init_64.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/memremap.h>
  33. #include <linux/nmi.h>
  34. #include <linux/gfp.h>
  35. #include <linux/kcore.h>
  36. #include <asm/processor.h>
  37. #include <asm/bios_ebda.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/pgalloc.h>
  41. #include <asm/dma.h>
  42. #include <asm/fixmap.h>
  43. #include <asm/e820.h>
  44. #include <asm/apic.h>
  45. #include <asm/tlb.h>
  46. #include <asm/mmu_context.h>
  47. #include <asm/proto.h>
  48. #include <asm/smp.h>
  49. #include <asm/sections.h>
  50. #include <asm/kdebug.h>
  51. #include <asm/numa.h>
  52. #include <asm/cacheflush.h>
  53. #include <asm/init.h>
  54. #include <asm/setup.h>
  55. #include "mm_internal.h"
  56. static void ident_pmd_init(unsigned long pmd_flag, pmd_t *pmd_page,
  57. unsigned long addr, unsigned long end)
  58. {
  59. addr &= PMD_MASK;
  60. for (; addr < end; addr += PMD_SIZE) {
  61. pmd_t *pmd = pmd_page + pmd_index(addr);
  62. if (!pmd_present(*pmd))
  63. set_pmd(pmd, __pmd(addr | pmd_flag));
  64. }
  65. }
  66. static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
  67. unsigned long addr, unsigned long end)
  68. {
  69. unsigned long next;
  70. for (; addr < end; addr = next) {
  71. pud_t *pud = pud_page + pud_index(addr);
  72. pmd_t *pmd;
  73. next = (addr & PUD_MASK) + PUD_SIZE;
  74. if (next > end)
  75. next = end;
  76. if (pud_present(*pud)) {
  77. pmd = pmd_offset(pud, 0);
  78. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  79. continue;
  80. }
  81. pmd = (pmd_t *)info->alloc_pgt_page(info->context);
  82. if (!pmd)
  83. return -ENOMEM;
  84. ident_pmd_init(info->pmd_flag, pmd, addr, next);
  85. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  86. }
  87. return 0;
  88. }
  89. int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
  90. unsigned long addr, unsigned long end)
  91. {
  92. unsigned long next;
  93. int result;
  94. int off = info->kernel_mapping ? pgd_index(__PAGE_OFFSET) : 0;
  95. for (; addr < end; addr = next) {
  96. pgd_t *pgd = pgd_page + pgd_index(addr) + off;
  97. pud_t *pud;
  98. next = (addr & PGDIR_MASK) + PGDIR_SIZE;
  99. if (next > end)
  100. next = end;
  101. if (pgd_present(*pgd)) {
  102. pud = pud_offset(pgd, 0);
  103. result = ident_pud_init(info, pud, addr, next);
  104. if (result)
  105. return result;
  106. continue;
  107. }
  108. pud = (pud_t *)info->alloc_pgt_page(info->context);
  109. if (!pud)
  110. return -ENOMEM;
  111. result = ident_pud_init(info, pud, addr, next);
  112. if (result)
  113. return result;
  114. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  115. }
  116. return 0;
  117. }
  118. /*
  119. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  120. * physical space so we can cache the place of the first one and move
  121. * around without checking the pgd every time.
  122. */
  123. pteval_t __supported_pte_mask __read_mostly = ~0;
  124. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  125. int force_personality32;
  126. /*
  127. * noexec32=on|off
  128. * Control non executable heap for 32bit processes.
  129. * To control the stack too use noexec=off
  130. *
  131. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  132. * off PROT_READ implies PROT_EXEC
  133. */
  134. static int __init nonx32_setup(char *str)
  135. {
  136. if (!strcmp(str, "on"))
  137. force_personality32 &= ~READ_IMPLIES_EXEC;
  138. else if (!strcmp(str, "off"))
  139. force_personality32 |= READ_IMPLIES_EXEC;
  140. return 1;
  141. }
  142. __setup("noexec32=", nonx32_setup);
  143. /*
  144. * When memory was added/removed make sure all the processes MM have
  145. * suitable PGD entries in the local PGD level page.
  146. */
  147. void sync_global_pgds(unsigned long start, unsigned long end, int removed)
  148. {
  149. unsigned long address;
  150. for (address = start; address <= end; address += PGDIR_SIZE) {
  151. const pgd_t *pgd_ref = pgd_offset_k(address);
  152. struct page *page;
  153. /*
  154. * When it is called after memory hot remove, pgd_none()
  155. * returns true. In this case (removed == 1), we must clear
  156. * the PGD entries in the local PGD level page.
  157. */
  158. if (pgd_none(*pgd_ref) && !removed)
  159. continue;
  160. spin_lock(&pgd_lock);
  161. list_for_each_entry(page, &pgd_list, lru) {
  162. pgd_t *pgd;
  163. spinlock_t *pgt_lock;
  164. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  165. /* the pgt_lock only for Xen */
  166. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  167. spin_lock(pgt_lock);
  168. if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
  169. BUG_ON(pgd_page_vaddr(*pgd)
  170. != pgd_page_vaddr(*pgd_ref));
  171. if (removed) {
  172. if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
  173. pgd_clear(pgd);
  174. } else {
  175. if (pgd_none(*pgd))
  176. set_pgd(pgd, *pgd_ref);
  177. }
  178. spin_unlock(pgt_lock);
  179. }
  180. spin_unlock(&pgd_lock);
  181. }
  182. }
  183. /*
  184. * NOTE: This function is marked __ref because it calls __init function
  185. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  186. */
  187. static __ref void *spp_getpage(void)
  188. {
  189. void *ptr;
  190. if (after_bootmem)
  191. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  192. else
  193. ptr = alloc_bootmem_pages(PAGE_SIZE);
  194. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  195. panic("set_pte_phys: cannot allocate page data %s\n",
  196. after_bootmem ? "after bootmem" : "");
  197. }
  198. pr_debug("spp_getpage %p\n", ptr);
  199. return ptr;
  200. }
  201. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  202. {
  203. if (pgd_none(*pgd)) {
  204. pud_t *pud = (pud_t *)spp_getpage();
  205. pgd_populate(&init_mm, pgd, pud);
  206. if (pud != pud_offset(pgd, 0))
  207. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  208. pud, pud_offset(pgd, 0));
  209. }
  210. return pud_offset(pgd, vaddr);
  211. }
  212. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  213. {
  214. if (pud_none(*pud)) {
  215. pmd_t *pmd = (pmd_t *) spp_getpage();
  216. pud_populate(&init_mm, pud, pmd);
  217. if (pmd != pmd_offset(pud, 0))
  218. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  219. pmd, pmd_offset(pud, 0));
  220. }
  221. return pmd_offset(pud, vaddr);
  222. }
  223. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  224. {
  225. if (pmd_none(*pmd)) {
  226. pte_t *pte = (pte_t *) spp_getpage();
  227. pmd_populate_kernel(&init_mm, pmd, pte);
  228. if (pte != pte_offset_kernel(pmd, 0))
  229. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  230. }
  231. return pte_offset_kernel(pmd, vaddr);
  232. }
  233. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  234. {
  235. pud_t *pud;
  236. pmd_t *pmd;
  237. pte_t *pte;
  238. pud = pud_page + pud_index(vaddr);
  239. pmd = fill_pmd(pud, vaddr);
  240. pte = fill_pte(pmd, vaddr);
  241. set_pte(pte, new_pte);
  242. /*
  243. * It's enough to flush this one mapping.
  244. * (PGE mappings get flushed as well)
  245. */
  246. __flush_tlb_one(vaddr);
  247. }
  248. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  249. {
  250. pgd_t *pgd;
  251. pud_t *pud_page;
  252. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  253. pgd = pgd_offset_k(vaddr);
  254. if (pgd_none(*pgd)) {
  255. printk(KERN_ERR
  256. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  257. return;
  258. }
  259. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  260. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  261. }
  262. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  263. {
  264. pgd_t *pgd;
  265. pud_t *pud;
  266. pgd = pgd_offset_k(vaddr);
  267. pud = fill_pud(pgd, vaddr);
  268. return fill_pmd(pud, vaddr);
  269. }
  270. pte_t * __init populate_extra_pte(unsigned long vaddr)
  271. {
  272. pmd_t *pmd;
  273. pmd = populate_extra_pmd(vaddr);
  274. return fill_pte(pmd, vaddr);
  275. }
  276. /*
  277. * Create large page table mappings for a range of physical addresses.
  278. */
  279. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  280. enum page_cache_mode cache)
  281. {
  282. pgd_t *pgd;
  283. pud_t *pud;
  284. pmd_t *pmd;
  285. pgprot_t prot;
  286. pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
  287. pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
  288. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  289. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  290. pgd = pgd_offset_k((unsigned long)__va(phys));
  291. if (pgd_none(*pgd)) {
  292. pud = (pud_t *) spp_getpage();
  293. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  294. _PAGE_USER));
  295. }
  296. pud = pud_offset(pgd, (unsigned long)__va(phys));
  297. if (pud_none(*pud)) {
  298. pmd = (pmd_t *) spp_getpage();
  299. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  300. _PAGE_USER));
  301. }
  302. pmd = pmd_offset(pud, phys);
  303. BUG_ON(!pmd_none(*pmd));
  304. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  305. }
  306. }
  307. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  308. {
  309. __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
  310. }
  311. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  312. {
  313. __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
  314. }
  315. /*
  316. * The head.S code sets up the kernel high mapping:
  317. *
  318. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  319. *
  320. * phys_base holds the negative offset to the kernel, which is added
  321. * to the compile time generated pmds. This results in invalid pmds up
  322. * to the point where we hit the physaddr 0 mapping.
  323. *
  324. * We limit the mappings to the region from _text to _brk_end. _brk_end
  325. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  326. * well, as they are located before _text:
  327. */
  328. void __init cleanup_highmap(void)
  329. {
  330. unsigned long vaddr = __START_KERNEL_map;
  331. unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
  332. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  333. pmd_t *pmd = level2_kernel_pgt;
  334. /*
  335. * Native path, max_pfn_mapped is not set yet.
  336. * Xen has valid max_pfn_mapped set in
  337. * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
  338. */
  339. if (max_pfn_mapped)
  340. vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  341. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  342. if (pmd_none(*pmd))
  343. continue;
  344. if (vaddr < (unsigned long) _text || vaddr > end)
  345. set_pmd(pmd, __pmd(0));
  346. }
  347. }
  348. static unsigned long __meminit
  349. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  350. pgprot_t prot)
  351. {
  352. unsigned long pages = 0, next;
  353. unsigned long last_map_addr = end;
  354. int i;
  355. pte_t *pte = pte_page + pte_index(addr);
  356. for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
  357. next = (addr & PAGE_MASK) + PAGE_SIZE;
  358. if (addr >= end) {
  359. if (!after_bootmem &&
  360. !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
  361. !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
  362. set_pte(pte, __pte(0));
  363. continue;
  364. }
  365. /*
  366. * We will re-use the existing mapping.
  367. * Xen for example has some special requirements, like mapping
  368. * pagetable pages as RO. So assume someone who pre-setup
  369. * these mappings are more intelligent.
  370. */
  371. if (pte_val(*pte)) {
  372. if (!after_bootmem)
  373. pages++;
  374. continue;
  375. }
  376. if (0)
  377. printk(" pte=%p addr=%lx pte=%016lx\n",
  378. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  379. pages++;
  380. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  381. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  382. }
  383. update_page_count(PG_LEVEL_4K, pages);
  384. return last_map_addr;
  385. }
  386. static unsigned long __meminit
  387. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  388. unsigned long page_size_mask, pgprot_t prot)
  389. {
  390. unsigned long pages = 0, next;
  391. unsigned long last_map_addr = end;
  392. int i = pmd_index(address);
  393. for (; i < PTRS_PER_PMD; i++, address = next) {
  394. pmd_t *pmd = pmd_page + pmd_index(address);
  395. pte_t *pte;
  396. pgprot_t new_prot = prot;
  397. next = (address & PMD_MASK) + PMD_SIZE;
  398. if (address >= end) {
  399. if (!after_bootmem &&
  400. !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
  401. !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
  402. set_pmd(pmd, __pmd(0));
  403. continue;
  404. }
  405. if (pmd_val(*pmd)) {
  406. if (!pmd_large(*pmd)) {
  407. spin_lock(&init_mm.page_table_lock);
  408. pte = (pte_t *)pmd_page_vaddr(*pmd);
  409. last_map_addr = phys_pte_init(pte, address,
  410. end, prot);
  411. spin_unlock(&init_mm.page_table_lock);
  412. continue;
  413. }
  414. /*
  415. * If we are ok with PG_LEVEL_2M mapping, then we will
  416. * use the existing mapping,
  417. *
  418. * Otherwise, we will split the large page mapping but
  419. * use the same existing protection bits except for
  420. * large page, so that we don't violate Intel's TLB
  421. * Application note (317080) which says, while changing
  422. * the page sizes, new and old translations should
  423. * not differ with respect to page frame and
  424. * attributes.
  425. */
  426. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  427. if (!after_bootmem)
  428. pages++;
  429. last_map_addr = next;
  430. continue;
  431. }
  432. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  433. }
  434. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  435. pages++;
  436. spin_lock(&init_mm.page_table_lock);
  437. set_pte((pte_t *)pmd,
  438. pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
  439. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  440. spin_unlock(&init_mm.page_table_lock);
  441. last_map_addr = next;
  442. continue;
  443. }
  444. pte = alloc_low_page();
  445. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  446. spin_lock(&init_mm.page_table_lock);
  447. pmd_populate_kernel(&init_mm, pmd, pte);
  448. spin_unlock(&init_mm.page_table_lock);
  449. }
  450. update_page_count(PG_LEVEL_2M, pages);
  451. return last_map_addr;
  452. }
  453. static unsigned long __meminit
  454. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  455. unsigned long page_size_mask)
  456. {
  457. unsigned long pages = 0, next;
  458. unsigned long last_map_addr = end;
  459. int i = pud_index(addr);
  460. for (; i < PTRS_PER_PUD; i++, addr = next) {
  461. pud_t *pud = pud_page + pud_index(addr);
  462. pmd_t *pmd;
  463. pgprot_t prot = PAGE_KERNEL;
  464. next = (addr & PUD_MASK) + PUD_SIZE;
  465. if (addr >= end) {
  466. if (!after_bootmem &&
  467. !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
  468. !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
  469. set_pud(pud, __pud(0));
  470. continue;
  471. }
  472. if (pud_val(*pud)) {
  473. if (!pud_large(*pud)) {
  474. pmd = pmd_offset(pud, 0);
  475. last_map_addr = phys_pmd_init(pmd, addr, end,
  476. page_size_mask, prot);
  477. __flush_tlb_all();
  478. continue;
  479. }
  480. /*
  481. * If we are ok with PG_LEVEL_1G mapping, then we will
  482. * use the existing mapping.
  483. *
  484. * Otherwise, we will split the gbpage mapping but use
  485. * the same existing protection bits except for large
  486. * page, so that we don't violate Intel's TLB
  487. * Application note (317080) which says, while changing
  488. * the page sizes, new and old translations should
  489. * not differ with respect to page frame and
  490. * attributes.
  491. */
  492. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  493. if (!after_bootmem)
  494. pages++;
  495. last_map_addr = next;
  496. continue;
  497. }
  498. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  499. }
  500. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  501. pages++;
  502. spin_lock(&init_mm.page_table_lock);
  503. set_pte((pte_t *)pud,
  504. pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
  505. PAGE_KERNEL_LARGE));
  506. spin_unlock(&init_mm.page_table_lock);
  507. last_map_addr = next;
  508. continue;
  509. }
  510. pmd = alloc_low_page();
  511. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  512. prot);
  513. spin_lock(&init_mm.page_table_lock);
  514. pud_populate(&init_mm, pud, pmd);
  515. spin_unlock(&init_mm.page_table_lock);
  516. }
  517. __flush_tlb_all();
  518. update_page_count(PG_LEVEL_1G, pages);
  519. return last_map_addr;
  520. }
  521. unsigned long __meminit
  522. kernel_physical_mapping_init(unsigned long start,
  523. unsigned long end,
  524. unsigned long page_size_mask)
  525. {
  526. bool pgd_changed = false;
  527. unsigned long next, last_map_addr = end;
  528. unsigned long addr;
  529. start = (unsigned long)__va(start);
  530. end = (unsigned long)__va(end);
  531. addr = start;
  532. for (; start < end; start = next) {
  533. pgd_t *pgd = pgd_offset_k(start);
  534. pud_t *pud;
  535. next = (start & PGDIR_MASK) + PGDIR_SIZE;
  536. if (pgd_val(*pgd)) {
  537. pud = (pud_t *)pgd_page_vaddr(*pgd);
  538. last_map_addr = phys_pud_init(pud, __pa(start),
  539. __pa(end), page_size_mask);
  540. continue;
  541. }
  542. pud = alloc_low_page();
  543. last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
  544. page_size_mask);
  545. spin_lock(&init_mm.page_table_lock);
  546. pgd_populate(&init_mm, pgd, pud);
  547. spin_unlock(&init_mm.page_table_lock);
  548. pgd_changed = true;
  549. }
  550. if (pgd_changed)
  551. sync_global_pgds(addr, end - 1, 0);
  552. __flush_tlb_all();
  553. return last_map_addr;
  554. }
  555. #ifndef CONFIG_NUMA
  556. void __init initmem_init(void)
  557. {
  558. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
  559. }
  560. #endif
  561. void __init paging_init(void)
  562. {
  563. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  564. sparse_init();
  565. /*
  566. * clear the default setting with node 0
  567. * note: don't use nodes_clear here, that is really clearing when
  568. * numa support is not compiled in, and later node_set_state
  569. * will not set it back.
  570. */
  571. node_clear_state(0, N_MEMORY);
  572. if (N_MEMORY != N_NORMAL_MEMORY)
  573. node_clear_state(0, N_NORMAL_MEMORY);
  574. zone_sizes_init();
  575. }
  576. /*
  577. * Memory hotplug specific functions
  578. */
  579. #ifdef CONFIG_MEMORY_HOTPLUG
  580. /*
  581. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  582. * updating.
  583. */
  584. static void update_end_of_memory_vars(u64 start, u64 size)
  585. {
  586. unsigned long end_pfn = PFN_UP(start + size);
  587. if (end_pfn > max_pfn) {
  588. max_pfn = end_pfn;
  589. max_low_pfn = end_pfn;
  590. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  591. }
  592. }
  593. /*
  594. * Memory is added always to NORMAL zone. This means you will never get
  595. * additional DMA/DMA32 memory.
  596. */
  597. int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
  598. {
  599. struct pglist_data *pgdat = NODE_DATA(nid);
  600. struct zone *zone = pgdat->node_zones +
  601. zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
  602. unsigned long start_pfn = start >> PAGE_SHIFT;
  603. unsigned long nr_pages = size >> PAGE_SHIFT;
  604. int ret;
  605. init_memory_mapping(start, start + size);
  606. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  607. WARN_ON_ONCE(ret);
  608. /* update max_pfn, max_low_pfn and high_memory */
  609. update_end_of_memory_vars(start, size);
  610. return ret;
  611. }
  612. EXPORT_SYMBOL_GPL(arch_add_memory);
  613. #define PAGE_INUSE 0xFD
  614. static void __meminit free_pagetable(struct page *page, int order)
  615. {
  616. unsigned long magic;
  617. unsigned int nr_pages = 1 << order;
  618. struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
  619. if (altmap) {
  620. vmem_altmap_free(altmap, nr_pages);
  621. return;
  622. }
  623. /* bootmem page has reserved flag */
  624. if (PageReserved(page)) {
  625. __ClearPageReserved(page);
  626. magic = (unsigned long)page->lru.next;
  627. if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
  628. while (nr_pages--)
  629. put_page_bootmem(page++);
  630. } else
  631. while (nr_pages--)
  632. free_reserved_page(page++);
  633. } else
  634. free_pages((unsigned long)page_address(page), order);
  635. }
  636. static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
  637. {
  638. pte_t *pte;
  639. int i;
  640. for (i = 0; i < PTRS_PER_PTE; i++) {
  641. pte = pte_start + i;
  642. if (pte_val(*pte))
  643. return;
  644. }
  645. /* free a pte talbe */
  646. free_pagetable(pmd_page(*pmd), 0);
  647. spin_lock(&init_mm.page_table_lock);
  648. pmd_clear(pmd);
  649. spin_unlock(&init_mm.page_table_lock);
  650. }
  651. static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
  652. {
  653. pmd_t *pmd;
  654. int i;
  655. for (i = 0; i < PTRS_PER_PMD; i++) {
  656. pmd = pmd_start + i;
  657. if (pmd_val(*pmd))
  658. return;
  659. }
  660. /* free a pmd talbe */
  661. free_pagetable(pud_page(*pud), 0);
  662. spin_lock(&init_mm.page_table_lock);
  663. pud_clear(pud);
  664. spin_unlock(&init_mm.page_table_lock);
  665. }
  666. /* Return true if pgd is changed, otherwise return false. */
  667. static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
  668. {
  669. pud_t *pud;
  670. int i;
  671. for (i = 0; i < PTRS_PER_PUD; i++) {
  672. pud = pud_start + i;
  673. if (pud_val(*pud))
  674. return false;
  675. }
  676. /* free a pud table */
  677. free_pagetable(pgd_page(*pgd), 0);
  678. spin_lock(&init_mm.page_table_lock);
  679. pgd_clear(pgd);
  680. spin_unlock(&init_mm.page_table_lock);
  681. return true;
  682. }
  683. static void __meminit
  684. remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
  685. bool direct)
  686. {
  687. unsigned long next, pages = 0;
  688. pte_t *pte;
  689. void *page_addr;
  690. phys_addr_t phys_addr;
  691. pte = pte_start + pte_index(addr);
  692. for (; addr < end; addr = next, pte++) {
  693. next = (addr + PAGE_SIZE) & PAGE_MASK;
  694. if (next > end)
  695. next = end;
  696. if (!pte_present(*pte))
  697. continue;
  698. /*
  699. * We mapped [0,1G) memory as identity mapping when
  700. * initializing, in arch/x86/kernel/head_64.S. These
  701. * pagetables cannot be removed.
  702. */
  703. phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
  704. if (phys_addr < (phys_addr_t)0x40000000)
  705. return;
  706. if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
  707. /*
  708. * Do not free direct mapping pages since they were
  709. * freed when offlining, or simplely not in use.
  710. */
  711. if (!direct)
  712. free_pagetable(pte_page(*pte), 0);
  713. spin_lock(&init_mm.page_table_lock);
  714. pte_clear(&init_mm, addr, pte);
  715. spin_unlock(&init_mm.page_table_lock);
  716. /* For non-direct mapping, pages means nothing. */
  717. pages++;
  718. } else {
  719. /*
  720. * If we are here, we are freeing vmemmap pages since
  721. * direct mapped memory ranges to be freed are aligned.
  722. *
  723. * If we are not removing the whole page, it means
  724. * other page structs in this page are being used and
  725. * we canot remove them. So fill the unused page_structs
  726. * with 0xFD, and remove the page when it is wholly
  727. * filled with 0xFD.
  728. */
  729. memset((void *)addr, PAGE_INUSE, next - addr);
  730. page_addr = page_address(pte_page(*pte));
  731. if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
  732. free_pagetable(pte_page(*pte), 0);
  733. spin_lock(&init_mm.page_table_lock);
  734. pte_clear(&init_mm, addr, pte);
  735. spin_unlock(&init_mm.page_table_lock);
  736. }
  737. }
  738. }
  739. /* Call free_pte_table() in remove_pmd_table(). */
  740. flush_tlb_all();
  741. if (direct)
  742. update_page_count(PG_LEVEL_4K, -pages);
  743. }
  744. static void __meminit
  745. remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
  746. bool direct)
  747. {
  748. unsigned long next, pages = 0;
  749. pte_t *pte_base;
  750. pmd_t *pmd;
  751. void *page_addr;
  752. pmd = pmd_start + pmd_index(addr);
  753. for (; addr < end; addr = next, pmd++) {
  754. next = pmd_addr_end(addr, end);
  755. if (!pmd_present(*pmd))
  756. continue;
  757. if (pmd_large(*pmd)) {
  758. if (IS_ALIGNED(addr, PMD_SIZE) &&
  759. IS_ALIGNED(next, PMD_SIZE)) {
  760. if (!direct)
  761. free_pagetable(pmd_page(*pmd),
  762. get_order(PMD_SIZE));
  763. spin_lock(&init_mm.page_table_lock);
  764. pmd_clear(pmd);
  765. spin_unlock(&init_mm.page_table_lock);
  766. pages++;
  767. } else {
  768. /* If here, we are freeing vmemmap pages. */
  769. memset((void *)addr, PAGE_INUSE, next - addr);
  770. page_addr = page_address(pmd_page(*pmd));
  771. if (!memchr_inv(page_addr, PAGE_INUSE,
  772. PMD_SIZE)) {
  773. free_pagetable(pmd_page(*pmd),
  774. get_order(PMD_SIZE));
  775. spin_lock(&init_mm.page_table_lock);
  776. pmd_clear(pmd);
  777. spin_unlock(&init_mm.page_table_lock);
  778. }
  779. }
  780. continue;
  781. }
  782. pte_base = (pte_t *)pmd_page_vaddr(*pmd);
  783. remove_pte_table(pte_base, addr, next, direct);
  784. free_pte_table(pte_base, pmd);
  785. }
  786. /* Call free_pmd_table() in remove_pud_table(). */
  787. if (direct)
  788. update_page_count(PG_LEVEL_2M, -pages);
  789. }
  790. static void __meminit
  791. remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
  792. bool direct)
  793. {
  794. unsigned long next, pages = 0;
  795. pmd_t *pmd_base;
  796. pud_t *pud;
  797. void *page_addr;
  798. pud = pud_start + pud_index(addr);
  799. for (; addr < end; addr = next, pud++) {
  800. next = pud_addr_end(addr, end);
  801. if (!pud_present(*pud))
  802. continue;
  803. if (pud_large(*pud)) {
  804. if (IS_ALIGNED(addr, PUD_SIZE) &&
  805. IS_ALIGNED(next, PUD_SIZE)) {
  806. if (!direct)
  807. free_pagetable(pud_page(*pud),
  808. get_order(PUD_SIZE));
  809. spin_lock(&init_mm.page_table_lock);
  810. pud_clear(pud);
  811. spin_unlock(&init_mm.page_table_lock);
  812. pages++;
  813. } else {
  814. /* If here, we are freeing vmemmap pages. */
  815. memset((void *)addr, PAGE_INUSE, next - addr);
  816. page_addr = page_address(pud_page(*pud));
  817. if (!memchr_inv(page_addr, PAGE_INUSE,
  818. PUD_SIZE)) {
  819. free_pagetable(pud_page(*pud),
  820. get_order(PUD_SIZE));
  821. spin_lock(&init_mm.page_table_lock);
  822. pud_clear(pud);
  823. spin_unlock(&init_mm.page_table_lock);
  824. }
  825. }
  826. continue;
  827. }
  828. pmd_base = (pmd_t *)pud_page_vaddr(*pud);
  829. remove_pmd_table(pmd_base, addr, next, direct);
  830. free_pmd_table(pmd_base, pud);
  831. }
  832. if (direct)
  833. update_page_count(PG_LEVEL_1G, -pages);
  834. }
  835. /* start and end are both virtual address. */
  836. static void __meminit
  837. remove_pagetable(unsigned long start, unsigned long end, bool direct)
  838. {
  839. unsigned long next;
  840. unsigned long addr;
  841. pgd_t *pgd;
  842. pud_t *pud;
  843. bool pgd_changed = false;
  844. for (addr = start; addr < end; addr = next) {
  845. next = pgd_addr_end(addr, end);
  846. pgd = pgd_offset_k(addr);
  847. if (!pgd_present(*pgd))
  848. continue;
  849. pud = (pud_t *)pgd_page_vaddr(*pgd);
  850. remove_pud_table(pud, addr, next, direct);
  851. if (free_pud_table(pud, pgd))
  852. pgd_changed = true;
  853. }
  854. if (pgd_changed)
  855. sync_global_pgds(start, end - 1, 1);
  856. flush_tlb_all();
  857. }
  858. void __ref vmemmap_free(unsigned long start, unsigned long end)
  859. {
  860. remove_pagetable(start, end, false);
  861. }
  862. #ifdef CONFIG_MEMORY_HOTREMOVE
  863. static void __meminit
  864. kernel_physical_mapping_remove(unsigned long start, unsigned long end)
  865. {
  866. start = (unsigned long)__va(start);
  867. end = (unsigned long)__va(end);
  868. remove_pagetable(start, end, true);
  869. }
  870. int __ref arch_remove_memory(u64 start, u64 size)
  871. {
  872. unsigned long start_pfn = start >> PAGE_SHIFT;
  873. unsigned long nr_pages = size >> PAGE_SHIFT;
  874. struct page *page = pfn_to_page(start_pfn);
  875. struct vmem_altmap *altmap;
  876. struct zone *zone;
  877. int ret;
  878. /* With altmap the first mapped page is offset from @start */
  879. altmap = to_vmem_altmap((unsigned long) page);
  880. if (altmap)
  881. page += vmem_altmap_offset(altmap);
  882. zone = page_zone(page);
  883. ret = __remove_pages(zone, start_pfn, nr_pages);
  884. WARN_ON_ONCE(ret);
  885. kernel_physical_mapping_remove(start, start + size);
  886. return ret;
  887. }
  888. #endif
  889. #endif /* CONFIG_MEMORY_HOTPLUG */
  890. static struct kcore_list kcore_vsyscall;
  891. static void __init register_page_bootmem_info(void)
  892. {
  893. #ifdef CONFIG_NUMA
  894. int i;
  895. for_each_online_node(i)
  896. register_page_bootmem_info_node(NODE_DATA(i));
  897. #endif
  898. }
  899. void __init mem_init(void)
  900. {
  901. pci_iommu_alloc();
  902. /* clear_bss() already clear the empty_zero_page */
  903. register_page_bootmem_info();
  904. /* this will put all memory onto the freelists */
  905. free_all_bootmem();
  906. after_bootmem = 1;
  907. /* Register memory areas for /proc/kcore */
  908. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
  909. PAGE_SIZE, KCORE_OTHER);
  910. mem_init_print_info(NULL);
  911. }
  912. #ifdef CONFIG_DEBUG_RODATA
  913. const int rodata_test_data = 0xC3;
  914. EXPORT_SYMBOL_GPL(rodata_test_data);
  915. int kernel_set_to_readonly;
  916. void set_kernel_text_rw(void)
  917. {
  918. unsigned long start = PFN_ALIGN(_text);
  919. unsigned long end = PFN_ALIGN(__stop___ex_table);
  920. if (!kernel_set_to_readonly)
  921. return;
  922. pr_debug("Set kernel text: %lx - %lx for read write\n",
  923. start, end);
  924. /*
  925. * Make the kernel identity mapping for text RW. Kernel text
  926. * mapping will always be RO. Refer to the comment in
  927. * static_protections() in pageattr.c
  928. */
  929. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  930. }
  931. void set_kernel_text_ro(void)
  932. {
  933. unsigned long start = PFN_ALIGN(_text);
  934. unsigned long end = PFN_ALIGN(__stop___ex_table);
  935. if (!kernel_set_to_readonly)
  936. return;
  937. pr_debug("Set kernel text: %lx - %lx for read only\n",
  938. start, end);
  939. /*
  940. * Set the kernel identity mapping for text RO.
  941. */
  942. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  943. }
  944. void mark_rodata_ro(void)
  945. {
  946. unsigned long start = PFN_ALIGN(_text);
  947. unsigned long rodata_start = PFN_ALIGN(__start_rodata);
  948. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  949. unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
  950. unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
  951. unsigned long all_end;
  952. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  953. (end - start) >> 10);
  954. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  955. kernel_set_to_readonly = 1;
  956. /*
  957. * The rodata/data/bss/brk section (but not the kernel text!)
  958. * should also be not-executable.
  959. *
  960. * We align all_end to PMD_SIZE because the existing mapping
  961. * is a full PMD. If we would align _brk_end to PAGE_SIZE we
  962. * split the PMD and the reminder between _brk_end and the end
  963. * of the PMD will remain mapped executable.
  964. *
  965. * Any PMD which was setup after the one which covers _brk_end
  966. * has been zapped already via cleanup_highmem().
  967. */
  968. all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
  969. set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
  970. rodata_test();
  971. #ifdef CONFIG_CPA_DEBUG
  972. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  973. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  974. printk(KERN_INFO "Testing CPA: again\n");
  975. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  976. #endif
  977. free_init_pages("unused kernel",
  978. (unsigned long) __va(__pa_symbol(text_end)),
  979. (unsigned long) __va(__pa_symbol(rodata_start)));
  980. free_init_pages("unused kernel",
  981. (unsigned long) __va(__pa_symbol(rodata_end)),
  982. (unsigned long) __va(__pa_symbol(_sdata)));
  983. debug_checkwx();
  984. }
  985. #endif
  986. int kern_addr_valid(unsigned long addr)
  987. {
  988. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  989. pgd_t *pgd;
  990. pud_t *pud;
  991. pmd_t *pmd;
  992. pte_t *pte;
  993. if (above != 0 && above != -1UL)
  994. return 0;
  995. pgd = pgd_offset_k(addr);
  996. if (pgd_none(*pgd))
  997. return 0;
  998. pud = pud_offset(pgd, addr);
  999. if (pud_none(*pud))
  1000. return 0;
  1001. if (pud_large(*pud))
  1002. return pfn_valid(pud_pfn(*pud));
  1003. pmd = pmd_offset(pud, addr);
  1004. if (pmd_none(*pmd))
  1005. return 0;
  1006. if (pmd_large(*pmd))
  1007. return pfn_valid(pmd_pfn(*pmd));
  1008. pte = pte_offset_kernel(pmd, addr);
  1009. if (pte_none(*pte))
  1010. return 0;
  1011. return pfn_valid(pte_pfn(*pte));
  1012. }
  1013. static unsigned long probe_memory_block_size(void)
  1014. {
  1015. /* start from 2g */
  1016. unsigned long bz = 1UL<<31;
  1017. if (totalram_pages >= (64ULL << (30 - PAGE_SHIFT))) {
  1018. pr_info("Using 2GB memory block size for large-memory system\n");
  1019. return 2UL * 1024 * 1024 * 1024;
  1020. }
  1021. /* less than 64g installed */
  1022. if ((max_pfn << PAGE_SHIFT) < (16UL << 32))
  1023. return MIN_MEMORY_BLOCK_SIZE;
  1024. /* get the tail size */
  1025. while (bz > MIN_MEMORY_BLOCK_SIZE) {
  1026. if (!((max_pfn << PAGE_SHIFT) & (bz - 1)))
  1027. break;
  1028. bz >>= 1;
  1029. }
  1030. printk(KERN_DEBUG "memory block size : %ldMB\n", bz >> 20);
  1031. return bz;
  1032. }
  1033. static unsigned long memory_block_size_probed;
  1034. unsigned long memory_block_size_bytes(void)
  1035. {
  1036. if (!memory_block_size_probed)
  1037. memory_block_size_probed = probe_memory_block_size();
  1038. return memory_block_size_probed;
  1039. }
  1040. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1041. /*
  1042. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  1043. */
  1044. static long __meminitdata addr_start, addr_end;
  1045. static void __meminitdata *p_start, *p_end;
  1046. static int __meminitdata node_start;
  1047. static int __meminit vmemmap_populate_hugepages(unsigned long start,
  1048. unsigned long end, int node, struct vmem_altmap *altmap)
  1049. {
  1050. unsigned long addr;
  1051. unsigned long next;
  1052. pgd_t *pgd;
  1053. pud_t *pud;
  1054. pmd_t *pmd;
  1055. for (addr = start; addr < end; addr = next) {
  1056. next = pmd_addr_end(addr, end);
  1057. pgd = vmemmap_pgd_populate(addr, node);
  1058. if (!pgd)
  1059. return -ENOMEM;
  1060. pud = vmemmap_pud_populate(pgd, addr, node);
  1061. if (!pud)
  1062. return -ENOMEM;
  1063. pmd = pmd_offset(pud, addr);
  1064. if (pmd_none(*pmd)) {
  1065. void *p;
  1066. p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
  1067. if (p) {
  1068. pte_t entry;
  1069. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  1070. PAGE_KERNEL_LARGE);
  1071. set_pmd(pmd, __pmd(pte_val(entry)));
  1072. /* check to see if we have contiguous blocks */
  1073. if (p_end != p || node_start != node) {
  1074. if (p_start)
  1075. pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1076. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1077. addr_start = addr;
  1078. node_start = node;
  1079. p_start = p;
  1080. }
  1081. addr_end = addr + PMD_SIZE;
  1082. p_end = p + PMD_SIZE;
  1083. continue;
  1084. } else if (altmap)
  1085. return -ENOMEM; /* no fallback */
  1086. } else if (pmd_large(*pmd)) {
  1087. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1088. continue;
  1089. }
  1090. pr_warn_once("vmemmap: falling back to regular page backing\n");
  1091. if (vmemmap_populate_basepages(addr, next, node))
  1092. return -ENOMEM;
  1093. }
  1094. return 0;
  1095. }
  1096. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  1097. {
  1098. struct vmem_altmap *altmap = to_vmem_altmap(start);
  1099. int err;
  1100. if (cpu_has_pse)
  1101. err = vmemmap_populate_hugepages(start, end, node, altmap);
  1102. else if (altmap) {
  1103. pr_err_once("%s: no cpu support for altmap allocations\n",
  1104. __func__);
  1105. err = -ENOMEM;
  1106. } else
  1107. err = vmemmap_populate_basepages(start, end, node);
  1108. if (!err)
  1109. sync_global_pgds(start, end - 1, 0);
  1110. return err;
  1111. }
  1112. #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
  1113. void register_page_bootmem_memmap(unsigned long section_nr,
  1114. struct page *start_page, unsigned long size)
  1115. {
  1116. unsigned long addr = (unsigned long)start_page;
  1117. unsigned long end = (unsigned long)(start_page + size);
  1118. unsigned long next;
  1119. pgd_t *pgd;
  1120. pud_t *pud;
  1121. pmd_t *pmd;
  1122. unsigned int nr_pages;
  1123. struct page *page;
  1124. for (; addr < end; addr = next) {
  1125. pte_t *pte = NULL;
  1126. pgd = pgd_offset_k(addr);
  1127. if (pgd_none(*pgd)) {
  1128. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1129. continue;
  1130. }
  1131. get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
  1132. pud = pud_offset(pgd, addr);
  1133. if (pud_none(*pud)) {
  1134. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1135. continue;
  1136. }
  1137. get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
  1138. if (!cpu_has_pse) {
  1139. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1140. pmd = pmd_offset(pud, addr);
  1141. if (pmd_none(*pmd))
  1142. continue;
  1143. get_page_bootmem(section_nr, pmd_page(*pmd),
  1144. MIX_SECTION_INFO);
  1145. pte = pte_offset_kernel(pmd, addr);
  1146. if (pte_none(*pte))
  1147. continue;
  1148. get_page_bootmem(section_nr, pte_page(*pte),
  1149. SECTION_INFO);
  1150. } else {
  1151. next = pmd_addr_end(addr, end);
  1152. pmd = pmd_offset(pud, addr);
  1153. if (pmd_none(*pmd))
  1154. continue;
  1155. nr_pages = 1 << (get_order(PMD_SIZE));
  1156. page = pmd_page(*pmd);
  1157. while (nr_pages--)
  1158. get_page_bootmem(section_nr, page++,
  1159. SECTION_INFO);
  1160. }
  1161. }
  1162. }
  1163. #endif
  1164. void __meminit vmemmap_populate_print_last(void)
  1165. {
  1166. if (p_start) {
  1167. pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1168. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1169. p_start = NULL;
  1170. p_end = NULL;
  1171. node_start = 0;
  1172. }
  1173. }
  1174. #endif