i8254.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. /*
  2. * 8253/8254 interval timer emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2006 Intel Corporation
  6. * Copyright (c) 2007 Keir Fraser, XenSource Inc
  7. * Copyright (c) 2008 Intel Corporation
  8. * Copyright 2009 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Permission is hereby granted, free of charge, to any person obtaining a copy
  11. * of this software and associated documentation files (the "Software"), to deal
  12. * in the Software without restriction, including without limitation the rights
  13. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  14. * copies of the Software, and to permit persons to whom the Software is
  15. * furnished to do so, subject to the following conditions:
  16. *
  17. * The above copyright notice and this permission notice shall be included in
  18. * all copies or substantial portions of the Software.
  19. *
  20. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  21. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  22. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  23. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  24. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  25. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  26. * THE SOFTWARE.
  27. *
  28. * Authors:
  29. * Sheng Yang <sheng.yang@intel.com>
  30. * Based on QEMU and Xen.
  31. */
  32. #define pr_fmt(fmt) "pit: " fmt
  33. #include <linux/kvm_host.h>
  34. #include <linux/slab.h>
  35. #include "ioapic.h"
  36. #include "irq.h"
  37. #include "i8254.h"
  38. #include "x86.h"
  39. #ifndef CONFIG_X86_64
  40. #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  41. #else
  42. #define mod_64(x, y) ((x) % (y))
  43. #endif
  44. #define RW_STATE_LSB 1
  45. #define RW_STATE_MSB 2
  46. #define RW_STATE_WORD0 3
  47. #define RW_STATE_WORD1 4
  48. /* Compute with 96 bit intermediate result: (a*b)/c */
  49. static u64 muldiv64(u64 a, u32 b, u32 c)
  50. {
  51. union {
  52. u64 ll;
  53. struct {
  54. u32 low, high;
  55. } l;
  56. } u, res;
  57. u64 rl, rh;
  58. u.ll = a;
  59. rl = (u64)u.l.low * (u64)b;
  60. rh = (u64)u.l.high * (u64)b;
  61. rh += (rl >> 32);
  62. res.l.high = div64_u64(rh, c);
  63. res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  64. return res.ll;
  65. }
  66. static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  67. {
  68. struct kvm_kpit_channel_state *c =
  69. &kvm->arch.vpit->pit_state.channels[channel];
  70. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  71. switch (c->mode) {
  72. default:
  73. case 0:
  74. case 4:
  75. /* XXX: just disable/enable counting */
  76. break;
  77. case 1:
  78. case 2:
  79. case 3:
  80. case 5:
  81. /* Restart counting on rising edge. */
  82. if (c->gate < val)
  83. c->count_load_time = ktime_get();
  84. break;
  85. }
  86. c->gate = val;
  87. }
  88. static int pit_get_gate(struct kvm *kvm, int channel)
  89. {
  90. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  91. return kvm->arch.vpit->pit_state.channels[channel].gate;
  92. }
  93. static s64 __kpit_elapsed(struct kvm *kvm)
  94. {
  95. s64 elapsed;
  96. ktime_t remaining;
  97. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  98. if (!ps->period)
  99. return 0;
  100. /*
  101. * The Counter does not stop when it reaches zero. In
  102. * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
  103. * the highest count, either FFFF hex for binary counting
  104. * or 9999 for BCD counting, and continues counting.
  105. * Modes 2 and 3 are periodic; the Counter reloads
  106. * itself with the initial count and continues counting
  107. * from there.
  108. */
  109. remaining = hrtimer_get_remaining(&ps->timer);
  110. elapsed = ps->period - ktime_to_ns(remaining);
  111. return elapsed;
  112. }
  113. static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
  114. int channel)
  115. {
  116. if (channel == 0)
  117. return __kpit_elapsed(kvm);
  118. return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  119. }
  120. static int pit_get_count(struct kvm *kvm, int channel)
  121. {
  122. struct kvm_kpit_channel_state *c =
  123. &kvm->arch.vpit->pit_state.channels[channel];
  124. s64 d, t;
  125. int counter;
  126. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  127. t = kpit_elapsed(kvm, c, channel);
  128. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  129. switch (c->mode) {
  130. case 0:
  131. case 1:
  132. case 4:
  133. case 5:
  134. counter = (c->count - d) & 0xffff;
  135. break;
  136. case 3:
  137. /* XXX: may be incorrect for odd counts */
  138. counter = c->count - (mod_64((2 * d), c->count));
  139. break;
  140. default:
  141. counter = c->count - mod_64(d, c->count);
  142. break;
  143. }
  144. return counter;
  145. }
  146. static int pit_get_out(struct kvm *kvm, int channel)
  147. {
  148. struct kvm_kpit_channel_state *c =
  149. &kvm->arch.vpit->pit_state.channels[channel];
  150. s64 d, t;
  151. int out;
  152. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  153. t = kpit_elapsed(kvm, c, channel);
  154. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  155. switch (c->mode) {
  156. default:
  157. case 0:
  158. out = (d >= c->count);
  159. break;
  160. case 1:
  161. out = (d < c->count);
  162. break;
  163. case 2:
  164. out = ((mod_64(d, c->count) == 0) && (d != 0));
  165. break;
  166. case 3:
  167. out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
  168. break;
  169. case 4:
  170. case 5:
  171. out = (d == c->count);
  172. break;
  173. }
  174. return out;
  175. }
  176. static void pit_latch_count(struct kvm *kvm, int channel)
  177. {
  178. struct kvm_kpit_channel_state *c =
  179. &kvm->arch.vpit->pit_state.channels[channel];
  180. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  181. if (!c->count_latched) {
  182. c->latched_count = pit_get_count(kvm, channel);
  183. c->count_latched = c->rw_mode;
  184. }
  185. }
  186. static void pit_latch_status(struct kvm *kvm, int channel)
  187. {
  188. struct kvm_kpit_channel_state *c =
  189. &kvm->arch.vpit->pit_state.channels[channel];
  190. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  191. if (!c->status_latched) {
  192. /* TODO: Return NULL COUNT (bit 6). */
  193. c->status = ((pit_get_out(kvm, channel) << 7) |
  194. (c->rw_mode << 4) |
  195. (c->mode << 1) |
  196. c->bcd);
  197. c->status_latched = 1;
  198. }
  199. }
  200. static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
  201. {
  202. struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
  203. irq_ack_notifier);
  204. int value;
  205. spin_lock(&ps->inject_lock);
  206. value = atomic_dec_return(&ps->pending);
  207. if (value < 0)
  208. /* spurious acks can be generated if, for example, the
  209. * PIC is being reset. Handle it gracefully here
  210. */
  211. atomic_inc(&ps->pending);
  212. else if (value > 0)
  213. /* in this case, we had multiple outstanding pit interrupts
  214. * that we needed to inject. Reinject
  215. */
  216. queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
  217. ps->irq_ack = 1;
  218. spin_unlock(&ps->inject_lock);
  219. }
  220. void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
  221. {
  222. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  223. struct hrtimer *timer;
  224. if (!kvm_vcpu_is_bsp(vcpu) || !pit)
  225. return;
  226. timer = &pit->pit_state.timer;
  227. mutex_lock(&pit->pit_state.lock);
  228. if (hrtimer_cancel(timer))
  229. hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
  230. mutex_unlock(&pit->pit_state.lock);
  231. }
  232. static void destroy_pit_timer(struct kvm_pit *pit)
  233. {
  234. hrtimer_cancel(&pit->pit_state.timer);
  235. flush_kthread_work(&pit->expired);
  236. }
  237. static void pit_do_work(struct kthread_work *work)
  238. {
  239. struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
  240. struct kvm *kvm = pit->kvm;
  241. struct kvm_vcpu *vcpu;
  242. int i;
  243. struct kvm_kpit_state *ps = &pit->pit_state;
  244. int inject = 0;
  245. /* Try to inject pending interrupts when
  246. * last one has been acked.
  247. */
  248. spin_lock(&ps->inject_lock);
  249. if (ps->irq_ack) {
  250. ps->irq_ack = 0;
  251. inject = 1;
  252. }
  253. spin_unlock(&ps->inject_lock);
  254. if (inject) {
  255. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
  256. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
  257. /*
  258. * Provides NMI watchdog support via Virtual Wire mode.
  259. * The route is: PIT -> PIC -> LVT0 in NMI mode.
  260. *
  261. * Note: Our Virtual Wire implementation is simplified, only
  262. * propagating PIT interrupts to all VCPUs when they have set
  263. * LVT0 to NMI delivery. Other PIC interrupts are just sent to
  264. * VCPU0, and only if its LVT0 is in EXTINT mode.
  265. */
  266. if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
  267. kvm_for_each_vcpu(i, vcpu, kvm)
  268. kvm_apic_nmi_wd_deliver(vcpu);
  269. }
  270. }
  271. static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
  272. {
  273. struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
  274. struct kvm_pit *pt = ps->kvm->arch.vpit;
  275. if (ps->reinject || !atomic_read(&ps->pending)) {
  276. atomic_inc(&ps->pending);
  277. queue_kthread_work(&pt->worker, &pt->expired);
  278. }
  279. if (ps->is_periodic) {
  280. hrtimer_add_expires_ns(&ps->timer, ps->period);
  281. return HRTIMER_RESTART;
  282. } else
  283. return HRTIMER_NORESTART;
  284. }
  285. static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
  286. {
  287. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  288. s64 interval;
  289. if (!ioapic_in_kernel(kvm) ||
  290. ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
  291. return;
  292. interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
  293. pr_debug("create pit timer, interval is %llu nsec\n", interval);
  294. /* TODO The new value only affected after the retriggered */
  295. hrtimer_cancel(&ps->timer);
  296. flush_kthread_work(&ps->pit->expired);
  297. ps->period = interval;
  298. ps->is_periodic = is_period;
  299. ps->timer.function = pit_timer_fn;
  300. ps->kvm = ps->pit->kvm;
  301. atomic_set(&ps->pending, 0);
  302. ps->irq_ack = 1;
  303. /*
  304. * Do not allow the guest to program periodic timers with small
  305. * interval, since the hrtimers are not throttled by the host
  306. * scheduler.
  307. */
  308. if (ps->is_periodic) {
  309. s64 min_period = min_timer_period_us * 1000LL;
  310. if (ps->period < min_period) {
  311. pr_info_ratelimited(
  312. "kvm: requested %lld ns "
  313. "i8254 timer period limited to %lld ns\n",
  314. ps->period, min_period);
  315. ps->period = min_period;
  316. }
  317. }
  318. hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
  319. HRTIMER_MODE_ABS);
  320. }
  321. static void pit_load_count(struct kvm *kvm, int channel, u32 val)
  322. {
  323. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  324. WARN_ON(!mutex_is_locked(&ps->lock));
  325. pr_debug("load_count val is %d, channel is %d\n", val, channel);
  326. /*
  327. * The largest possible initial count is 0; this is equivalent
  328. * to 216 for binary counting and 104 for BCD counting.
  329. */
  330. if (val == 0)
  331. val = 0x10000;
  332. ps->channels[channel].count = val;
  333. if (channel != 0) {
  334. ps->channels[channel].count_load_time = ktime_get();
  335. return;
  336. }
  337. /* Two types of timer
  338. * mode 1 is one shot, mode 2 is period, otherwise del timer */
  339. switch (ps->channels[0].mode) {
  340. case 0:
  341. case 1:
  342. /* FIXME: enhance mode 4 precision */
  343. case 4:
  344. create_pit_timer(kvm, val, 0);
  345. break;
  346. case 2:
  347. case 3:
  348. create_pit_timer(kvm, val, 1);
  349. break;
  350. default:
  351. destroy_pit_timer(kvm->arch.vpit);
  352. }
  353. }
  354. void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
  355. {
  356. u8 saved_mode;
  357. if (hpet_legacy_start) {
  358. /* save existing mode for later reenablement */
  359. WARN_ON(channel != 0);
  360. saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
  361. kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
  362. pit_load_count(kvm, channel, val);
  363. kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
  364. } else {
  365. pit_load_count(kvm, channel, val);
  366. }
  367. }
  368. static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
  369. {
  370. return container_of(dev, struct kvm_pit, dev);
  371. }
  372. static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
  373. {
  374. return container_of(dev, struct kvm_pit, speaker_dev);
  375. }
  376. static inline int pit_in_range(gpa_t addr)
  377. {
  378. return ((addr >= KVM_PIT_BASE_ADDRESS) &&
  379. (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
  380. }
  381. static int pit_ioport_write(struct kvm_vcpu *vcpu,
  382. struct kvm_io_device *this,
  383. gpa_t addr, int len, const void *data)
  384. {
  385. struct kvm_pit *pit = dev_to_pit(this);
  386. struct kvm_kpit_state *pit_state = &pit->pit_state;
  387. struct kvm *kvm = pit->kvm;
  388. int channel, access;
  389. struct kvm_kpit_channel_state *s;
  390. u32 val = *(u32 *) data;
  391. if (!pit_in_range(addr))
  392. return -EOPNOTSUPP;
  393. val &= 0xff;
  394. addr &= KVM_PIT_CHANNEL_MASK;
  395. mutex_lock(&pit_state->lock);
  396. if (val != 0)
  397. pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
  398. (unsigned int)addr, len, val);
  399. if (addr == 3) {
  400. channel = val >> 6;
  401. if (channel == 3) {
  402. /* Read-Back Command. */
  403. for (channel = 0; channel < 3; channel++) {
  404. s = &pit_state->channels[channel];
  405. if (val & (2 << channel)) {
  406. if (!(val & 0x20))
  407. pit_latch_count(kvm, channel);
  408. if (!(val & 0x10))
  409. pit_latch_status(kvm, channel);
  410. }
  411. }
  412. } else {
  413. /* Select Counter <channel>. */
  414. s = &pit_state->channels[channel];
  415. access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
  416. if (access == 0) {
  417. pit_latch_count(kvm, channel);
  418. } else {
  419. s->rw_mode = access;
  420. s->read_state = access;
  421. s->write_state = access;
  422. s->mode = (val >> 1) & 7;
  423. if (s->mode > 5)
  424. s->mode -= 4;
  425. s->bcd = val & 1;
  426. }
  427. }
  428. } else {
  429. /* Write Count. */
  430. s = &pit_state->channels[addr];
  431. switch (s->write_state) {
  432. default:
  433. case RW_STATE_LSB:
  434. pit_load_count(kvm, addr, val);
  435. break;
  436. case RW_STATE_MSB:
  437. pit_load_count(kvm, addr, val << 8);
  438. break;
  439. case RW_STATE_WORD0:
  440. s->write_latch = val;
  441. s->write_state = RW_STATE_WORD1;
  442. break;
  443. case RW_STATE_WORD1:
  444. pit_load_count(kvm, addr, s->write_latch | (val << 8));
  445. s->write_state = RW_STATE_WORD0;
  446. break;
  447. }
  448. }
  449. mutex_unlock(&pit_state->lock);
  450. return 0;
  451. }
  452. static int pit_ioport_read(struct kvm_vcpu *vcpu,
  453. struct kvm_io_device *this,
  454. gpa_t addr, int len, void *data)
  455. {
  456. struct kvm_pit *pit = dev_to_pit(this);
  457. struct kvm_kpit_state *pit_state = &pit->pit_state;
  458. struct kvm *kvm = pit->kvm;
  459. int ret, count;
  460. struct kvm_kpit_channel_state *s;
  461. if (!pit_in_range(addr))
  462. return -EOPNOTSUPP;
  463. addr &= KVM_PIT_CHANNEL_MASK;
  464. if (addr == 3)
  465. return 0;
  466. s = &pit_state->channels[addr];
  467. mutex_lock(&pit_state->lock);
  468. if (s->status_latched) {
  469. s->status_latched = 0;
  470. ret = s->status;
  471. } else if (s->count_latched) {
  472. switch (s->count_latched) {
  473. default:
  474. case RW_STATE_LSB:
  475. ret = s->latched_count & 0xff;
  476. s->count_latched = 0;
  477. break;
  478. case RW_STATE_MSB:
  479. ret = s->latched_count >> 8;
  480. s->count_latched = 0;
  481. break;
  482. case RW_STATE_WORD0:
  483. ret = s->latched_count & 0xff;
  484. s->count_latched = RW_STATE_MSB;
  485. break;
  486. }
  487. } else {
  488. switch (s->read_state) {
  489. default:
  490. case RW_STATE_LSB:
  491. count = pit_get_count(kvm, addr);
  492. ret = count & 0xff;
  493. break;
  494. case RW_STATE_MSB:
  495. count = pit_get_count(kvm, addr);
  496. ret = (count >> 8) & 0xff;
  497. break;
  498. case RW_STATE_WORD0:
  499. count = pit_get_count(kvm, addr);
  500. ret = count & 0xff;
  501. s->read_state = RW_STATE_WORD1;
  502. break;
  503. case RW_STATE_WORD1:
  504. count = pit_get_count(kvm, addr);
  505. ret = (count >> 8) & 0xff;
  506. s->read_state = RW_STATE_WORD0;
  507. break;
  508. }
  509. }
  510. if (len > sizeof(ret))
  511. len = sizeof(ret);
  512. memcpy(data, (char *)&ret, len);
  513. mutex_unlock(&pit_state->lock);
  514. return 0;
  515. }
  516. static int speaker_ioport_write(struct kvm_vcpu *vcpu,
  517. struct kvm_io_device *this,
  518. gpa_t addr, int len, const void *data)
  519. {
  520. struct kvm_pit *pit = speaker_to_pit(this);
  521. struct kvm_kpit_state *pit_state = &pit->pit_state;
  522. struct kvm *kvm = pit->kvm;
  523. u32 val = *(u32 *) data;
  524. if (addr != KVM_SPEAKER_BASE_ADDRESS)
  525. return -EOPNOTSUPP;
  526. mutex_lock(&pit_state->lock);
  527. pit_state->speaker_data_on = (val >> 1) & 1;
  528. pit_set_gate(kvm, 2, val & 1);
  529. mutex_unlock(&pit_state->lock);
  530. return 0;
  531. }
  532. static int speaker_ioport_read(struct kvm_vcpu *vcpu,
  533. struct kvm_io_device *this,
  534. gpa_t addr, int len, void *data)
  535. {
  536. struct kvm_pit *pit = speaker_to_pit(this);
  537. struct kvm_kpit_state *pit_state = &pit->pit_state;
  538. struct kvm *kvm = pit->kvm;
  539. unsigned int refresh_clock;
  540. int ret;
  541. if (addr != KVM_SPEAKER_BASE_ADDRESS)
  542. return -EOPNOTSUPP;
  543. /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
  544. refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
  545. mutex_lock(&pit_state->lock);
  546. ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
  547. (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
  548. if (len > sizeof(ret))
  549. len = sizeof(ret);
  550. memcpy(data, (char *)&ret, len);
  551. mutex_unlock(&pit_state->lock);
  552. return 0;
  553. }
  554. void kvm_pit_reset(struct kvm_pit *pit)
  555. {
  556. int i;
  557. struct kvm_kpit_channel_state *c;
  558. mutex_lock(&pit->pit_state.lock);
  559. pit->pit_state.flags = 0;
  560. for (i = 0; i < 3; i++) {
  561. c = &pit->pit_state.channels[i];
  562. c->mode = 0xff;
  563. c->gate = (i != 2);
  564. pit_load_count(pit->kvm, i, 0);
  565. }
  566. mutex_unlock(&pit->pit_state.lock);
  567. atomic_set(&pit->pit_state.pending, 0);
  568. pit->pit_state.irq_ack = 1;
  569. }
  570. static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
  571. {
  572. struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
  573. if (!mask) {
  574. atomic_set(&pit->pit_state.pending, 0);
  575. pit->pit_state.irq_ack = 1;
  576. }
  577. }
  578. static const struct kvm_io_device_ops pit_dev_ops = {
  579. .read = pit_ioport_read,
  580. .write = pit_ioport_write,
  581. };
  582. static const struct kvm_io_device_ops speaker_dev_ops = {
  583. .read = speaker_ioport_read,
  584. .write = speaker_ioport_write,
  585. };
  586. /* Caller must hold slots_lock */
  587. struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
  588. {
  589. struct kvm_pit *pit;
  590. struct kvm_kpit_state *pit_state;
  591. struct pid *pid;
  592. pid_t pid_nr;
  593. int ret;
  594. pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
  595. if (!pit)
  596. return NULL;
  597. pit->irq_source_id = kvm_request_irq_source_id(kvm);
  598. if (pit->irq_source_id < 0) {
  599. kfree(pit);
  600. return NULL;
  601. }
  602. mutex_init(&pit->pit_state.lock);
  603. mutex_lock(&pit->pit_state.lock);
  604. spin_lock_init(&pit->pit_state.inject_lock);
  605. pid = get_pid(task_tgid(current));
  606. pid_nr = pid_vnr(pid);
  607. put_pid(pid);
  608. init_kthread_worker(&pit->worker);
  609. pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
  610. "kvm-pit/%d", pid_nr);
  611. if (IS_ERR(pit->worker_task)) {
  612. mutex_unlock(&pit->pit_state.lock);
  613. kvm_free_irq_source_id(kvm, pit->irq_source_id);
  614. kfree(pit);
  615. return NULL;
  616. }
  617. init_kthread_work(&pit->expired, pit_do_work);
  618. kvm->arch.vpit = pit;
  619. pit->kvm = kvm;
  620. pit_state = &pit->pit_state;
  621. pit_state->pit = pit;
  622. hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  623. pit_state->irq_ack_notifier.gsi = 0;
  624. pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
  625. kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
  626. pit_state->reinject = true;
  627. mutex_unlock(&pit->pit_state.lock);
  628. kvm_pit_reset(pit);
  629. pit->mask_notifier.func = pit_mask_notifer;
  630. kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
  631. kvm_iodevice_init(&pit->dev, &pit_dev_ops);
  632. ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
  633. KVM_PIT_MEM_LENGTH, &pit->dev);
  634. if (ret < 0)
  635. goto fail;
  636. if (flags & KVM_PIT_SPEAKER_DUMMY) {
  637. kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
  638. ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
  639. KVM_SPEAKER_BASE_ADDRESS, 4,
  640. &pit->speaker_dev);
  641. if (ret < 0)
  642. goto fail_unregister;
  643. }
  644. return pit;
  645. fail_unregister:
  646. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
  647. fail:
  648. kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
  649. kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
  650. kvm_free_irq_source_id(kvm, pit->irq_source_id);
  651. kthread_stop(pit->worker_task);
  652. kfree(pit);
  653. return NULL;
  654. }
  655. void kvm_free_pit(struct kvm *kvm)
  656. {
  657. struct hrtimer *timer;
  658. if (kvm->arch.vpit) {
  659. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
  660. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  661. &kvm->arch.vpit->speaker_dev);
  662. kvm_unregister_irq_mask_notifier(kvm, 0,
  663. &kvm->arch.vpit->mask_notifier);
  664. kvm_unregister_irq_ack_notifier(kvm,
  665. &kvm->arch.vpit->pit_state.irq_ack_notifier);
  666. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  667. timer = &kvm->arch.vpit->pit_state.timer;
  668. hrtimer_cancel(timer);
  669. flush_kthread_work(&kvm->arch.vpit->expired);
  670. kthread_stop(kvm->arch.vpit->worker_task);
  671. kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
  672. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  673. kfree(kvm->arch.vpit);
  674. }
  675. }