dir.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646
  1. /*
  2. * linux/fs/ext4/dir.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/dir.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * ext4 directory handling functions
  16. *
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. *
  20. * Hash Tree Directory indexing (c) 2001 Daniel Phillips
  21. *
  22. */
  23. #include <linux/fs.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/slab.h>
  26. #include "ext4.h"
  27. #include "xattr.h"
  28. static int ext4_dx_readdir(struct file *, struct dir_context *);
  29. /**
  30. * Check if the given dir-inode refers to an htree-indexed directory
  31. * (or a directory which could potentially get converted to use htree
  32. * indexing).
  33. *
  34. * Return 1 if it is a dx dir, 0 if not
  35. */
  36. static int is_dx_dir(struct inode *inode)
  37. {
  38. struct super_block *sb = inode->i_sb;
  39. if (ext4_has_feature_dir_index(inode->i_sb) &&
  40. ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
  41. ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
  42. ext4_has_inline_data(inode)))
  43. return 1;
  44. return 0;
  45. }
  46. /*
  47. * Return 0 if the directory entry is OK, and 1 if there is a problem
  48. *
  49. * Note: this is the opposite of what ext2 and ext3 historically returned...
  50. *
  51. * bh passed here can be an inode block or a dir data block, depending
  52. * on the inode inline data flag.
  53. */
  54. int __ext4_check_dir_entry(const char *function, unsigned int line,
  55. struct inode *dir, struct file *filp,
  56. struct ext4_dir_entry_2 *de,
  57. struct buffer_head *bh, char *buf, int size,
  58. unsigned int offset)
  59. {
  60. const char *error_msg = NULL;
  61. const int rlen = ext4_rec_len_from_disk(de->rec_len,
  62. dir->i_sb->s_blocksize);
  63. if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
  64. error_msg = "rec_len is smaller than minimal";
  65. else if (unlikely(rlen % 4 != 0))
  66. error_msg = "rec_len % 4 != 0";
  67. else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
  68. error_msg = "rec_len is too small for name_len";
  69. else if (unlikely(((char *) de - buf) + rlen > size))
  70. error_msg = "directory entry across range";
  71. else if (unlikely(le32_to_cpu(de->inode) >
  72. le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
  73. error_msg = "inode out of bounds";
  74. else
  75. return 0;
  76. if (filp)
  77. ext4_error_file(filp, function, line, bh->b_blocknr,
  78. "bad entry in directory: %s - offset=%u(%u), "
  79. "inode=%u, rec_len=%d, name_len=%d",
  80. error_msg, (unsigned) (offset % size),
  81. offset, le32_to_cpu(de->inode),
  82. rlen, de->name_len);
  83. else
  84. ext4_error_inode(dir, function, line, bh->b_blocknr,
  85. "bad entry in directory: %s - offset=%u(%u), "
  86. "inode=%u, rec_len=%d, name_len=%d",
  87. error_msg, (unsigned) (offset % size),
  88. offset, le32_to_cpu(de->inode),
  89. rlen, de->name_len);
  90. return 1;
  91. }
  92. static int ext4_readdir(struct file *file, struct dir_context *ctx)
  93. {
  94. unsigned int offset;
  95. int i;
  96. struct ext4_dir_entry_2 *de;
  97. int err;
  98. struct inode *inode = file_inode(file);
  99. struct super_block *sb = inode->i_sb;
  100. struct buffer_head *bh = NULL;
  101. int dir_has_error = 0;
  102. struct ext4_str fname_crypto_str = {.name = NULL, .len = 0};
  103. if (is_dx_dir(inode)) {
  104. err = ext4_dx_readdir(file, ctx);
  105. if (err != ERR_BAD_DX_DIR) {
  106. return err;
  107. }
  108. /*
  109. * We don't set the inode dirty flag since it's not
  110. * critical that it get flushed back to the disk.
  111. */
  112. ext4_clear_inode_flag(file_inode(file),
  113. EXT4_INODE_INDEX);
  114. }
  115. if (ext4_has_inline_data(inode)) {
  116. int has_inline_data = 1;
  117. err = ext4_read_inline_dir(file, ctx,
  118. &has_inline_data);
  119. if (has_inline_data)
  120. return err;
  121. }
  122. if (ext4_encrypted_inode(inode)) {
  123. err = ext4_fname_crypto_alloc_buffer(inode, EXT4_NAME_LEN,
  124. &fname_crypto_str);
  125. if (err < 0)
  126. return err;
  127. }
  128. offset = ctx->pos & (sb->s_blocksize - 1);
  129. while (ctx->pos < inode->i_size) {
  130. struct ext4_map_blocks map;
  131. map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
  132. map.m_len = 1;
  133. err = ext4_map_blocks(NULL, inode, &map, 0);
  134. if (err > 0) {
  135. pgoff_t index = map.m_pblk >>
  136. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  137. if (!ra_has_index(&file->f_ra, index))
  138. page_cache_sync_readahead(
  139. sb->s_bdev->bd_inode->i_mapping,
  140. &file->f_ra, file,
  141. index, 1);
  142. file->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
  143. bh = ext4_bread(NULL, inode, map.m_lblk, 0);
  144. if (IS_ERR(bh))
  145. return PTR_ERR(bh);
  146. }
  147. if (!bh) {
  148. if (!dir_has_error) {
  149. EXT4_ERROR_FILE(file, 0,
  150. "directory contains a "
  151. "hole at offset %llu",
  152. (unsigned long long) ctx->pos);
  153. dir_has_error = 1;
  154. }
  155. /* corrupt size? Maybe no more blocks to read */
  156. if (ctx->pos > inode->i_blocks << 9)
  157. break;
  158. ctx->pos += sb->s_blocksize - offset;
  159. continue;
  160. }
  161. /* Check the checksum */
  162. if (!buffer_verified(bh) &&
  163. !ext4_dirent_csum_verify(inode,
  164. (struct ext4_dir_entry *)bh->b_data)) {
  165. EXT4_ERROR_FILE(file, 0, "directory fails checksum "
  166. "at offset %llu",
  167. (unsigned long long)ctx->pos);
  168. ctx->pos += sb->s_blocksize - offset;
  169. brelse(bh);
  170. bh = NULL;
  171. continue;
  172. }
  173. set_buffer_verified(bh);
  174. /* If the dir block has changed since the last call to
  175. * readdir(2), then we might be pointing to an invalid
  176. * dirent right now. Scan from the start of the block
  177. * to make sure. */
  178. if (file->f_version != inode->i_version) {
  179. for (i = 0; i < sb->s_blocksize && i < offset; ) {
  180. de = (struct ext4_dir_entry_2 *)
  181. (bh->b_data + i);
  182. /* It's too expensive to do a full
  183. * dirent test each time round this
  184. * loop, but we do have to test at
  185. * least that it is non-zero. A
  186. * failure will be detected in the
  187. * dirent test below. */
  188. if (ext4_rec_len_from_disk(de->rec_len,
  189. sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
  190. break;
  191. i += ext4_rec_len_from_disk(de->rec_len,
  192. sb->s_blocksize);
  193. }
  194. offset = i;
  195. ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
  196. | offset;
  197. file->f_version = inode->i_version;
  198. }
  199. while (ctx->pos < inode->i_size
  200. && offset < sb->s_blocksize) {
  201. de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
  202. if (ext4_check_dir_entry(inode, file, de, bh,
  203. bh->b_data, bh->b_size,
  204. offset)) {
  205. /*
  206. * On error, skip to the next block
  207. */
  208. ctx->pos = (ctx->pos |
  209. (sb->s_blocksize - 1)) + 1;
  210. break;
  211. }
  212. offset += ext4_rec_len_from_disk(de->rec_len,
  213. sb->s_blocksize);
  214. if (le32_to_cpu(de->inode)) {
  215. if (!ext4_encrypted_inode(inode)) {
  216. if (!dir_emit(ctx, de->name,
  217. de->name_len,
  218. le32_to_cpu(de->inode),
  219. get_dtype(sb, de->file_type)))
  220. goto done;
  221. } else {
  222. int save_len = fname_crypto_str.len;
  223. /* Directory is encrypted */
  224. err = ext4_fname_disk_to_usr(inode,
  225. NULL, de, &fname_crypto_str);
  226. fname_crypto_str.len = save_len;
  227. if (err < 0)
  228. goto errout;
  229. if (!dir_emit(ctx,
  230. fname_crypto_str.name, err,
  231. le32_to_cpu(de->inode),
  232. get_dtype(sb, de->file_type)))
  233. goto done;
  234. }
  235. }
  236. ctx->pos += ext4_rec_len_from_disk(de->rec_len,
  237. sb->s_blocksize);
  238. }
  239. if ((ctx->pos < inode->i_size) && !dir_relax(inode))
  240. goto done;
  241. brelse(bh);
  242. bh = NULL;
  243. offset = 0;
  244. }
  245. done:
  246. err = 0;
  247. errout:
  248. #ifdef CONFIG_EXT4_FS_ENCRYPTION
  249. ext4_fname_crypto_free_buffer(&fname_crypto_str);
  250. #endif
  251. brelse(bh);
  252. return err;
  253. }
  254. static inline int is_32bit_api(void)
  255. {
  256. #ifdef CONFIG_COMPAT
  257. return is_compat_task();
  258. #else
  259. return (BITS_PER_LONG == 32);
  260. #endif
  261. }
  262. /*
  263. * These functions convert from the major/minor hash to an f_pos
  264. * value for dx directories
  265. *
  266. * Upper layer (for example NFS) should specify FMODE_32BITHASH or
  267. * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
  268. * directly on both 32-bit and 64-bit nodes, under such case, neither
  269. * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
  270. */
  271. static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
  272. {
  273. if ((filp->f_mode & FMODE_32BITHASH) ||
  274. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  275. return major >> 1;
  276. else
  277. return ((__u64)(major >> 1) << 32) | (__u64)minor;
  278. }
  279. static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
  280. {
  281. if ((filp->f_mode & FMODE_32BITHASH) ||
  282. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  283. return (pos << 1) & 0xffffffff;
  284. else
  285. return ((pos >> 32) << 1) & 0xffffffff;
  286. }
  287. static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
  288. {
  289. if ((filp->f_mode & FMODE_32BITHASH) ||
  290. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  291. return 0;
  292. else
  293. return pos & 0xffffffff;
  294. }
  295. /*
  296. * Return 32- or 64-bit end-of-file for dx directories
  297. */
  298. static inline loff_t ext4_get_htree_eof(struct file *filp)
  299. {
  300. if ((filp->f_mode & FMODE_32BITHASH) ||
  301. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  302. return EXT4_HTREE_EOF_32BIT;
  303. else
  304. return EXT4_HTREE_EOF_64BIT;
  305. }
  306. /*
  307. * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
  308. * directories, where the "offset" is in terms of the filename hash
  309. * value instead of the byte offset.
  310. *
  311. * Because we may return a 64-bit hash that is well beyond offset limits,
  312. * we need to pass the max hash as the maximum allowable offset in
  313. * the htree directory case.
  314. *
  315. * For non-htree, ext4_llseek already chooses the proper max offset.
  316. */
  317. static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
  318. {
  319. struct inode *inode = file->f_mapping->host;
  320. int dx_dir = is_dx_dir(inode);
  321. loff_t htree_max = ext4_get_htree_eof(file);
  322. if (likely(dx_dir))
  323. return generic_file_llseek_size(file, offset, whence,
  324. htree_max, htree_max);
  325. else
  326. return ext4_llseek(file, offset, whence);
  327. }
  328. /*
  329. * This structure holds the nodes of the red-black tree used to store
  330. * the directory entry in hash order.
  331. */
  332. struct fname {
  333. __u32 hash;
  334. __u32 minor_hash;
  335. struct rb_node rb_hash;
  336. struct fname *next;
  337. __u32 inode;
  338. __u8 name_len;
  339. __u8 file_type;
  340. char name[0];
  341. };
  342. /*
  343. * This functoin implements a non-recursive way of freeing all of the
  344. * nodes in the red-black tree.
  345. */
  346. static void free_rb_tree_fname(struct rb_root *root)
  347. {
  348. struct fname *fname, *next;
  349. rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
  350. while (fname) {
  351. struct fname *old = fname;
  352. fname = fname->next;
  353. kfree(old);
  354. }
  355. *root = RB_ROOT;
  356. }
  357. static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
  358. loff_t pos)
  359. {
  360. struct dir_private_info *p;
  361. p = kzalloc(sizeof(struct dir_private_info), GFP_KERNEL);
  362. if (!p)
  363. return NULL;
  364. p->curr_hash = pos2maj_hash(filp, pos);
  365. p->curr_minor_hash = pos2min_hash(filp, pos);
  366. return p;
  367. }
  368. void ext4_htree_free_dir_info(struct dir_private_info *p)
  369. {
  370. free_rb_tree_fname(&p->root);
  371. kfree(p);
  372. }
  373. /*
  374. * Given a directory entry, enter it into the fname rb tree.
  375. *
  376. * When filename encryption is enabled, the dirent will hold the
  377. * encrypted filename, while the htree will hold decrypted filename.
  378. * The decrypted filename is passed in via ent_name. parameter.
  379. */
  380. int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
  381. __u32 minor_hash,
  382. struct ext4_dir_entry_2 *dirent,
  383. struct ext4_str *ent_name)
  384. {
  385. struct rb_node **p, *parent = NULL;
  386. struct fname *fname, *new_fn;
  387. struct dir_private_info *info;
  388. int len;
  389. info = dir_file->private_data;
  390. p = &info->root.rb_node;
  391. /* Create and allocate the fname structure */
  392. len = sizeof(struct fname) + ent_name->len + 1;
  393. new_fn = kzalloc(len, GFP_KERNEL);
  394. if (!new_fn)
  395. return -ENOMEM;
  396. new_fn->hash = hash;
  397. new_fn->minor_hash = minor_hash;
  398. new_fn->inode = le32_to_cpu(dirent->inode);
  399. new_fn->name_len = ent_name->len;
  400. new_fn->file_type = dirent->file_type;
  401. memcpy(new_fn->name, ent_name->name, ent_name->len);
  402. new_fn->name[ent_name->len] = 0;
  403. while (*p) {
  404. parent = *p;
  405. fname = rb_entry(parent, struct fname, rb_hash);
  406. /*
  407. * If the hash and minor hash match up, then we put
  408. * them on a linked list. This rarely happens...
  409. */
  410. if ((new_fn->hash == fname->hash) &&
  411. (new_fn->minor_hash == fname->minor_hash)) {
  412. new_fn->next = fname->next;
  413. fname->next = new_fn;
  414. return 0;
  415. }
  416. if (new_fn->hash < fname->hash)
  417. p = &(*p)->rb_left;
  418. else if (new_fn->hash > fname->hash)
  419. p = &(*p)->rb_right;
  420. else if (new_fn->minor_hash < fname->minor_hash)
  421. p = &(*p)->rb_left;
  422. else /* if (new_fn->minor_hash > fname->minor_hash) */
  423. p = &(*p)->rb_right;
  424. }
  425. rb_link_node(&new_fn->rb_hash, parent, p);
  426. rb_insert_color(&new_fn->rb_hash, &info->root);
  427. return 0;
  428. }
  429. /*
  430. * This is a helper function for ext4_dx_readdir. It calls filldir
  431. * for all entres on the fname linked list. (Normally there is only
  432. * one entry on the linked list, unless there are 62 bit hash collisions.)
  433. */
  434. static int call_filldir(struct file *file, struct dir_context *ctx,
  435. struct fname *fname)
  436. {
  437. struct dir_private_info *info = file->private_data;
  438. struct inode *inode = file_inode(file);
  439. struct super_block *sb = inode->i_sb;
  440. if (!fname) {
  441. ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
  442. "called with null fname?!?", __func__, __LINE__,
  443. inode->i_ino, current->comm);
  444. return 0;
  445. }
  446. ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
  447. while (fname) {
  448. if (!dir_emit(ctx, fname->name,
  449. fname->name_len,
  450. fname->inode,
  451. get_dtype(sb, fname->file_type))) {
  452. info->extra_fname = fname;
  453. return 1;
  454. }
  455. fname = fname->next;
  456. }
  457. return 0;
  458. }
  459. static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
  460. {
  461. struct dir_private_info *info = file->private_data;
  462. struct inode *inode = file_inode(file);
  463. struct fname *fname;
  464. int ret;
  465. if (!info) {
  466. info = ext4_htree_create_dir_info(file, ctx->pos);
  467. if (!info)
  468. return -ENOMEM;
  469. file->private_data = info;
  470. }
  471. if (ctx->pos == ext4_get_htree_eof(file))
  472. return 0; /* EOF */
  473. /* Some one has messed with f_pos; reset the world */
  474. if (info->last_pos != ctx->pos) {
  475. free_rb_tree_fname(&info->root);
  476. info->curr_node = NULL;
  477. info->extra_fname = NULL;
  478. info->curr_hash = pos2maj_hash(file, ctx->pos);
  479. info->curr_minor_hash = pos2min_hash(file, ctx->pos);
  480. }
  481. /*
  482. * If there are any leftover names on the hash collision
  483. * chain, return them first.
  484. */
  485. if (info->extra_fname) {
  486. if (call_filldir(file, ctx, info->extra_fname))
  487. goto finished;
  488. info->extra_fname = NULL;
  489. goto next_node;
  490. } else if (!info->curr_node)
  491. info->curr_node = rb_first(&info->root);
  492. while (1) {
  493. /*
  494. * Fill the rbtree if we have no more entries,
  495. * or the inode has changed since we last read in the
  496. * cached entries.
  497. */
  498. if ((!info->curr_node) ||
  499. (file->f_version != inode->i_version)) {
  500. info->curr_node = NULL;
  501. free_rb_tree_fname(&info->root);
  502. file->f_version = inode->i_version;
  503. ret = ext4_htree_fill_tree(file, info->curr_hash,
  504. info->curr_minor_hash,
  505. &info->next_hash);
  506. if (ret < 0)
  507. return ret;
  508. if (ret == 0) {
  509. ctx->pos = ext4_get_htree_eof(file);
  510. break;
  511. }
  512. info->curr_node = rb_first(&info->root);
  513. }
  514. fname = rb_entry(info->curr_node, struct fname, rb_hash);
  515. info->curr_hash = fname->hash;
  516. info->curr_minor_hash = fname->minor_hash;
  517. if (call_filldir(file, ctx, fname))
  518. break;
  519. next_node:
  520. info->curr_node = rb_next(info->curr_node);
  521. if (info->curr_node) {
  522. fname = rb_entry(info->curr_node, struct fname,
  523. rb_hash);
  524. info->curr_hash = fname->hash;
  525. info->curr_minor_hash = fname->minor_hash;
  526. } else {
  527. if (info->next_hash == ~0) {
  528. ctx->pos = ext4_get_htree_eof(file);
  529. break;
  530. }
  531. info->curr_hash = info->next_hash;
  532. info->curr_minor_hash = 0;
  533. }
  534. }
  535. finished:
  536. info->last_pos = ctx->pos;
  537. return 0;
  538. }
  539. static int ext4_dir_open(struct inode * inode, struct file * filp)
  540. {
  541. if (ext4_encrypted_inode(inode))
  542. return ext4_get_encryption_info(inode) ? -EACCES : 0;
  543. return 0;
  544. }
  545. static int ext4_release_dir(struct inode *inode, struct file *filp)
  546. {
  547. if (filp->private_data)
  548. ext4_htree_free_dir_info(filp->private_data);
  549. return 0;
  550. }
  551. int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
  552. int buf_size)
  553. {
  554. struct ext4_dir_entry_2 *de;
  555. int nlen, rlen;
  556. unsigned int offset = 0;
  557. char *top;
  558. de = (struct ext4_dir_entry_2 *)buf;
  559. top = buf + buf_size;
  560. while ((char *) de < top) {
  561. if (ext4_check_dir_entry(dir, NULL, de, bh,
  562. buf, buf_size, offset))
  563. return -EFSCORRUPTED;
  564. nlen = EXT4_DIR_REC_LEN(de->name_len);
  565. rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
  566. de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
  567. offset += rlen;
  568. }
  569. if ((char *) de > top)
  570. return -EFSCORRUPTED;
  571. return 0;
  572. }
  573. const struct file_operations ext4_dir_operations = {
  574. .llseek = ext4_dir_llseek,
  575. .read = generic_read_dir,
  576. .iterate = ext4_readdir,
  577. .unlocked_ioctl = ext4_ioctl,
  578. #ifdef CONFIG_COMPAT
  579. .compat_ioctl = ext4_compat_ioctl,
  580. #endif
  581. .fsync = ext4_sync_file,
  582. .open = ext4_dir_open,
  583. .release = ext4_release_dir,
  584. };