirty_page(struct inode *inode, struct page *page)
  642. {
  643. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  644. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  645. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  646. !S_ISLNK(inode->i_mode))
  647. return;
  648. spin_lock(&sbi->inode_lock[type]);
  649. __add_dirty_inode(inode, type);
  650. inode_inc_dirty_pages(inode);
  651. spin_unlock(&sbi->inode_lock[type]);
  652. SetPagePrivate(page);
  653. f2fs_trace_pid(page);
  654. }
  655. void add_dirty_dir_inode(struct inode *inode)
  656. {
  657. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  658. spin_lock(&sbi->inode_lock[DIR_INODE]);
  659. __add_dirty_inode(inode, DIR_INODE);
  660. spin_unlock(&sbi->inode_lock[DIR_INODE]);
  661. }
  662. void remove_dirty_inode(struct inode *inode)
  663. {
  664. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  665. struct f2fs_inode_info *fi = F2FS_I(inode);
  666. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  667. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  668. !S_ISLNK(inode->i_mode))
  669. return;
  670. spin_lock(&sbi->inode_lock[type]);
  671. __remove_dirty_inode(inode, type);
  672. spin_unlock(&sbi->inode_lock[type]);
  673. /* Only from the recovery routine */
  674. if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
  675. clear_inode_flag(fi, FI_DELAY_IPUT);
  676. iput(inode);
  677. }
  678. }
  679. int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
  680. {
  681. struct list_head *head;
  682. struct inode *inode;
  683. struct f2fs_inode_info *fi;
  684. bool is_dir = (type == DIR_INODE);
  685. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  686. get_pages(sbi, is_dir ?
  687. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  688. retry:
  689. if (unlikely(f2fs_cp_error(sbi)))
  690. return -EIO;
  691. spin_lock(&sbi->inode_lock[type]);
  692. head = &sbi->inode_list[type];
  693. if (list_empty(head)) {
  694. spin_unlock(&sbi->inode_lock[type]);
  695. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  696. get_pages(sbi, is_dir ?
  697. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  698. return 0;
  699. }
  700. fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
  701. inode = igrab(&fi->vfs_inode);
  702. spin_unlock(&sbi->inode_lock[type]);
  703. if (inode) {
  704. filemap_fdatawrite(inode->i_mapping);
  705. iput(inode);
  706. } else {
  707. /*
  708. * We should submit bio, since it exists several
  709. * wribacking dentry pages in the freeing inode.
  710. */
  711. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  712. cond_resched();
  713. }
  714. goto retry;
  715. }
  716. /*
  717. * Freeze all the FS-operations for checkpoint.
  718. */
  719. static int block_operations(struct f2fs_sb_info *sbi)
  720. {
  721. struct writeback_control wbc = {
  722. .sync_mode = WB_SYNC_ALL,
  723. .nr_to_write = LONG_MAX,
  724. .for_reclaim = 0,
  725. };
  726. struct blk_plug plug;
  727. int err = 0;
  728. blk_start_plug(&plug);
  729. retry_flush_dents:
  730. f2fs_lock_all(sbi);
  731. /* write all the dirty dentry pages */
  732. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  733. f2fs_unlock_all(sbi);
  734. err = sync_dirty_inodes(sbi, DIR_INODE);
  735. if (err)
  736. goto out;
  737. goto retry_flush_dents;
  738. }
  739. /*
  740. * POR: we should ensure that there are no dirty node pages
  741. * until finishing nat/sit flush.
  742. */
  743. retry_flush_nodes:
  744. down_write(&sbi->node_write);
  745. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  746. up_write(&sbi->node_write);
  747. err = sync_node_pages(sbi, 0, &wbc);
  748. if (err) {
  749. f2fs_unlock_all(sbi);
  750. goto out;
  751. }
  752. goto retry_flush_nodes;
  753. }
  754. out:
  755. blk_finish_plug(&plug);
  756. return err;
  757. }
  758. static void unblock_operations(struct f2fs_sb_info *sbi)
  759. {
  760. up_write(&sbi->node_write);
  761. f2fs_unlock_all(sbi);
  762. }
  763. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  764. {
  765. DEFINE_WAIT(wait);
  766. for (;;) {
  767. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  768. if (!get_pages(sbi, F2FS_WRITEBACK))
  769. break;
  770. io_schedule();
  771. }
  772. finish_wait(&sbi->cp_wait, &wait);
  773. }
  774. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  775. {
  776. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  777. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  778. struct f2fs_nm_info *nm_i = NM_I(sbi);
  779. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  780. nid_t last_nid = nm_i->next_scan_nid;
  781. block_t start_blk;
  782. unsigned int data_sum_blocks, orphan_blocks;
  783. __u32 crc32 = 0;
  784. int i;
  785. int cp_payload_blks = __cp_payload(sbi);
  786. block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
  787. bool invalidate = false;
  788. /*
  789. * This avoids to conduct wrong roll-forward operations and uses
  790. * metapages, so should be called prior to sync_meta_pages below.
  791. */
  792. if (discard_next_dnode(sbi, discard_blk))
  793. invalidate = true;
  794. /* Flush all the NAT/SIT pages */
  795. while (get_pages(sbi, F2FS_DIRTY_META)) {
  796. sync_meta_pages(sbi, META, LONG_MAX);
  797. if (unlikely(f2fs_cp_error(sbi)))
  798. return -EIO;
  799. }
  800. next_free_nid(sbi, &last_nid);
  801. /*
  802. * modify checkpoint
  803. * version number is already updated
  804. */
  805. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  806. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  807. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  808. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  809. ckpt->cur_node_segno[i] =
  810. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  811. ckpt->cur_node_blkoff[i] =
  812. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  813. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  814. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  815. }
  816. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  817. ckpt->cur_data_segno[i] =
  818. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  819. ckpt->cur_data_blkoff[i] =
  820. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  821. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  822. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  823. }
  824. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  825. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  826. ckpt->next_free_nid = cpu_to_le32(last_nid);
  827. /* 2 cp + n data seg summary + orphan inode blocks */
  828. data_sum_blocks = npages_for_summary_flush(sbi, false);
  829. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  830. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  831. else
  832. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  833. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  834. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  835. orphan_blocks);
  836. if (__remain_node_summaries(cpc->reason))
  837. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  838. cp_payload_blks + data_sum_blocks +
  839. orphan_blocks + NR_CURSEG_NODE_TYPE);
  840. else
  841. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  842. cp_payload_blks + data_sum_blocks +
  843. orphan_blocks);
  844. if (cpc->reason == CP_UMOUNT)
  845. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  846. else
  847. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  848. if (cpc->reason == CP_FASTBOOT)
  849. set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  850. else
  851. clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  852. if (orphan_num)
  853. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  854. else
  855. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  856. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  857. set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  858. /* update SIT/NAT bitmap */
  859. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  860. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  861. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  862. *((__le32 *)((unsigned char *)ckpt +
  863. le32_to_cpu(ckpt->checksum_offset)))
  864. = cpu_to_le32(crc32);
  865. start_blk = __start_cp_addr(sbi);
  866. /* need to wait for end_io results */
  867. wait_on_all_pages_writeback(sbi);
  868. if (unlikely(f2fs_cp_error(sbi)))
  869. return -EIO;
  870. /* write out checkpoint buffer at block 0 */
  871. update_meta_page(sbi, ckpt, start_blk++);
  872. for (i = 1; i < 1 + cp_payload_blks; i++)
  873. update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  874. start_blk++);
  875. if (orphan_num) {
  876. write_orphan_inodes(sbi, start_blk);
  877. start_blk += orphan_blocks;
  878. }
  879. write_data_summaries(sbi, start_blk);
  880. start_blk += data_sum_blocks;
  881. if (__remain_node_summaries(cpc->reason)) {
  882. write_node_summaries(sbi, start_blk);
  883. start_blk += NR_CURSEG_NODE_TYPE;
  884. }
  885. /* writeout checkpoint block */
  886. update_meta_page(sbi, ckpt, start_blk);
  887. /* wait for previous submitted node/meta pages writeback */
  888. wait_on_all_pages_writeback(sbi);
  889. if (unlikely(f2fs_cp_error(sbi)))
  890. return -EIO;
  891. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  892. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  893. /* update user_block_counts */
  894. sbi->last_valid_block_count = sbi->total_valid_block_count;
  895. sbi->alloc_valid_block_count = 0;
  896. /* Here, we only have one bio having CP pack */
  897. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  898. /* wait for previous submitted meta pages writeback */
  899. wait_on_all_pages_writeback(sbi);
  900. /*
  901. * invalidate meta page which is used temporarily for zeroing out
  902. * block at the end of warm node chain.
  903. */
  904. if (invalidate)
  905. invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
  906. discard_blk);
  907. release_ino_entry(sbi);
  908. if (unlikely(f2fs_cp_error(sbi)))
  909. return -EIO;
  910. clear_prefree_segments(sbi, cpc);
  911. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  912. return 0;
  913. }
  914. /*
  915. * We guarantee that this checkpoint procedure will not fail.
  916. */
  917. int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  918. {
  919. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  920. unsigned long long ckpt_ver;
  921. int err = 0;
  922. mutex_lock(&sbi->cp_mutex);
  923. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  924. (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
  925. (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
  926. goto out;
  927. if (unlikely(f2fs_cp_error(sbi))) {
  928. err = -EIO;
  929. goto out;
  930. }
  931. if (f2fs_readonly(sbi->sb)) {
  932. err = -EROFS;
  933. goto out;
  934. }
  935. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  936. err = block_operations(sbi);
  937. if (err)
  938. goto out;
  939. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  940. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  941. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  942. f2fs_submit_merged_bio(sbi, META, WRITE);
  943. /*
  944. * update checkpoint pack index
  945. * Increase the version number so that
  946. * SIT entries and seg summaries are written at correct place
  947. */
  948. ckpt_ver = cur_cp_version(ckpt);
  949. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  950. /* write cached NAT/SIT entries to NAT/SIT area */
  951. flush_nat_entries(sbi);
  952. flush_sit_entries(sbi, cpc);
  953. /* unlock all the fs_lock[] in do_checkpoint() */
  954. err = do_checkpoint(sbi, cpc);
  955. unblock_operations(sbi);
  956. stat_inc_cp_count(sbi->stat_info);
  957. if (cpc->reason == CP_RECOVERY)
  958. f2fs_msg(sbi->sb, KERN_NOTICE,
  959. "checkpoint: version = %llx", ckpt_ver);
  960. /* do checkpoint periodically */
  961. f2fs_update_time(sbi, CP_TIME);
  962. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  963. out:
  964. mutex_unlock(&sbi->cp_mutex);
  965. return err;
  966. }
  967. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  968. {
  969. int i;
  970. for (i = 0; i < MAX_INO_ENTRY; i++) {
  971. struct inode_management *im = &sbi->im[i];
  972. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  973. spin_lock_init(&im->ino_lock);
  974. INIT_LIST_HEAD(&im->ino_list);
  975. im->ino_num = 0;
  976. }
  977. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  978. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  979. F2FS_ORPHANS_PER_BLOCK;
  980. }
  981. int __init create_checkpoint_caches(void)
  982. {
  983. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  984. sizeof(struct ino_entry));
  985. if (!ino_entry_slab)
  986. return -ENOMEM;
  987. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  988. sizeof(struct inode_entry));
  989. if (!inode_entry_slab) {
  990. kmem_cache_destroy(ino_entry_slab);
  991. return -ENOMEM;
  992. }
  993. return 0;
  994. }
  995. void destroy_checkpoint_caches(void)
  996. {
  997. kmem_cache_destroy(ino_entry_slab);
  998. kmem_cache_destroy(inode_entry_slab);
  999. }