paging_tmpl.h 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. /*
  25. * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
  26. * uses for EPT without A/D paging type.
  27. */
  28. extern u64 __pure __using_nonexistent_pte_bit(void)
  29. __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
  30. #if PTTYPE == 64
  31. #define pt_element_t u64
  32. #define guest_walker guest_walker64
  33. #define FNAME(name) paging##64_##name
  34. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  35. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  36. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  37. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  38. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  39. #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
  40. #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
  41. #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  42. #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  43. #ifdef CONFIG_X86_64
  44. #define PT_MAX_FULL_LEVELS 4
  45. #define CMPXCHG cmpxchg
  46. #else
  47. #define CMPXCHG cmpxchg64
  48. #define PT_MAX_FULL_LEVELS 2
  49. #endif
  50. #elif PTTYPE == 32
  51. #define pt_element_t u32
  52. #define guest_walker guest_walker32
  53. #define FNAME(name) paging##32_##name
  54. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  55. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  56. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  57. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  58. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  59. #define PT_MAX_FULL_LEVELS 2
  60. #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
  61. #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
  62. #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
  63. #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
  64. #define CMPXCHG cmpxchg
  65. #elif PTTYPE == PTTYPE_EPT
  66. #define pt_element_t u64
  67. #define guest_walker guest_walkerEPT
  68. #define FNAME(name) ept_##name
  69. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  70. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  71. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  72. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  73. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  74. #define PT_GUEST_ACCESSED_MASK 0
  75. #define PT_GUEST_DIRTY_MASK 0
  76. #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
  77. #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
  78. #define CMPXCHG cmpxchg64
  79. #define PT_MAX_FULL_LEVELS 4
  80. #else
  81. #error Invalid PTTYPE value
  82. #endif
  83. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  84. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  85. /*
  86. * The guest_walker structure emulates the behavior of the hardware page
  87. * table walker.
  88. */
  89. struct guest_walker {
  90. int level;
  91. unsigned max_level;
  92. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  93. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  94. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  95. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  96. pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  97. bool pte_writable[PT_MAX_FULL_LEVELS];
  98. unsigned pt_access;
  99. unsigned pte_access;
  100. gfn_t gfn;
  101. struct x86_exception fault;
  102. };
  103. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  104. {
  105. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  106. }
  107. static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
  108. {
  109. unsigned mask;
  110. /* dirty bit is not supported, so no need to track it */
  111. if (!PT_GUEST_DIRTY_MASK)
  112. return;
  113. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  114. mask = (unsigned)~ACC_WRITE_MASK;
  115. /* Allow write access to dirty gptes */
  116. mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
  117. PT_WRITABLE_MASK;
  118. *access &= mask;
  119. }
  120. static inline int FNAME(is_present_gpte)(unsigned long pte)
  121. {
  122. #if PTTYPE != PTTYPE_EPT
  123. return is_present_gpte(pte);
  124. #else
  125. return pte & 7;
  126. #endif
  127. }
  128. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  129. pt_element_t __user *ptep_user, unsigned index,
  130. pt_element_t orig_pte, pt_element_t new_pte)
  131. {
  132. int npages;
  133. pt_element_t ret;
  134. pt_element_t *table;
  135. struct page *page;
  136. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  137. /* Check if the user is doing something meaningless. */
  138. if (unlikely(npages != 1))
  139. return -EFAULT;
  140. table = kmap_atomic(page);
  141. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  142. kunmap_atomic(table);
  143. kvm_release_page_dirty(page);
  144. return (ret != orig_pte);
  145. }
  146. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  147. struct kvm_mmu_page *sp, u64 *spte,
  148. u64 gpte)
  149. {
  150. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  151. goto no_present;
  152. if (!FNAME(is_present_gpte)(gpte))
  153. goto no_present;
  154. /* if accessed bit is not supported prefetch non accessed gpte */
  155. if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
  156. goto no_present;
  157. return false;
  158. no_present:
  159. drop_spte(vcpu->kvm, spte);
  160. return true;
  161. }
  162. static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
  163. {
  164. unsigned access;
  165. #if PTTYPE == PTTYPE_EPT
  166. access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
  167. ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
  168. ACC_USER_MASK;
  169. #else
  170. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  171. access &= ~(gpte >> PT64_NX_SHIFT);
  172. #endif
  173. return access;
  174. }
  175. static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
  176. struct kvm_mmu *mmu,
  177. struct guest_walker *walker,
  178. int write_fault)
  179. {
  180. unsigned level, index;
  181. pt_element_t pte, orig_pte;
  182. pt_element_t __user *ptep_user;
  183. gfn_t table_gfn;
  184. int ret;
  185. /* dirty/accessed bits are not supported, so no need to update them */
  186. if (!PT_GUEST_DIRTY_MASK)
  187. return 0;
  188. for (level = walker->max_level; level >= walker->level; --level) {
  189. pte = orig_pte = walker->ptes[level - 1];
  190. table_gfn = walker->table_gfn[level - 1];
  191. ptep_user = walker->ptep_user[level - 1];
  192. index = offset_in_page(ptep_user) / sizeof(pt_element_t);
  193. if (!(pte & PT_GUEST_ACCESSED_MASK)) {
  194. trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
  195. pte |= PT_GUEST_ACCESSED_MASK;
  196. }
  197. if (level == walker->level && write_fault &&
  198. !(pte & PT_GUEST_DIRTY_MASK)) {
  199. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  200. pte |= PT_GUEST_DIRTY_MASK;
  201. }
  202. if (pte == orig_pte)
  203. continue;
  204. /*
  205. * If the slot is read-only, simply do not process the accessed
  206. * and dirty bits. This is the correct thing to do if the slot
  207. * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
  208. * are only supported if the accessed and dirty bits are already
  209. * set in the ROM (so that MMIO writes are never needed).
  210. *
  211. * Note that NPT does not allow this at all and faults, since
  212. * it always wants nested page table entries for the guest
  213. * page tables to be writable. And EPT works but will simply
  214. * overwrite the read-only memory to set the accessed and dirty
  215. * bits.
  216. */
  217. if (unlikely(!walker->pte_writable[level - 1]))
  218. continue;
  219. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
  220. if (ret)
  221. return ret;
  222. kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
  223. walker->ptes[level] = pte;
  224. }
  225. return 0;
  226. }
  227. /*
  228. * Fetch a guest pte for a guest virtual address
  229. */
  230. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  231. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  232. gva_t addr, u32 access)
  233. {
  234. int ret;
  235. pt_element_t pte;
  236. pt_element_t __user *uninitialized_var(ptep_user);
  237. gfn_t table_gfn;
  238. unsigned index, pt_access, pte_access, accessed_dirty;
  239. gpa_t pte_gpa;
  240. int offset;
  241. const int write_fault = access & PFERR_WRITE_MASK;
  242. const int user_fault = access & PFERR_USER_MASK;
  243. const int fetch_fault = access & PFERR_FETCH_MASK;
  244. u16 errcode = 0;
  245. gpa_t real_gpa;
  246. gfn_t gfn;
  247. trace_kvm_mmu_pagetable_walk(addr, access);
  248. retry_walk:
  249. walker->level = mmu->root_level;
  250. pte = mmu->get_cr3(vcpu);
  251. #if PTTYPE == 64
  252. if (walker->level == PT32E_ROOT_LEVEL) {
  253. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  254. trace_kvm_mmu_paging_element(pte, walker->level);
  255. if (!FNAME(is_present_gpte)(pte))
  256. goto error;
  257. --walker->level;
  258. }
  259. #endif
  260. walker->max_level = walker->level;
  261. ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
  262. accessed_dirty = PT_GUEST_ACCESSED_MASK;
  263. pt_access = pte_access = ACC_ALL;
  264. ++walker->level;
  265. do {
  266. gfn_t real_gfn;
  267. unsigned long host_addr;
  268. pt_access &= pte_access;
  269. --walker->level;
  270. index = PT_INDEX(addr, walker->level);
  271. table_gfn = gpte_to_gfn(pte);
  272. offset = index * sizeof(pt_element_t);
  273. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  274. walker->table_gfn[walker->level - 1] = table_gfn;
  275. walker->pte_gpa[walker->level - 1] = pte_gpa;
  276. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  277. PFERR_USER_MASK|PFERR_WRITE_MASK,
  278. &walker->fault);
  279. /*
  280. * FIXME: This can happen if emulation (for of an INS/OUTS
  281. * instruction) triggers a nested page fault. The exit
  282. * qualification / exit info field will incorrectly have
  283. * "guest page access" as the nested page fault's cause,
  284. * instead of "guest page structure access". To fix this,
  285. * the x86_exception struct should be augmented with enough
  286. * information to fix the exit_qualification or exit_info_1
  287. * fields.
  288. */
  289. if (unlikely(real_gfn == UNMAPPED_GVA))
  290. return 0;
  291. real_gfn = gpa_to_gfn(real_gfn);
  292. host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
  293. &walker->pte_writable[walker->level - 1]);
  294. if (unlikely(kvm_is_error_hva(host_addr)))
  295. goto error;
  296. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  297. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  298. goto error;
  299. walker->ptep_user[walker->level - 1] = ptep_user;
  300. trace_kvm_mmu_paging_element(pte, walker->level);
  301. if (unlikely(!FNAME(is_present_gpte)(pte)))
  302. goto error;
  303. if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
  304. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  305. goto error;
  306. }
  307. accessed_dirty &= pte;
  308. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  309. walker->ptes[walker->level - 1] = pte;
  310. } while (!is_last_gpte(mmu, walker->level, pte));
  311. if (unlikely(permission_fault(vcpu, mmu, pte_access, access))) {
  312. errcode |= PFERR_PRESENT_MASK;
  313. goto error;
  314. }
  315. gfn = gpte_to_gfn_lvl(pte, walker->level);
  316. gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
  317. if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
  318. gfn += pse36_gfn_delta(pte);
  319. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
  320. if (real_gpa == UNMAPPED_GVA)
  321. return 0;
  322. walker->gfn = real_gpa >> PAGE_SHIFT;
  323. if (!write_fault)
  324. FNAME(protect_clean_gpte)(&pte_access, pte);
  325. else
  326. /*
  327. * On a write fault, fold the dirty bit into accessed_dirty.
  328. * For modes without A/D bits support accessed_dirty will be
  329. * always clear.
  330. */
  331. accessed_dirty &= pte >>
  332. (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
  333. if (unlikely(!accessed_dirty)) {
  334. ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
  335. if (unlikely(ret < 0))
  336. goto error;
  337. else if (ret)
  338. goto retry_walk;
  339. }
  340. walker->pt_access = pt_access;
  341. walker->pte_access = pte_access;
  342. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  343. __func__, (u64)pte, pte_access, pt_access);
  344. return 1;
  345. error:
  346. errcode |= write_fault | user_fault;
  347. if (fetch_fault && (mmu->nx ||
  348. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  349. errcode |= PFERR_FETCH_MASK;
  350. walker->fault.vector = PF_VECTOR;
  351. walker->fault.error_code_valid = true;
  352. walker->fault.error_code = errcode;
  353. #if PTTYPE == PTTYPE_EPT
  354. /*
  355. * Use PFERR_RSVD_MASK in error_code to to tell if EPT
  356. * misconfiguration requires to be injected. The detection is
  357. * done by is_rsvd_bits_set() above.
  358. *
  359. * We set up the value of exit_qualification to inject:
  360. * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
  361. * [5:3] - Calculated by the page walk of the guest EPT page tables
  362. * [7:8] - Derived from [7:8] of real exit_qualification
  363. *
  364. * The other bits are set to 0.
  365. */
  366. if (!(errcode & PFERR_RSVD_MASK)) {
  367. vcpu->arch.exit_qualification &= 0x187;
  368. vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
  369. }
  370. #endif
  371. walker->fault.address = addr;
  372. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  373. trace_kvm_mmu_walker_error(walker->fault.error_code);
  374. return 0;
  375. }
  376. static int FNAME(walk_addr)(struct guest_walker *walker,
  377. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  378. {
  379. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  380. access);
  381. }
  382. #if PTTYPE != PTTYPE_EPT
  383. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  384. struct kvm_vcpu *vcpu, gva_t addr,
  385. u32 access)
  386. {
  387. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  388. addr, access);
  389. }
  390. #endif
  391. static bool
  392. FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  393. u64 *spte, pt_element_t gpte, bool no_dirty_log)
  394. {
  395. unsigned pte_access;
  396. gfn_t gfn;
  397. kvm_pfn_t pfn;
  398. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  399. return false;
  400. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  401. gfn = gpte_to_gfn(gpte);
  402. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  403. FNAME(protect_clean_gpte)(&pte_access, gpte);
  404. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  405. no_dirty_log && (pte_access & ACC_WRITE_MASK));
  406. if (is_error_pfn(pfn))
  407. return false;
  408. /*
  409. * we call mmu_set_spte() with host_writable = true because
  410. * pte_prefetch_gfn_to_pfn always gets a writable pfn.
  411. */
  412. mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
  413. true, true);
  414. return true;
  415. }
  416. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  417. u64 *spte, const void *pte)
  418. {
  419. pt_element_t gpte = *(const pt_element_t *)pte;
  420. FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
  421. }
  422. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  423. struct guest_walker *gw, int level)
  424. {
  425. pt_element_t curr_pte;
  426. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  427. u64 mask;
  428. int r, index;
  429. if (level == PT_PAGE_TABLE_LEVEL) {
  430. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  431. base_gpa = pte_gpa & ~mask;
  432. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  433. r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
  434. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  435. curr_pte = gw->prefetch_ptes[index];
  436. } else
  437. r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
  438. &curr_pte, sizeof(curr_pte));
  439. return r || curr_pte != gw->ptes[level - 1];
  440. }
  441. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  442. u64 *sptep)
  443. {
  444. struct kvm_mmu_page *sp;
  445. pt_element_t *gptep = gw->prefetch_ptes;
  446. u64 *spte;
  447. int i;
  448. sp = page_header(__pa(sptep));
  449. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  450. return;
  451. if (sp->role.direct)
  452. return __direct_pte_prefetch(vcpu, sp, sptep);
  453. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  454. spte = sp->spt + i;
  455. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  456. if (spte == sptep)
  457. continue;
  458. if (is_shadow_present_pte(*spte))
  459. continue;
  460. if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
  461. break;
  462. }
  463. }
  464. /*
  465. * Fetch a shadow pte for a specific level in the paging hierarchy.
  466. * If the guest tries to write a write-protected page, we need to
  467. * emulate this operation, return 1 to indicate this case.
  468. */
  469. static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  470. struct guest_walker *gw,
  471. int write_fault, int hlevel,
  472. kvm_pfn_t pfn, bool map_writable, bool prefault)
  473. {
  474. struct kvm_mmu_page *sp = NULL;
  475. struct kvm_shadow_walk_iterator it;
  476. unsigned direct_access, access = gw->pt_access;
  477. int top_level, emulate;
  478. direct_access = gw->pte_access;
  479. top_level = vcpu->arch.mmu.root_level;
  480. if (top_level == PT32E_ROOT_LEVEL)
  481. top_level = PT32_ROOT_LEVEL;
  482. /*
  483. * Verify that the top-level gpte is still there. Since the page
  484. * is a root page, it is either write protected (and cannot be
  485. * changed from now on) or it is invalid (in which case, we don't
  486. * really care if it changes underneath us after this point).
  487. */
  488. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  489. goto out_gpte_changed;
  490. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  491. goto out_gpte_changed;
  492. for (shadow_walk_init(&it, vcpu, addr);
  493. shadow_walk_okay(&it) && it.level > gw->level;
  494. shadow_walk_next(&it)) {
  495. gfn_t table_gfn;
  496. clear_sp_write_flooding_count(it.sptep);
  497. drop_large_spte(vcpu, it.sptep);
  498. sp = NULL;
  499. if (!is_shadow_present_pte(*it.sptep)) {
  500. table_gfn = gw->table_gfn[it.level - 2];
  501. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  502. false, access);
  503. }
  504. /*
  505. * Verify that the gpte in the page we've just write
  506. * protected is still there.
  507. */
  508. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  509. goto out_gpte_changed;
  510. if (sp)
  511. link_shadow_page(vcpu, it.sptep, sp);
  512. }
  513. for (;
  514. shadow_walk_okay(&it) && it.level > hlevel;
  515. shadow_walk_next(&it)) {
  516. gfn_t direct_gfn;
  517. clear_sp_write_flooding_count(it.sptep);
  518. validate_direct_spte(vcpu, it.sptep, direct_access);
  519. drop_large_spte(vcpu, it.sptep);
  520. if (is_shadow_present_pte(*it.sptep))
  521. continue;
  522. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  523. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  524. true, direct_access);
  525. link_shadow_page(vcpu, it.sptep, sp);
  526. }
  527. clear_sp_write_flooding_count(it.sptep);
  528. emulate = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
  529. it.level, gw->gfn, pfn, prefault, map_writable);
  530. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  531. return emulate;
  532. out_gpte_changed:
  533. kvm_release_pfn_clean(pfn);
  534. return 0;
  535. }
  536. /*
  537. * To see whether the mapped gfn can write its page table in the current
  538. * mapping.
  539. *
  540. * It is the helper function of FNAME(page_fault). When guest uses large page
  541. * size to map the writable gfn which is used as current page table, we should
  542. * force kvm to use small page size to map it because new shadow page will be
  543. * created when kvm establishes shadow page table that stop kvm using large
  544. * page size. Do it early can avoid unnecessary #PF and emulation.
  545. *
  546. * @write_fault_to_shadow_pgtable will return true if the fault gfn is
  547. * currently used as its page table.
  548. *
  549. * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
  550. * since the PDPT is always shadowed, that means, we can not use large page
  551. * size to map the gfn which is used as PDPT.
  552. */
  553. static bool
  554. FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
  555. struct guest_walker *walker, int user_fault,
  556. bool *write_fault_to_shadow_pgtable)
  557. {
  558. int level;
  559. gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
  560. bool self_changed = false;
  561. if (!(walker->pte_access & ACC_WRITE_MASK ||
  562. (!is_write_protection(vcpu) && !user_fault)))
  563. return false;
  564. for (level = walker->level; level <= walker->max_level; level++) {
  565. gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
  566. self_changed |= !(gfn & mask);
  567. *write_fault_to_shadow_pgtable |= !gfn;
  568. }
  569. return self_changed;
  570. }
  571. /*
  572. * Page fault handler. There are several causes for a page fault:
  573. * - there is no shadow pte for the guest pte
  574. * - write access through a shadow pte marked read only so that we can set
  575. * the dirty bit
  576. * - write access to a shadow pte marked read only so we can update the page
  577. * dirty bitmap, when userspace requests it
  578. * - mmio access; in this case we will never install a present shadow pte
  579. * - normal guest page fault due to the guest pte marked not present, not
  580. * writable, or not executable
  581. *
  582. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  583. * a negative value on error.
  584. */
  585. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  586. bool prefault)
  587. {
  588. int write_fault = error_code & PFERR_WRITE_MASK;
  589. int user_fault = error_code & PFERR_USER_MASK;
  590. struct guest_walker walker;
  591. int r;
  592. kvm_pfn_t pfn;
  593. int level = PT_PAGE_TABLE_LEVEL;
  594. bool force_pt_level = false;
  595. unsigned long mmu_seq;
  596. bool map_writable, is_self_change_mapping;
  597. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  598. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  599. r = handle_mmio_page_fault(vcpu, addr, mmu_is_nested(vcpu));
  600. if (likely(r != RET_MMIO_PF_INVALID))
  601. return r;
  602. /*
  603. * page fault with PFEC.RSVD = 1 is caused by shadow
  604. * page fault, should not be used to walk guest page
  605. * table.
  606. */
  607. error_code &= ~PFERR_RSVD_MASK;
  608. };
  609. r = mmu_topup_memory_caches(vcpu);
  610. if (r)
  611. return r;
  612. /*
  613. * Look up the guest pte for the faulting address.
  614. */
  615. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  616. /*
  617. * The page is not mapped by the guest. Let the guest handle it.
  618. */
  619. if (!r) {
  620. pgprintk("%s: guest page fault\n", __func__);
  621. if (!prefault)
  622. inject_page_fault(vcpu, &walker.fault);
  623. return 0;
  624. }
  625. vcpu->arch.write_fault_to_shadow_pgtable = false;
  626. is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
  627. &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
  628. if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
  629. level = mapping_level(vcpu, walker.gfn, &force_pt_level);
  630. if (likely(!force_pt_level)) {
  631. level = min(walker.level, level);
  632. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  633. }
  634. } else
  635. force_pt_level = true;
  636. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  637. smp_rmb();
  638. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  639. &map_writable))
  640. return 0;
  641. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  642. walker.gfn, pfn, walker.pte_access, &r))
  643. return r;
  644. /*
  645. * Do not change pte_access if the pfn is a mmio page, otherwise
  646. * we will cache the incorrect access into mmio spte.
  647. */
  648. if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
  649. !is_write_protection(vcpu) && !user_fault &&
  650. !is_noslot_pfn(pfn)) {
  651. walker.pte_access |= ACC_WRITE_MASK;
  652. walker.pte_access &= ~ACC_USER_MASK;
  653. /*
  654. * If we converted a user page to a kernel page,
  655. * so that the kernel can write to it when cr0.wp=0,
  656. * then we should prevent the kernel from executing it
  657. * if SMEP is enabled.
  658. */
  659. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  660. walker.pte_access &= ~ACC_EXEC_MASK;
  661. }
  662. spin_lock(&vcpu->kvm->mmu_lock);
  663. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  664. goto out_unlock;
  665. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  666. make_mmu_pages_available(vcpu);
  667. if (!force_pt_level)
  668. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  669. r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
  670. level, pfn, map_writable, prefault);
  671. ++vcpu->stat.pf_fixed;
  672. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  673. spin_unlock(&vcpu->kvm->mmu_lock);
  674. return r;
  675. out_unlock:
  676. spin_unlock(&vcpu->kvm->mmu_lock);
  677. kvm_release_pfn_clean(pfn);
  678. return 0;
  679. }
  680. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  681. {
  682. int offset = 0;
  683. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  684. if (PTTYPE == 32)
  685. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  686. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  687. }
  688. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  689. {
  690. struct kvm_shadow_walk_iterator iterator;
  691. struct kvm_mmu_page *sp;
  692. int level;
  693. u64 *sptep;
  694. vcpu_clear_mmio_info(vcpu, gva);
  695. /*
  696. * No need to check return value here, rmap_can_add() can
  697. * help us to skip pte prefetch later.
  698. */
  699. mmu_topup_memory_caches(vcpu);
  700. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  701. WARN_ON(1);
  702. return;
  703. }
  704. spin_lock(&vcpu->kvm->mmu_lock);
  705. for_each_shadow_entry(vcpu, gva, iterator) {
  706. level = iterator.level;
  707. sptep = iterator.sptep;
  708. sp = page_header(__pa(sptep));
  709. if (is_last_spte(*sptep, level)) {
  710. pt_element_t gpte;
  711. gpa_t pte_gpa;
  712. if (!sp->unsync)
  713. break;
  714. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  715. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  716. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  717. kvm_flush_remote_tlbs(vcpu->kvm);
  718. if (!rmap_can_add(vcpu))
  719. break;
  720. if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
  721. sizeof(pt_element_t)))
  722. break;
  723. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  724. }
  725. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  726. break;
  727. }
  728. spin_unlock(&vcpu->kvm->mmu_lock);
  729. }
  730. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  731. struct x86_exception *exception)
  732. {
  733. struct guest_walker walker;
  734. gpa_t gpa = UNMAPPED_GVA;
  735. int r;
  736. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  737. if (r) {
  738. gpa = gfn_to_gpa(walker.gfn);
  739. gpa |= vaddr & ~PAGE_MASK;
  740. } else if (exception)
  741. *exception = walker.fault;
  742. return gpa;
  743. }
  744. #if PTTYPE != PTTYPE_EPT
  745. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  746. u32 access,
  747. struct x86_exception *exception)
  748. {
  749. struct guest_walker walker;
  750. gpa_t gpa = UNMAPPED_GVA;
  751. int r;
  752. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  753. if (r) {
  754. gpa = gfn_to_gpa(walker.gfn);
  755. gpa |= vaddr & ~PAGE_MASK;
  756. } else if (exception)
  757. *exception = walker.fault;
  758. return gpa;
  759. }
  760. #endif
  761. /*
  762. * Using the cached information from sp->gfns is safe because:
  763. * - The spte has a reference to the struct page, so the pfn for a given gfn
  764. * can't change unless all sptes pointing to it are nuked first.
  765. *
  766. * Note:
  767. * We should flush all tlbs if spte is dropped even though guest is
  768. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  769. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  770. * used by guest then tlbs are not flushed, so guest is allowed to access the
  771. * freed pages.
  772. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  773. */
  774. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  775. {
  776. int i, nr_present = 0;
  777. bool host_writable;
  778. gpa_t first_pte_gpa;
  779. /* direct kvm_mmu_page can not be unsync. */
  780. BUG_ON(sp->role.direct);
  781. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  782. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  783. unsigned pte_access;
  784. pt_element_t gpte;
  785. gpa_t pte_gpa;
  786. gfn_t gfn;
  787. if (!sp->spt[i])
  788. continue;
  789. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  790. if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
  791. sizeof(pt_element_t)))
  792. return -EINVAL;
  793. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  794. vcpu->kvm->tlbs_dirty++;
  795. continue;
  796. }
  797. gfn = gpte_to_gfn(gpte);
  798. pte_access = sp->role.access;
  799. pte_access &= FNAME(gpte_access)(vcpu, gpte);
  800. FNAME(protect_clean_gpte)(&pte_access, gpte);
  801. if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
  802. &nr_present))
  803. continue;
  804. if (gfn != sp->gfns[i]) {
  805. drop_spte(vcpu->kvm, &sp->spt[i]);
  806. vcpu->kvm->tlbs_dirty++;
  807. continue;
  808. }
  809. nr_present++;
  810. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  811. set_spte(vcpu, &sp->spt[i], pte_access,
  812. PT_PAGE_TABLE_LEVEL, gfn,
  813. spte_to_pfn(sp->spt[i]), true, false,
  814. host_writable);
  815. }
  816. return !nr_present;
  817. }
  818. #undef pt_element_t
  819. #undef guest_walker
  820. #undef FNAME
  821. #undef PT_BASE_ADDR_MASK
  822. #undef PT_INDEX
  823. #undef PT_LVL_ADDR_MASK
  824. #undef PT_LVL_OFFSET_MASK
  825. #undef PT_LEVEL_BITS
  826. #undef PT_MAX_FULL_LEVELS
  827. #undef gpte_to_gfn
  828. #undef gpte_to_gfn_lvl
  829. #undef CMPXCHG
  830. #undef PT_GUEST_ACCESSED_MASK
  831. #undef PT_GUEST_DIRTY_MASK
  832. #undef PT_GUEST_DIRTY_SHIFT
  833. #undef PT_GUEST_ACCESSED_SHIFT