init_64.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7. * Copyright (C) 1996 Paul Mackerras
  8. *
  9. * Derived from "arch/i386/mm/init.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Dave Engebretsen <engebret@us.ibm.com>
  13. * Rework for PPC64 port.
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. */
  21. #undef DEBUG
  22. #include <linux/signal.h>
  23. #include <linux/sched.h>
  24. #include <linux/kernel.h>
  25. #include <linux/errno.h>
  26. #include <linux/string.h>
  27. #include <linux/types.h>
  28. #include <linux/mman.h>
  29. #include <linux/mm.h>
  30. #include <linux/swap.h>
  31. #include <linux/stddef.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/highmem.h>
  36. #include <linux/idr.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/module.h>
  39. #include <linux/poison.h>
  40. #include <linux/memblock.h>
  41. #include <linux/hugetlb.h>
  42. #include <linux/slab.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/page.h>
  45. #include <asm/prom.h>
  46. #include <asm/rtas.h>
  47. #include <asm/io.h>
  48. #include <asm/mmu_context.h>
  49. #include <asm/pgtable.h>
  50. #include <asm/mmu.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/smp.h>
  53. #include <asm/machdep.h>
  54. #include <asm/tlb.h>
  55. #include <asm/eeh.h>
  56. #include <asm/processor.h>
  57. #include <asm/mmzone.h>
  58. #include <asm/cputable.h>
  59. #include <asm/sections.h>
  60. #include <asm/iommu.h>
  61. #include <asm/vdso.h>
  62. #include "mmu_decl.h"
  63. #ifdef CONFIG_PPC_STD_MMU_64
  64. #if PGTABLE_RANGE > USER_VSID_RANGE
  65. #warning Limited user VSID range means pagetable space is wasted
  66. #endif
  67. #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
  68. #warning TASK_SIZE is smaller than it needs to be.
  69. #endif
  70. #endif /* CONFIG_PPC_STD_MMU_64 */
  71. phys_addr_t memstart_addr = ~0;
  72. EXPORT_SYMBOL_GPL(memstart_addr);
  73. phys_addr_t kernstart_addr;
  74. EXPORT_SYMBOL_GPL(kernstart_addr);
  75. static void pgd_ctor(void *addr)
  76. {
  77. memset(addr, 0, PGD_TABLE_SIZE);
  78. }
  79. static void pmd_ctor(void *addr)
  80. {
  81. memset(addr, 0, PMD_TABLE_SIZE);
  82. }
  83. struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
  84. /*
  85. * Create a kmem_cache() for pagetables. This is not used for PTE
  86. * pages - they're linked to struct page, come from the normal free
  87. * pages pool and have a different entry size (see real_pte_t) to
  88. * everything else. Caches created by this function are used for all
  89. * the higher level pagetables, and for hugepage pagetables.
  90. */
  91. void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
  92. {
  93. char *name;
  94. unsigned long table_size = sizeof(void *) << shift;
  95. unsigned long align = table_size;
  96. /* When batching pgtable pointers for RCU freeing, we store
  97. * the index size in the low bits. Table alignment must be
  98. * big enough to fit it.
  99. *
  100. * Likewise, hugeapge pagetable pointers contain a (different)
  101. * shift value in the low bits. All tables must be aligned so
  102. * as to leave enough 0 bits in the address to contain it. */
  103. unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
  104. HUGEPD_SHIFT_MASK + 1);
  105. struct kmem_cache *new;
  106. /* It would be nice if this was a BUILD_BUG_ON(), but at the
  107. * moment, gcc doesn't seem to recognize is_power_of_2 as a
  108. * constant expression, so so much for that. */
  109. BUG_ON(!is_power_of_2(minalign));
  110. BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
  111. if (PGT_CACHE(shift))
  112. return; /* Already have a cache of this size */
  113. align = max_t(unsigned long, align, minalign);
  114. name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
  115. new = kmem_cache_create(name, table_size, align, 0, ctor);
  116. kfree(name);
  117. pgtable_cache[shift - 1] = new;
  118. pr_debug("Allocated pgtable cache for order %d\n", shift);
  119. }
  120. void pgtable_cache_init(void)
  121. {
  122. pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
  123. pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
  124. if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
  125. panic("Couldn't allocate pgtable caches");
  126. /* In all current configs, when the PUD index exists it's the
  127. * same size as either the pgd or pmd index. Verify that the
  128. * initialization above has also created a PUD cache. This
  129. * will need re-examiniation if we add new possibilities for
  130. * the pagetable layout. */
  131. BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
  132. }
  133. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  134. /*
  135. * Given an address within the vmemmap, determine the pfn of the page that
  136. * represents the start of the section it is within. Note that we have to
  137. * do this by hand as the proffered address may not be correctly aligned.
  138. * Subtraction of non-aligned pointers produces undefined results.
  139. */
  140. static unsigned long __meminit vmemmap_section_start(unsigned long page)
  141. {
  142. unsigned long offset = page - ((unsigned long)(vmemmap));
  143. /* Return the pfn of the start of the section. */
  144. return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  145. }
  146. /*
  147. * Check if this vmemmap page is already initialised. If any section
  148. * which overlaps this vmemmap page is initialised then this page is
  149. * initialised already.
  150. */
  151. static int __meminit vmemmap_populated(unsigned long start, int page_size)
  152. {
  153. unsigned long end = start + page_size;
  154. start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
  155. for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
  156. if (pfn_valid(page_to_pfn((struct page *)start)))
  157. return 1;
  158. return 0;
  159. }
  160. /* On hash-based CPUs, the vmemmap is bolted in the hash table.
  161. *
  162. * On Book3E CPUs, the vmemmap is currently mapped in the top half of
  163. * the vmalloc space using normal page tables, though the size of
  164. * pages encoded in the PTEs can be different
  165. */
  166. #ifdef CONFIG_PPC_BOOK3E
  167. static void __meminit vmemmap_create_mapping(unsigned long start,
  168. unsigned long page_size,
  169. unsigned long phys)
  170. {
  171. /* Create a PTE encoding without page size */
  172. unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
  173. _PAGE_KERNEL_RW;
  174. /* PTEs only contain page size encodings up to 32M */
  175. BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
  176. /* Encode the size in the PTE */
  177. flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
  178. /* For each PTE for that area, map things. Note that we don't
  179. * increment phys because all PTEs are of the large size and
  180. * thus must have the low bits clear
  181. */
  182. for (i = 0; i < page_size; i += PAGE_SIZE)
  183. BUG_ON(map_kernel_page(start + i, phys, flags));
  184. }
  185. #ifdef CONFIG_MEMORY_HOTPLUG
  186. static void vmemmap_remove_mapping(unsigned long start,
  187. unsigned long page_size)
  188. {
  189. }
  190. #endif
  191. #else /* CONFIG_PPC_BOOK3E */
  192. static void __meminit vmemmap_create_mapping(unsigned long start,
  193. unsigned long page_size,
  194. unsigned long phys)
  195. {
  196. int mapped = htab_bolt_mapping(start, start + page_size, phys,
  197. pgprot_val(PAGE_KERNEL),
  198. mmu_vmemmap_psize,
  199. mmu_kernel_ssize);
  200. BUG_ON(mapped < 0);
  201. }
  202. #ifdef CONFIG_MEMORY_HOTPLUG
  203. static void vmemmap_remove_mapping(unsigned long start,
  204. unsigned long page_size)
  205. {
  206. int mapped = htab_remove_mapping(start, start + page_size,
  207. mmu_vmemmap_psize,
  208. mmu_kernel_ssize);
  209. BUG_ON(mapped < 0);
  210. }
  211. #endif
  212. #endif /* CONFIG_PPC_BOOK3E */
  213. struct vmemmap_backing *vmemmap_list;
  214. static struct vmemmap_backing *next;
  215. static int num_left;
  216. static int num_freed;
  217. static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
  218. {
  219. struct vmemmap_backing *vmem_back;
  220. /* get from freed entries first */
  221. if (num_freed) {
  222. num_freed--;
  223. vmem_back = next;
  224. next = next->list;
  225. return vmem_back;
  226. }
  227. /* allocate a page when required and hand out chunks */
  228. if (!num_left) {
  229. next = vmemmap_alloc_block(PAGE_SIZE, node);
  230. if (unlikely(!next)) {
  231. WARN_ON(1);
  232. return NULL;
  233. }
  234. num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
  235. }
  236. num_left--;
  237. return next++;
  238. }
  239. static __meminit void vmemmap_list_populate(unsigned long phys,
  240. unsigned long start,
  241. int node)
  242. {
  243. struct vmemmap_backing *vmem_back;
  244. vmem_back = vmemmap_list_alloc(node);
  245. if (unlikely(!vmem_back)) {
  246. WARN_ON(1);
  247. return;
  248. }
  249. vmem_back->phys = phys;
  250. vmem_back->virt_addr = start;
  251. vmem_back->list = vmemmap_list;
  252. vmemmap_list = vmem_back;
  253. }
  254. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  255. {
  256. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  257. /* Align to the page size of the linear mapping. */
  258. start = _ALIGN_DOWN(start, page_size);
  259. pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
  260. for (; start < end; start += page_size) {
  261. void *p;
  262. if (vmemmap_populated(start, page_size))
  263. continue;
  264. p = vmemmap_alloc_block(page_size, node);
  265. if (!p)
  266. return -ENOMEM;
  267. vmemmap_list_populate(__pa(p), start, node);
  268. pr_debug(" * %016lx..%016lx allocated at %p\n",
  269. start, start + page_size, p);
  270. vmemmap_create_mapping(start, page_size, __pa(p));
  271. }
  272. return 0;
  273. }
  274. #ifdef CONFIG_MEMORY_HOTPLUG
  275. static unsigned long vmemmap_list_free(unsigned long start)
  276. {
  277. struct vmemmap_backing *vmem_back, *vmem_back_prev;
  278. vmem_back_prev = vmem_back = vmemmap_list;
  279. /* look for it with prev pointer recorded */
  280. for (; vmem_back; vmem_back = vmem_back->list) {
  281. if (vmem_back->virt_addr == start)
  282. break;
  283. vmem_back_prev = vmem_back;
  284. }
  285. if (unlikely(!vmem_back)) {
  286. WARN_ON(1);
  287. return 0;
  288. }
  289. /* remove it from vmemmap_list */
  290. if (vmem_back == vmemmap_list) /* remove head */
  291. vmemmap_list = vmem_back->list;
  292. else
  293. vmem_back_prev->list = vmem_back->list;
  294. /* next point to this freed entry */
  295. vmem_back->list = next;
  296. next = vmem_back;
  297. num_freed++;
  298. return vmem_back->phys;
  299. }
  300. void __ref vmemmap_free(unsigned long start, unsigned long end)
  301. {
  302. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  303. start = _ALIGN_DOWN(start, page_size);
  304. pr_debug("vmemmap_free %lx...%lx\n", start, end);
  305. for (; start < end; start += page_size) {
  306. unsigned long addr;
  307. /*
  308. * the section has already be marked as invalid, so
  309. * vmemmap_populated() true means some other sections still
  310. * in this page, so skip it.
  311. */
  312. if (vmemmap_populated(start, page_size))
  313. continue;
  314. addr = vmemmap_list_free(start);
  315. if (addr) {
  316. struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
  317. if (PageReserved(page)) {
  318. /* allocated from bootmem */
  319. if (page_size < PAGE_SIZE) {
  320. /*
  321. * this shouldn't happen, but if it is
  322. * the case, leave the memory there
  323. */
  324. WARN_ON_ONCE(1);
  325. } else {
  326. unsigned int nr_pages =
  327. 1 << get_order(page_size);
  328. while (nr_pages--)
  329. free_reserved_page(page++);
  330. }
  331. } else
  332. free_pages((unsigned long)(__va(addr)),
  333. get_order(page_size));
  334. vmemmap_remove_mapping(start, page_size);
  335. }
  336. }
  337. }
  338. #endif
  339. void register_page_bootmem_memmap(unsigned long section_nr,
  340. struct page *start_page, unsigned long size)
  341. {
  342. }
  343. /*
  344. * We do not have access to the sparsemem vmemmap, so we fallback to
  345. * walking the list of sparsemem blocks which we already maintain for
  346. * the sake of crashdump. In the long run, we might want to maintain
  347. * a tree if performance of that linear walk becomes a problem.
  348. *
  349. * realmode_pfn_to_page functions can fail due to:
  350. * 1) As real sparsemem blocks do not lay in RAM continously (they
  351. * are in virtual address space which is not available in the real mode),
  352. * the requested page struct can be split between blocks so get_page/put_page
  353. * may fail.
  354. * 2) When huge pages are used, the get_page/put_page API will fail
  355. * in real mode as the linked addresses in the page struct are virtual
  356. * too.
  357. */
  358. struct page *realmode_pfn_to_page(unsigned long pfn)
  359. {
  360. struct vmemmap_backing *vmem_back;
  361. struct page *page;
  362. unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
  363. unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
  364. for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
  365. if (pg_va < vmem_back->virt_addr)
  366. continue;
  367. /* After vmemmap_list entry free is possible, need check all */
  368. if ((pg_va + sizeof(struct page)) <=
  369. (vmem_back->virt_addr + page_size)) {
  370. page = (struct page *) (vmem_back->phys + pg_va -
  371. vmem_back->virt_addr);
  372. return page;
  373. }
  374. }
  375. /* Probably that page struct is split between real pages */
  376. return NULL;
  377. }
  378. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  379. #elif defined(CONFIG_FLATMEM)
  380. struct page *realmode_pfn_to_page(unsigned long pfn)
  381. {
  382. struct page *page = pfn_to_page(pfn);
  383. return page;
  384. }
  385. EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
  386. #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */