vm86_32.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. /*
  2. * Copyright (C) 1994 Linus Torvalds
  3. *
  4. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  5. * stack - Manfred Spraul <manfred@colorfullife.com>
  6. *
  7. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  8. * them correctly. Now the emulation will be in a
  9. * consistent state after stackfaults - Kasper Dupont
  10. * <kasperd@daimi.au.dk>
  11. *
  12. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13. * <kasperd@daimi.au.dk>
  14. *
  15. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16. * caused by Kasper Dupont's changes - Stas Sergeev
  17. *
  18. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19. * Kasper Dupont <kasperd@daimi.au.dk>
  20. *
  21. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22. * Kasper Dupont <kasperd@daimi.au.dk>
  23. *
  24. * 9 apr 2002 - Changed stack access macros to jump to a label
  25. * instead of returning to userspace. This simplifies
  26. * do_int, and is needed by handle_vm6_fault. Kasper
  27. * Dupont <kasperd@daimi.au.dk>
  28. *
  29. */
  30. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/signal.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/smp.h>
  41. #include <linux/highmem.h>
  42. #include <linux/ptrace.h>
  43. #include <linux/audit.h>
  44. #include <linux/stddef.h>
  45. #include <linux/slab.h>
  46. #include <linux/security.h>
  47. #include <asm/uaccess.h>
  48. #include <asm/io.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/irq.h>
  51. #include <asm/traps.h>
  52. #include <asm/vm86.h>
  53. /*
  54. * Known problems:
  55. *
  56. * Interrupt handling is not guaranteed:
  57. * - a real x86 will disable all interrupts for one instruction
  58. * after a "mov ss,xx" to make stack handling atomic even without
  59. * the 'lss' instruction. We can't guarantee this in v86 mode,
  60. * as the next instruction might result in a page fault or similar.
  61. * - a real x86 will have interrupts disabled for one instruction
  62. * past the 'sti' that enables them. We don't bother with all the
  63. * details yet.
  64. *
  65. * Let's hope these problems do not actually matter for anything.
  66. */
  67. /*
  68. * 8- and 16-bit register defines..
  69. */
  70. #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
  71. #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
  72. #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
  73. #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
  74. /*
  75. * virtual flags (16 and 32-bit versions)
  76. */
  77. #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
  78. #define VEFLAGS (current->thread.vm86->veflags)
  79. #define set_flags(X, new, mask) \
  80. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  81. #define SAFE_MASK (0xDD5)
  82. #define RETURN_MASK (0xDFF)
  83. void save_v86_state(struct kernel_vm86_regs *regs, int retval)
  84. {
  85. struct tss_struct *tss;
  86. struct task_struct *tsk = current;
  87. struct vm86plus_struct __user *user;
  88. struct vm86 *vm86 = current->thread.vm86;
  89. long err = 0;
  90. /*
  91. * This gets called from entry.S with interrupts disabled, but
  92. * from process context. Enable interrupts here, before trying
  93. * to access user space.
  94. */
  95. local_irq_enable();
  96. if (!vm86 || !vm86->user_vm86) {
  97. pr_alert("no user_vm86: BAD\n");
  98. do_exit(SIGSEGV);
  99. }
  100. set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
  101. user = vm86->user_vm86;
  102. if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
  103. sizeof(struct vm86plus_struct) :
  104. sizeof(struct vm86_struct))) {
  105. pr_alert("could not access userspace vm86 info\n");
  106. do_exit(SIGSEGV);
  107. }
  108. put_user_try {
  109. put_user_ex(regs->pt.bx, &user->regs.ebx);
  110. put_user_ex(regs->pt.cx, &user->regs.ecx);
  111. put_user_ex(regs->pt.dx, &user->regs.edx);
  112. put_user_ex(regs->pt.si, &user->regs.esi);
  113. put_user_ex(regs->pt.di, &user->regs.edi);
  114. put_user_ex(regs->pt.bp, &user->regs.ebp);
  115. put_user_ex(regs->pt.ax, &user->regs.eax);
  116. put_user_ex(regs->pt.ip, &user->regs.eip);
  117. put_user_ex(regs->pt.cs, &user->regs.cs);
  118. put_user_ex(regs->pt.flags, &user->regs.eflags);
  119. put_user_ex(regs->pt.sp, &user->regs.esp);
  120. put_user_ex(regs->pt.ss, &user->regs.ss);
  121. put_user_ex(regs->es, &user->regs.es);
  122. put_user_ex(regs->ds, &user->regs.ds);
  123. put_user_ex(regs->fs, &user->regs.fs);
  124. put_user_ex(regs->gs, &user->regs.gs);
  125. put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
  126. } put_user_catch(err);
  127. if (err) {
  128. pr_alert("could not access userspace vm86 info\n");
  129. do_exit(SIGSEGV);
  130. }
  131. tss = &per_cpu(cpu_tss, get_cpu());
  132. tsk->thread.sp0 = vm86->saved_sp0;
  133. tsk->thread.sysenter_cs = __KERNEL_CS;
  134. load_sp0(tss, &tsk->thread);
  135. vm86->saved_sp0 = 0;
  136. put_cpu();
  137. memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
  138. lazy_load_gs(vm86->regs32.gs);
  139. regs->pt.ax = retval;
  140. }
  141. static void mark_screen_rdonly(struct mm_struct *mm)
  142. {
  143. pgd_t *pgd;
  144. pud_t *pud;
  145. pmd_t *pmd;
  146. pte_t *pte;
  147. spinlock_t *ptl;
  148. int i;
  149. down_write(&mm->mmap_sem);
  150. pgd = pgd_offset(mm, 0xA0000);
  151. if (pgd_none_or_clear_bad(pgd))
  152. goto out;
  153. pud = pud_offset(pgd, 0xA0000);
  154. if (pud_none_or_clear_bad(pud))
  155. goto out;
  156. pmd = pmd_offset(pud, 0xA0000);
  157. if (pmd_trans_huge(*pmd)) {
  158. struct vm_area_struct *vma = find_vma(mm, 0xA0000);
  159. split_huge_pmd(vma, pmd, 0xA0000);
  160. }
  161. if (pmd_none_or_clear_bad(pmd))
  162. goto out;
  163. pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
  164. for (i = 0; i < 32; i++) {
  165. if (pte_present(*pte))
  166. set_pte(pte, pte_wrprotect(*pte));
  167. pte++;
  168. }
  169. pte_unmap_unlock(pte, ptl);
  170. out:
  171. up_write(&mm->mmap_sem);
  172. flush_tlb();
  173. }
  174. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  175. static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
  176. SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
  177. {
  178. return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
  179. }
  180. SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
  181. {
  182. switch (cmd) {
  183. case VM86_REQUEST_IRQ:
  184. case VM86_FREE_IRQ:
  185. case VM86_GET_IRQ_BITS:
  186. case VM86_GET_AND_RESET_IRQ:
  187. return do_vm86_irq_handling(cmd, (int)arg);
  188. case VM86_PLUS_INSTALL_CHECK:
  189. /*
  190. * NOTE: on old vm86 stuff this will return the error
  191. * from access_ok(), because the subfunction is
  192. * interpreted as (invalid) address to vm86_struct.
  193. * So the installation check works.
  194. */
  195. return 0;
  196. }
  197. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  198. return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
  199. }
  200. static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
  201. {
  202. struct tss_struct *tss;
  203. struct task_struct *tsk = current;
  204. struct vm86 *vm86 = tsk->thread.vm86;
  205. struct kernel_vm86_regs vm86regs;
  206. struct pt_regs *regs = current_pt_regs();
  207. unsigned long err = 0;
  208. err = security_mmap_addr(0);
  209. if (err) {
  210. /*
  211. * vm86 cannot virtualize the address space, so vm86 users
  212. * need to manage the low 1MB themselves using mmap. Given
  213. * that BIOS places important data in the first page, vm86
  214. * is essentially useless if mmap_min_addr != 0. DOSEMU,
  215. * for example, won't even bother trying to use vm86 if it
  216. * can't map a page at virtual address 0.
  217. *
  218. * To reduce the available kernel attack surface, simply
  219. * disallow vm86(old) for users who cannot mmap at va 0.
  220. *
  221. * The implementation of security_mmap_addr will allow
  222. * suitably privileged users to map va 0 even if
  223. * vm.mmap_min_addr is set above 0, and we want this
  224. * behavior for vm86 as well, as it ensures that legacy
  225. * tools like vbetool will not fail just because of
  226. * vm.mmap_min_addr.
  227. */
  228. pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
  229. current->comm, task_pid_nr(current),
  230. from_kuid_munged(&init_user_ns, current_uid()));
  231. return -EPERM;
  232. }
  233. if (!vm86) {
  234. if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
  235. return -ENOMEM;
  236. tsk->thread.vm86 = vm86;
  237. }
  238. if (vm86->saved_sp0)
  239. return -EPERM;
  240. if (!access_ok(VERIFY_READ, user_vm86, plus ?
  241. sizeof(struct vm86_struct) :
  242. sizeof(struct vm86plus_struct)))
  243. return -EFAULT;
  244. memset(&vm86regs, 0, sizeof(vm86regs));
  245. get_user_try {
  246. unsigned short seg;
  247. get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
  248. get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
  249. get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
  250. get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
  251. get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
  252. get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
  253. get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
  254. get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
  255. get_user_ex(seg, &user_vm86->regs.cs);
  256. vm86regs.pt.cs = seg;
  257. get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
  258. get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
  259. get_user_ex(seg, &user_vm86->regs.ss);
  260. vm86regs.pt.ss = seg;
  261. get_user_ex(vm86regs.es, &user_vm86->regs.es);
  262. get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
  263. get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
  264. get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
  265. get_user_ex(vm86->flags, &user_vm86->flags);
  266. get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
  267. get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
  268. } get_user_catch(err);
  269. if (err)
  270. return err;
  271. if (copy_from_user(&vm86->int_revectored,
  272. &user_vm86->int_revectored,
  273. sizeof(struct revectored_struct)))
  274. return -EFAULT;
  275. if (copy_from_user(&vm86->int21_revectored,
  276. &user_vm86->int21_revectored,
  277. sizeof(struct revectored_struct)))
  278. return -EFAULT;
  279. if (plus) {
  280. if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
  281. sizeof(struct vm86plus_info_struct)))
  282. return -EFAULT;
  283. vm86->vm86plus.is_vm86pus = 1;
  284. } else
  285. memset(&vm86->vm86plus, 0,
  286. sizeof(struct vm86plus_info_struct));
  287. memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
  288. vm86->user_vm86 = user_vm86;
  289. /*
  290. * The flags register is also special: we cannot trust that the user
  291. * has set it up safely, so this makes sure interrupt etc flags are
  292. * inherited from protected mode.
  293. */
  294. VEFLAGS = vm86regs.pt.flags;
  295. vm86regs.pt.flags &= SAFE_MASK;
  296. vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
  297. vm86regs.pt.flags |= X86_VM_MASK;
  298. vm86regs.pt.orig_ax = regs->orig_ax;
  299. switch (vm86->cpu_type) {
  300. case CPU_286:
  301. vm86->veflags_mask = 0;
  302. break;
  303. case CPU_386:
  304. vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  305. break;
  306. case CPU_486:
  307. vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  308. break;
  309. default:
  310. vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
  311. break;
  312. }
  313. /*
  314. * Save old state
  315. */
  316. vm86->saved_sp0 = tsk->thread.sp0;
  317. lazy_save_gs(vm86->regs32.gs);
  318. tss = &per_cpu(cpu_tss, get_cpu());
  319. /* make room for real-mode segments */
  320. tsk->thread.sp0 += 16;
  321. if (static_cpu_has_safe(X86_FEATURE_SEP))
  322. tsk->thread.sysenter_cs = 0;
  323. load_sp0(tss, &tsk->thread);
  324. put_cpu();
  325. if (vm86->flags & VM86_SCREEN_BITMAP)
  326. mark_screen_rdonly(tsk->mm);
  327. memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
  328. force_iret();
  329. return regs->ax;
  330. }
  331. static inline void set_IF(struct kernel_vm86_regs *regs)
  332. {
  333. VEFLAGS |= X86_EFLAGS_VIF;
  334. }
  335. static inline void clear_IF(struct kernel_vm86_regs *regs)
  336. {
  337. VEFLAGS &= ~X86_EFLAGS_VIF;
  338. }
  339. static inline void clear_TF(struct kernel_vm86_regs *regs)
  340. {
  341. regs->pt.flags &= ~X86_EFLAGS_TF;
  342. }
  343. static inline void clear_AC(struct kernel_vm86_regs *regs)
  344. {
  345. regs->pt.flags &= ~X86_EFLAGS_AC;
  346. }
  347. /*
  348. * It is correct to call set_IF(regs) from the set_vflags_*
  349. * functions. However someone forgot to call clear_IF(regs)
  350. * in the opposite case.
  351. * After the command sequence CLI PUSHF STI POPF you should
  352. * end up with interrupts disabled, but you ended up with
  353. * interrupts enabled.
  354. * ( I was testing my own changes, but the only bug I
  355. * could find was in a function I had not changed. )
  356. * [KD]
  357. */
  358. static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
  359. {
  360. set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
  361. set_flags(regs->pt.flags, flags, SAFE_MASK);
  362. if (flags & X86_EFLAGS_IF)
  363. set_IF(regs);
  364. else
  365. clear_IF(regs);
  366. }
  367. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
  368. {
  369. set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
  370. set_flags(regs->pt.flags, flags, SAFE_MASK);
  371. if (flags & X86_EFLAGS_IF)
  372. set_IF(regs);
  373. else
  374. clear_IF(regs);
  375. }
  376. static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
  377. {
  378. unsigned long flags = regs->pt.flags & RETURN_MASK;
  379. if (VEFLAGS & X86_EFLAGS_VIF)
  380. flags |= X86_EFLAGS_IF;
  381. flags |= X86_EFLAGS_IOPL;
  382. return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
  383. }
  384. static inline int is_revectored(int nr, struct revectored_struct *bitmap)
  385. {
  386. __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
  387. :"=r" (nr)
  388. :"m" (*bitmap), "r" (nr));
  389. return nr;
  390. }
  391. #define val_byte(val, n) (((__u8 *)&val)[n])
  392. #define pushb(base, ptr, val, err_label) \
  393. do { \
  394. __u8 __val = val; \
  395. ptr--; \
  396. if (put_user(__val, base + ptr) < 0) \
  397. goto err_label; \
  398. } while (0)
  399. #define pushw(base, ptr, val, err_label) \
  400. do { \
  401. __u16 __val = val; \
  402. ptr--; \
  403. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  404. goto err_label; \
  405. ptr--; \
  406. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  407. goto err_label; \
  408. } while (0)
  409. #define pushl(base, ptr, val, err_label) \
  410. do { \
  411. __u32 __val = val; \
  412. ptr--; \
  413. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  414. goto err_label; \
  415. ptr--; \
  416. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  417. goto err_label; \
  418. ptr--; \
  419. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  420. goto err_label; \
  421. ptr--; \
  422. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  423. goto err_label; \
  424. } while (0)
  425. #define popb(base, ptr, err_label) \
  426. ({ \
  427. __u8 __res; \
  428. if (get_user(__res, base + ptr) < 0) \
  429. goto err_label; \
  430. ptr++; \
  431. __res; \
  432. })
  433. #define popw(base, ptr, err_label) \
  434. ({ \
  435. __u16 __res; \
  436. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  437. goto err_label; \
  438. ptr++; \
  439. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  440. goto err_label; \
  441. ptr++; \
  442. __res; \
  443. })
  444. #define popl(base, ptr, err_label) \
  445. ({ \
  446. __u32 __res; \
  447. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  448. goto err_label; \
  449. ptr++; \
  450. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  451. goto err_label; \
  452. ptr++; \
  453. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  454. goto err_label; \
  455. ptr++; \
  456. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  457. goto err_label; \
  458. ptr++; \
  459. __res; \
  460. })
  461. /* There are so many possible reasons for this function to return
  462. * VM86_INTx, so adding another doesn't bother me. We can expect
  463. * userspace programs to be able to handle it. (Getting a problem
  464. * in userspace is always better than an Oops anyway.) [KD]
  465. */
  466. static void do_int(struct kernel_vm86_regs *regs, int i,
  467. unsigned char __user *ssp, unsigned short sp)
  468. {
  469. unsigned long __user *intr_ptr;
  470. unsigned long segoffs;
  471. struct vm86 *vm86 = current->thread.vm86;
  472. if (regs->pt.cs == BIOSSEG)
  473. goto cannot_handle;
  474. if (is_revectored(i, &vm86->int_revectored))
  475. goto cannot_handle;
  476. if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
  477. goto cannot_handle;
  478. intr_ptr = (unsigned long __user *) (i << 2);
  479. if (get_user(segoffs, intr_ptr))
  480. goto cannot_handle;
  481. if ((segoffs >> 16) == BIOSSEG)
  482. goto cannot_handle;
  483. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  484. pushw(ssp, sp, regs->pt.cs, cannot_handle);
  485. pushw(ssp, sp, IP(regs), cannot_handle);
  486. regs->pt.cs = segoffs >> 16;
  487. SP(regs) -= 6;
  488. IP(regs) = segoffs & 0xffff;
  489. clear_TF(regs);
  490. clear_IF(regs);
  491. clear_AC(regs);
  492. return;
  493. cannot_handle:
  494. save_v86_state(regs, VM86_INTx + (i << 8));
  495. }
  496. int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
  497. {
  498. struct vm86 *vm86 = current->thread.vm86;
  499. if (vm86->vm86plus.is_vm86pus) {
  500. if ((trapno == 3) || (trapno == 1)) {
  501. save_v86_state(regs, VM86_TRAP + (trapno << 8));
  502. return 0;
  503. }
  504. do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
  505. return 0;
  506. }
  507. if (trapno != 1)
  508. return 1; /* we let this handle by the calling routine */
  509. current->thread.trap_nr = trapno;
  510. current->thread.error_code = error_code;
  511. force_sig(SIGTRAP, current);
  512. return 0;
  513. }
  514. void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
  515. {
  516. unsigned char opcode;
  517. unsigned char __user *csp;
  518. unsigned char __user *ssp;
  519. unsigned short ip, sp, orig_flags;
  520. int data32, pref_done;
  521. struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
  522. #define CHECK_IF_IN_TRAP \
  523. if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
  524. newflags |= X86_EFLAGS_TF
  525. orig_flags = *(unsigned short *)&regs->pt.flags;
  526. csp = (unsigned char __user *) (regs->pt.cs << 4);
  527. ssp = (unsigned char __user *) (regs->pt.ss << 4);
  528. sp = SP(regs);
  529. ip = IP(regs);
  530. data32 = 0;
  531. pref_done = 0;
  532. do {
  533. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  534. case 0x66: /* 32-bit data */ data32 = 1; break;
  535. case 0x67: /* 32-bit address */ break;
  536. case 0x2e: /* CS */ break;
  537. case 0x3e: /* DS */ break;
  538. case 0x26: /* ES */ break;
  539. case 0x36: /* SS */ break;
  540. case 0x65: /* GS */ break;
  541. case 0x64: /* FS */ break;
  542. case 0xf2: /* repnz */ break;
  543. case 0xf3: /* rep */ break;
  544. default: pref_done = 1;
  545. }
  546. } while (!pref_done);
  547. switch (opcode) {
  548. /* pushf */
  549. case 0x9c:
  550. if (data32) {
  551. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  552. SP(regs) -= 4;
  553. } else {
  554. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  555. SP(regs) -= 2;
  556. }
  557. IP(regs) = ip;
  558. goto vm86_fault_return;
  559. /* popf */
  560. case 0x9d:
  561. {
  562. unsigned long newflags;
  563. if (data32) {
  564. newflags = popl(ssp, sp, simulate_sigsegv);
  565. SP(regs) += 4;
  566. } else {
  567. newflags = popw(ssp, sp, simulate_sigsegv);
  568. SP(regs) += 2;
  569. }
  570. IP(regs) = ip;
  571. CHECK_IF_IN_TRAP;
  572. if (data32)
  573. set_vflags_long(newflags, regs);
  574. else
  575. set_vflags_short(newflags, regs);
  576. goto check_vip;
  577. }
  578. /* int xx */
  579. case 0xcd: {
  580. int intno = popb(csp, ip, simulate_sigsegv);
  581. IP(regs) = ip;
  582. if (vmpi->vm86dbg_active) {
  583. if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
  584. save_v86_state(regs, VM86_INTx + (intno << 8));
  585. return;
  586. }
  587. }
  588. do_int(regs, intno, ssp, sp);
  589. return;
  590. }
  591. /* iret */
  592. case 0xcf:
  593. {
  594. unsigned long newip;
  595. unsigned long newcs;
  596. unsigned long newflags;
  597. if (data32) {
  598. newip = popl(ssp, sp, simulate_sigsegv);
  599. newcs = popl(ssp, sp, simulate_sigsegv);
  600. newflags = popl(ssp, sp, simulate_sigsegv);
  601. SP(regs) += 12;
  602. } else {
  603. newip = popw(ssp, sp, simulate_sigsegv);
  604. newcs = popw(ssp, sp, simulate_sigsegv);
  605. newflags = popw(ssp, sp, simulate_sigsegv);
  606. SP(regs) += 6;
  607. }
  608. IP(regs) = newip;
  609. regs->pt.cs = newcs;
  610. CHECK_IF_IN_TRAP;
  611. if (data32) {
  612. set_vflags_long(newflags, regs);
  613. } else {
  614. set_vflags_short(newflags, regs);
  615. }
  616. goto check_vip;
  617. }
  618. /* cli */
  619. case 0xfa:
  620. IP(regs) = ip;
  621. clear_IF(regs);
  622. goto vm86_fault_return;
  623. /* sti */
  624. /*
  625. * Damn. This is incorrect: the 'sti' instruction should actually
  626. * enable interrupts after the /next/ instruction. Not good.
  627. *
  628. * Probably needs some horsing around with the TF flag. Aiee..
  629. */
  630. case 0xfb:
  631. IP(regs) = ip;
  632. set_IF(regs);
  633. goto check_vip;
  634. default:
  635. save_v86_state(regs, VM86_UNKNOWN);
  636. }
  637. return;
  638. check_vip:
  639. if (VEFLAGS & X86_EFLAGS_VIP) {
  640. save_v86_state(regs, VM86_STI);
  641. return;
  642. }
  643. vm86_fault_return:
  644. if (vmpi->force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
  645. save_v86_state(regs, VM86_PICRETURN);
  646. return;
  647. }
  648. if (orig_flags & X86_EFLAGS_TF)
  649. handle_vm86_trap(regs, 0, X86_TRAP_DB);
  650. return;
  651. simulate_sigsegv:
  652. /* FIXME: After a long discussion with Stas we finally
  653. * agreed, that this is wrong. Here we should
  654. * really send a SIGSEGV to the user program.
  655. * But how do we create the correct context? We
  656. * are inside a general protection fault handler
  657. * and has just returned from a page fault handler.
  658. * The correct context for the signal handler
  659. * should be a mixture of the two, but how do we
  660. * get the information? [KD]
  661. */
  662. save_v86_state(regs, VM86_UNKNOWN);
  663. }
  664. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  665. #define VM86_IRQNAME "vm86irq"
  666. static struct vm86_irqs {
  667. struct task_struct *tsk;
  668. int sig;
  669. } vm86_irqs[16];
  670. static DEFINE_SPINLOCK(irqbits_lock);
  671. static int irqbits;
  672. #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
  673. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  674. | (1 << SIGUNUSED))
  675. static irqreturn_t irq_handler(int intno, void *dev_id)
  676. {
  677. int irq_bit;
  678. unsigned long flags;
  679. spin_lock_irqsave(&irqbits_lock, flags);
  680. irq_bit = 1 << intno;
  681. if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
  682. goto out;
  683. irqbits |= irq_bit;
  684. if (vm86_irqs[intno].sig)
  685. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  686. /*
  687. * IRQ will be re-enabled when user asks for the irq (whether
  688. * polling or as a result of the signal)
  689. */
  690. disable_irq_nosync(intno);
  691. spin_unlock_irqrestore(&irqbits_lock, flags);
  692. return IRQ_HANDLED;
  693. out:
  694. spin_unlock_irqrestore(&irqbits_lock, flags);
  695. return IRQ_NONE;
  696. }
  697. static inline void free_vm86_irq(int irqnumber)
  698. {
  699. unsigned long flags;
  700. free_irq(irqnumber, NULL);
  701. vm86_irqs[irqnumber].tsk = NULL;
  702. spin_lock_irqsave(&irqbits_lock, flags);
  703. irqbits &= ~(1 << irqnumber);
  704. spin_unlock_irqrestore(&irqbits_lock, flags);
  705. }
  706. void release_vm86_irqs(struct task_struct *task)
  707. {
  708. int i;
  709. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  710. if (vm86_irqs[i].tsk == task)
  711. free_vm86_irq(i);
  712. }
  713. static inline int get_and_reset_irq(int irqnumber)
  714. {
  715. int bit;
  716. unsigned long flags;
  717. int ret = 0;
  718. if (invalid_vm86_irq(irqnumber)) return 0;
  719. if (vm86_irqs[irqnumber].tsk != current) return 0;
  720. spin_lock_irqsave(&irqbits_lock, flags);
  721. bit = irqbits & (1 << irqnumber);
  722. irqbits &= ~bit;
  723. if (bit) {
  724. enable_irq(irqnumber);
  725. ret = 1;
  726. }
  727. spin_unlock_irqrestore(&irqbits_lock, flags);
  728. return ret;
  729. }
  730. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  731. {
  732. int ret;
  733. switch (subfunction) {
  734. case VM86_GET_AND_RESET_IRQ: {
  735. return get_and_reset_irq(irqnumber);
  736. }
  737. case VM86_GET_IRQ_BITS: {
  738. return irqbits;
  739. }
  740. case VM86_REQUEST_IRQ: {
  741. int sig = irqnumber >> 8;
  742. int irq = irqnumber & 255;
  743. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  744. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  745. if (invalid_vm86_irq(irq)) return -EPERM;
  746. if (vm86_irqs[irq].tsk) return -EPERM;
  747. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  748. if (ret) return ret;
  749. vm86_irqs[irq].sig = sig;
  750. vm86_irqs[irq].tsk = current;
  751. return irq;
  752. }
  753. case VM86_FREE_IRQ: {
  754. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  755. if (!vm86_irqs[irqnumber].tsk) return 0;
  756. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  757. free_vm86_irq(irqnumber);
  758. return 0;
  759. }
  760. }
  761. return -EINVAL;
  762. }