swap.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589
  1. /*
  2. * linux/kernel/power/swap.c
  3. *
  4. * This file provides functions for reading the suspend image from
  5. * and writing it to a swap partition.
  6. *
  7. * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
  8. * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  9. * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  10. *
  11. * This file is released under the GPLv2.
  12. *
  13. */
  14. #include <linux/module.h>
  15. #include <linux/file.h>
  16. #include <linux/delay.h>
  17. #include <linux/bitops.h>
  18. #include <linux/genhd.h>
  19. #include <linux/device.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <linux/pm.h>
  25. #include <linux/slab.h>
  26. #include <linux/lzo.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/cpumask.h>
  29. #include <linux/atomic.h>
  30. #include <linux/kthread.h>
  31. #include <linux/crc32.h>
  32. #include <linux/ktime.h>
  33. #include "power.h"
  34. #define HIBERNATE_SIG "S1SUSPEND"
  35. /*
  36. * The swap map is a data structure used for keeping track of each page
  37. * written to a swap partition. It consists of many swap_map_page
  38. * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  39. * These structures are stored on the swap and linked together with the
  40. * help of the .next_swap member.
  41. *
  42. * The swap map is created during suspend. The swap map pages are
  43. * allocated and populated one at a time, so we only need one memory
  44. * page to set up the entire structure.
  45. *
  46. * During resume we pick up all swap_map_page structures into a list.
  47. */
  48. #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
  49. /*
  50. * Number of free pages that are not high.
  51. */
  52. static inline unsigned long low_free_pages(void)
  53. {
  54. return nr_free_pages() - nr_free_highpages();
  55. }
  56. /*
  57. * Number of pages required to be kept free while writing the image. Always
  58. * half of all available low pages before the writing starts.
  59. */
  60. static inline unsigned long reqd_free_pages(void)
  61. {
  62. return low_free_pages() / 2;
  63. }
  64. struct swap_map_page {
  65. sector_t entries[MAP_PAGE_ENTRIES];
  66. sector_t next_swap;
  67. };
  68. struct swap_map_page_list {
  69. struct swap_map_page *map;
  70. struct swap_map_page_list *next;
  71. };
  72. /**
  73. * The swap_map_handle structure is used for handling swap in
  74. * a file-alike way
  75. */
  76. struct swap_map_handle {
  77. struct swap_map_page *cur;
  78. struct swap_map_page_list *maps;
  79. sector_t cur_swap;
  80. sector_t first_sector;
  81. unsigned int k;
  82. unsigned long reqd_free_pages;
  83. u32 crc32;
  84. };
  85. struct swsusp_header {
  86. char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
  87. sizeof(u32)];
  88. u32 crc32;
  89. sector_t image;
  90. unsigned int flags; /* Flags to pass to the "boot" kernel */
  91. char orig_sig[10];
  92. char sig[10];
  93. } __packed;
  94. static struct swsusp_header *swsusp_header;
  95. /**
  96. * The following functions are used for tracing the allocated
  97. * swap pages, so that they can be freed in case of an error.
  98. */
  99. struct swsusp_extent {
  100. struct rb_node node;
  101. unsigned long start;
  102. unsigned long end;
  103. };
  104. static struct rb_root swsusp_extents = RB_ROOT;
  105. static int swsusp_extents_insert(unsigned long swap_offset)
  106. {
  107. struct rb_node **new = &(swsusp_extents.rb_node);
  108. struct rb_node *parent = NULL;
  109. struct swsusp_extent *ext;
  110. /* Figure out where to put the new node */
  111. while (*new) {
  112. ext = rb_entry(*new, struct swsusp_extent, node);
  113. parent = *new;
  114. if (swap_offset < ext->start) {
  115. /* Try to merge */
  116. if (swap_offset == ext->start - 1) {
  117. ext->start--;
  118. return 0;
  119. }
  120. new = &((*new)->rb_left);
  121. } else if (swap_offset > ext->end) {
  122. /* Try to merge */
  123. if (swap_offset == ext->end + 1) {
  124. ext->end++;
  125. return 0;
  126. }
  127. new = &((*new)->rb_right);
  128. } else {
  129. /* It already is in the tree */
  130. return -EINVAL;
  131. }
  132. }
  133. /* Add the new node and rebalance the tree. */
  134. ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
  135. if (!ext)
  136. return -ENOMEM;
  137. ext->start = swap_offset;
  138. ext->end = swap_offset;
  139. rb_link_node(&ext->node, parent, new);
  140. rb_insert_color(&ext->node, &swsusp_extents);
  141. return 0;
  142. }
  143. /**
  144. * alloc_swapdev_block - allocate a swap page and register that it has
  145. * been allocated, so that it can be freed in case of an error.
  146. */
  147. sector_t alloc_swapdev_block(int swap)
  148. {
  149. unsigned long offset;
  150. offset = swp_offset(get_swap_page_of_type(swap));
  151. if (offset) {
  152. if (swsusp_extents_insert(offset))
  153. swap_free(swp_entry(swap, offset));
  154. else
  155. return swapdev_block(swap, offset);
  156. }
  157. return 0;
  158. }
  159. /**
  160. * free_all_swap_pages - free swap pages allocated for saving image data.
  161. * It also frees the extents used to register which swap entries had been
  162. * allocated.
  163. */
  164. void free_all_swap_pages(int swap)
  165. {
  166. struct rb_node *node;
  167. while ((node = swsusp_extents.rb_node)) {
  168. struct swsusp_extent *ext;
  169. unsigned long offset;
  170. ext = container_of(node, struct swsusp_extent, node);
  171. rb_erase(node, &swsusp_extents);
  172. for (offset = ext->start; offset <= ext->end; offset++)
  173. swap_free(swp_entry(swap, offset));
  174. kfree(ext);
  175. }
  176. }
  177. int swsusp_swap_in_use(void)
  178. {
  179. return (swsusp_extents.rb_node != NULL);
  180. }
  181. /*
  182. * General things
  183. */
  184. static unsigned short root_swap = 0xffff;
  185. static struct block_device *hib_resume_bdev;
  186. struct hib_bio_batch {
  187. atomic_t count;
  188. wait_queue_head_t wait;
  189. int error;
  190. };
  191. static void hib_init_batch(struct hib_bio_batch *hb)
  192. {
  193. atomic_set(&hb->count, 0);
  194. init_waitqueue_head(&hb->wait);
  195. hb->error = 0;
  196. }
  197. static void hib_end_io(struct bio *bio)
  198. {
  199. struct hib_bio_batch *hb = bio->bi_private;
  200. struct page *page = bio->bi_io_vec[0].bv_page;
  201. if (bio->bi_error) {
  202. printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
  203. imajor(bio->bi_bdev->bd_inode),
  204. iminor(bio->bi_bdev->bd_inode),
  205. (unsigned long long)bio->bi_iter.bi_sector);
  206. }
  207. if (bio_data_dir(bio) == WRITE)
  208. put_page(page);
  209. if (bio->bi_error && !hb->error)
  210. hb->error = bio->bi_error;
  211. if (atomic_dec_and_test(&hb->count))
  212. wake_up(&hb->wait);
  213. bio_put(bio);
  214. }
  215. static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
  216. struct hib_bio_batch *hb)
  217. {
  218. struct page *page = virt_to_page(addr);
  219. struct bio *bio;
  220. int error = 0;
  221. bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1);
  222. bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
  223. bio->bi_bdev = hib_resume_bdev;
  224. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  225. printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
  226. (unsigned long long)bio->bi_iter.bi_sector);
  227. bio_put(bio);
  228. return -EFAULT;
  229. }
  230. if (hb) {
  231. bio->bi_end_io = hib_end_io;
  232. bio->bi_private = hb;
  233. atomic_inc(&hb->count);
  234. submit_bio(rw, bio);
  235. } else {
  236. error = submit_bio_wait(rw, bio);
  237. bio_put(bio);
  238. }
  239. return error;
  240. }
  241. static int hib_wait_io(struct hib_bio_batch *hb)
  242. {
  243. wait_event(hb->wait, atomic_read(&hb->count) == 0);
  244. return hb->error;
  245. }
  246. /*
  247. * Saving part
  248. */
  249. static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
  250. {
  251. int error;
  252. hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
  253. if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
  254. !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
  255. memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
  256. memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
  257. swsusp_header->image = handle->first_sector;
  258. swsusp_header->flags = flags;
  259. if (flags & SF_CRC32_MODE)
  260. swsusp_header->crc32 = handle->crc32;
  261. error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
  262. swsusp_header, NULL);
  263. } else {
  264. printk(KERN_ERR "PM: Swap header not found!\n");
  265. error = -ENODEV;
  266. }
  267. return error;
  268. }
  269. /**
  270. * swsusp_swap_check - check if the resume device is a swap device
  271. * and get its index (if so)
  272. *
  273. * This is called before saving image
  274. */
  275. static int swsusp_swap_check(void)
  276. {
  277. int res;
  278. res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
  279. &hib_resume_bdev);
  280. if (res < 0)
  281. return res;
  282. root_swap = res;
  283. res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
  284. if (res)
  285. return res;
  286. res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
  287. if (res < 0)
  288. blkdev_put(hib_resume_bdev, FMODE_WRITE);
  289. return res;
  290. }
  291. /**
  292. * write_page - Write one page to given swap location.
  293. * @buf: Address we're writing.
  294. * @offset: Offset of the swap page we're writing to.
  295. * @hb: bio completion batch
  296. */
  297. static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
  298. {
  299. void *src;
  300. int ret;
  301. if (!offset)
  302. return -ENOSPC;
  303. if (hb) {
  304. src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
  305. __GFP_NORETRY);
  306. if (src) {
  307. copy_page(src, buf);
  308. } else {
  309. ret = hib_wait_io(hb); /* Free pages */
  310. if (ret)
  311. return ret;
  312. src = (void *)__get_free_page(__GFP_WAIT |
  313. __GFP_NOWARN |
  314. __GFP_NORETRY);
  315. if (src) {
  316. copy_page(src, buf);
  317. } else {
  318. WARN_ON_ONCE(1);
  319. hb = NULL; /* Go synchronous */
  320. src = buf;
  321. }
  322. }
  323. } else {
  324. src = buf;
  325. }
  326. return hib_submit_io(WRITE_SYNC, offset, src, hb);
  327. }
  328. static void release_swap_writer(struct swap_map_handle *handle)
  329. {
  330. if (handle->cur)
  331. free_page((unsigned long)handle->cur);
  332. handle->cur = NULL;
  333. }
  334. static int get_swap_writer(struct swap_map_handle *handle)
  335. {
  336. int ret;
  337. ret = swsusp_swap_check();
  338. if (ret) {
  339. if (ret != -ENOSPC)
  340. printk(KERN_ERR "PM: Cannot find swap device, try "
  341. "swapon -a.\n");
  342. return ret;
  343. }
  344. handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
  345. if (!handle->cur) {
  346. ret = -ENOMEM;
  347. goto err_close;
  348. }
  349. handle->cur_swap = alloc_swapdev_block(root_swap);
  350. if (!handle->cur_swap) {
  351. ret = -ENOSPC;
  352. goto err_rel;
  353. }
  354. handle->k = 0;
  355. handle->reqd_free_pages = reqd_free_pages();
  356. handle->first_sector = handle->cur_swap;
  357. return 0;
  358. err_rel:
  359. release_swap_writer(handle);
  360. err_close:
  361. swsusp_close(FMODE_WRITE);
  362. return ret;
  363. }
  364. static int swap_write_page(struct swap_map_handle *handle, void *buf,
  365. struct hib_bio_batch *hb)
  366. {
  367. int error = 0;
  368. sector_t offset;
  369. if (!handle->cur)
  370. return -EINVAL;
  371. offset = alloc_swapdev_block(root_swap);
  372. error = write_page(buf, offset, hb);
  373. if (error)
  374. return error;
  375. handle->cur->entries[handle->k++] = offset;
  376. if (handle->k >= MAP_PAGE_ENTRIES) {
  377. offset = alloc_swapdev_block(root_swap);
  378. if (!offset)
  379. return -ENOSPC;
  380. handle->cur->next_swap = offset;
  381. error = write_page(handle->cur, handle->cur_swap, hb);
  382. if (error)
  383. goto out;
  384. clear_page(handle->cur);
  385. handle->cur_swap = offset;
  386. handle->k = 0;
  387. if (hb && low_free_pages() <= handle->reqd_free_pages) {
  388. error = hib_wait_io(hb);
  389. if (error)
  390. goto out;
  391. /*
  392. * Recalculate the number of required free pages, to
  393. * make sure we never take more than half.
  394. */
  395. handle->reqd_free_pages = reqd_free_pages();
  396. }
  397. }
  398. out:
  399. return error;
  400. }
  401. static int flush_swap_writer(struct swap_map_handle *handle)
  402. {
  403. if (handle->cur && handle->cur_swap)
  404. return write_page(handle->cur, handle->cur_swap, NULL);
  405. else
  406. return -EINVAL;
  407. }
  408. static int swap_writer_finish(struct swap_map_handle *handle,
  409. unsigned int flags, int error)
  410. {
  411. if (!error) {
  412. flush_swap_writer(handle);
  413. printk(KERN_INFO "PM: S");
  414. error = mark_swapfiles(handle, flags);
  415. printk("|\n");
  416. }
  417. if (error)
  418. free_all_swap_pages(root_swap);
  419. release_swap_writer(handle);
  420. swsusp_close(FMODE_WRITE);
  421. return error;
  422. }
  423. /* We need to remember how much compressed data we need to read. */
  424. #define LZO_HEADER sizeof(size_t)
  425. /* Number of pages/bytes we'll compress at one time. */
  426. #define LZO_UNC_PAGES 32
  427. #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
  428. /* Number of pages/bytes we need for compressed data (worst case). */
  429. #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
  430. LZO_HEADER, PAGE_SIZE)
  431. #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
  432. /* Maximum number of threads for compression/decompression. */
  433. #define LZO_THREADS 3
  434. /* Minimum/maximum number of pages for read buffering. */
  435. #define LZO_MIN_RD_PAGES 1024
  436. #define LZO_MAX_RD_PAGES 8192
  437. /**
  438. * save_image - save the suspend image data
  439. */
  440. static int save_image(struct swap_map_handle *handle,
  441. struct snapshot_handle *snapshot,
  442. unsigned int nr_to_write)
  443. {
  444. unsigned int m;
  445. int ret;
  446. int nr_pages;
  447. int err2;
  448. struct hib_bio_batch hb;
  449. ktime_t start;
  450. ktime_t stop;
  451. hib_init_batch(&hb);
  452. printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
  453. nr_to_write);
  454. m = nr_to_write / 10;
  455. if (!m)
  456. m = 1;
  457. nr_pages = 0;
  458. start = ktime_get();
  459. while (1) {
  460. ret = snapshot_read_next(snapshot);
  461. if (ret <= 0)
  462. break;
  463. ret = swap_write_page(handle, data_of(*snapshot), &hb);
  464. if (ret)
  465. break;
  466. if (!(nr_pages % m))
  467. printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
  468. nr_pages / m * 10);
  469. nr_pages++;
  470. }
  471. err2 = hib_wait_io(&hb);
  472. stop = ktime_get();
  473. if (!ret)
  474. ret = err2;
  475. if (!ret)
  476. printk(KERN_INFO "PM: Image saving done.\n");
  477. swsusp_show_speed(start, stop, nr_to_write, "Wrote");
  478. return ret;
  479. }
  480. /**
  481. * Structure used for CRC32.
  482. */
  483. struct crc_data {
  484. struct task_struct *thr; /* thread */
  485. atomic_t ready; /* ready to start flag */
  486. atomic_t stop; /* ready to stop flag */
  487. unsigned run_threads; /* nr current threads */
  488. wait_queue_head_t go; /* start crc update */
  489. wait_queue_head_t done; /* crc update done */
  490. u32 *crc32; /* points to handle's crc32 */
  491. size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
  492. unsigned char *unc[LZO_THREADS]; /* uncompressed data */
  493. };
  494. /**
  495. * CRC32 update function that runs in its own thread.
  496. */
  497. static int crc32_threadfn(void *data)
  498. {
  499. struct crc_data *d = data;
  500. unsigned i;
  501. while (1) {
  502. wait_event(d->go, atomic_read(&d->ready) ||
  503. kthread_should_stop());
  504. if (kthread_should_stop()) {
  505. d->thr = NULL;
  506. atomic_set(&d->stop, 1);
  507. wake_up(&d->done);
  508. break;
  509. }
  510. atomic_set(&d->ready, 0);
  511. for (i = 0; i < d->run_threads; i++)
  512. *d->crc32 = crc32_le(*d->crc32,
  513. d->unc[i], *d->unc_len[i]);
  514. atomic_set(&d->stop, 1);
  515. wake_up(&d->done);
  516. }
  517. return 0;
  518. }
  519. /**
  520. * Structure used for LZO data compression.
  521. */
  522. struct cmp_data {
  523. struct task_struct *thr; /* thread */
  524. atomic_t ready; /* ready to start flag */
  525. atomic_t stop; /* ready to stop flag */
  526. int ret; /* return code */
  527. wait_queue_head_t go; /* start compression */
  528. wait_queue_head_t done; /* compression done */
  529. size_t unc_len; /* uncompressed length */
  530. size_t cmp_len; /* compressed length */
  531. unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
  532. unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
  533. unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
  534. };
  535. /**
  536. * Compression function that runs in its own thread.
  537. */
  538. static int lzo_compress_threadfn(void *data)
  539. {
  540. struct cmp_data *d = data;
  541. while (1) {
  542. wait_event(d->go, atomic_read(&d->ready) ||
  543. kthread_should_stop());
  544. if (kthread_should_stop()) {
  545. d->thr = NULL;
  546. d->ret = -1;
  547. atomic_set(&d->stop, 1);
  548. wake_up(&d->done);
  549. break;
  550. }
  551. atomic_set(&d->ready, 0);
  552. d->ret = lzo1x_1_compress(d->unc, d->unc_len,
  553. d->cmp + LZO_HEADER, &d->cmp_len,
  554. d->wrk);
  555. atomic_set(&d->stop, 1);
  556. wake_up(&d->done);
  557. }
  558. return 0;
  559. }
  560. /**
  561. * save_image_lzo - Save the suspend image data compressed with LZO.
  562. * @handle: Swap map handle to use for saving the image.
  563. * @snapshot: Image to read data from.
  564. * @nr_to_write: Number of pages to save.
  565. */
  566. static int save_image_lzo(struct swap_map_handle *handle,
  567. struct snapshot_handle *snapshot,
  568. unsigned int nr_to_write)
  569. {
  570. unsigned int m;
  571. int ret = 0;
  572. int nr_pages;
  573. int err2;
  574. struct hib_bio_batch hb;
  575. ktime_t start;
  576. ktime_t stop;
  577. size_t off;
  578. unsigned thr, run_threads, nr_threads;
  579. unsigned char *page = NULL;
  580. struct cmp_data *data = NULL;
  581. struct crc_data *crc = NULL;
  582. hib_init_batch(&hb);
  583. /*
  584. * We'll limit the number of threads for compression to limit memory
  585. * footprint.
  586. */
  587. nr_threads = num_online_cpus() - 1;
  588. nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
  589. page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
  590. if (!page) {
  591. printk(KERN_ERR "PM: Failed to allocate LZO page\n");
  592. ret = -ENOMEM;
  593. goto out_clean;
  594. }
  595. data = vmalloc(sizeof(*data) * nr_threads);
  596. if (!data) {
  597. printk(KERN_ERR "PM: Failed to allocate LZO data\n");
  598. ret = -ENOMEM;
  599. goto out_clean;
  600. }
  601. for (thr = 0; thr < nr_threads; thr++)
  602. memset(&data[thr], 0, offsetof(struct cmp_data, go));
  603. crc = kmalloc(sizeof(*crc), GFP_KERNEL);
  604. if (!crc) {
  605. printk(KERN_ERR "PM: Failed to allocate crc\n");
  606. ret = -ENOMEM;
  607. goto out_clean;
  608. }
  609. memset(crc, 0, offsetof(struct crc_data, go));
  610. /*
  611. * Start the compression threads.
  612. */
  613. for (thr = 0; thr < nr_threads; thr++) {
  614. init_waitqueue_head(&data[thr].go);
  615. init_waitqueue_head(&data[thr].done);
  616. data[thr].thr = kthread_run(lzo_compress_threadfn,
  617. &data[thr],
  618. "image_compress/%u", thr);
  619. if (IS_ERR(data[thr].thr)) {
  620. data[thr].thr = NULL;
  621. printk(KERN_ERR
  622. "PM: Cannot start compression threads\n");
  623. ret = -ENOMEM;
  624. goto out_clean;
  625. }
  626. }
  627. /*
  628. * Start the CRC32 thread.
  629. */
  630. init_waitqueue_head(&crc->go);
  631. init_waitqueue_head(&crc->done);
  632. handle->crc32 = 0;
  633. crc->crc32 = &handle->crc32;
  634. for (thr = 0; thr < nr_threads; thr++) {
  635. crc->unc[thr] = data[thr].unc;
  636. crc->unc_len[thr] = &data[thr].unc_len;
  637. }
  638. crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
  639. if (IS_ERR(crc->thr)) {
  640. crc->thr = NULL;
  641. printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
  642. ret = -ENOMEM;
  643. goto out_clean;
  644. }
  645. /*
  646. * Adjust the number of required free pages after all allocations have
  647. * been done. We don't want to run out of pages when writing.
  648. */
  649. handle->reqd_free_pages = reqd_free_pages();
  650. printk(KERN_INFO
  651. "PM: Using %u thread(s) for compression.\n"
  652. "PM: Compressing and saving image data (%u pages)...\n",
  653. nr_threads, nr_to_write);
  654. m = nr_to_write / 10;
  655. if (!m)
  656. m = 1;
  657. nr_pages = 0;
  658. start = ktime_get();
  659. for (;;) {
  660. for (thr = 0; thr < nr_threads; thr++) {
  661. for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
  662. ret = snapshot_read_next(snapshot);
  663. if (ret < 0)
  664. goto out_finish;
  665. if (!ret)
  666. break;
  667. memcpy(data[thr].unc + off,
  668. data_of(*snapshot), PAGE_SIZE);
  669. if (!(nr_pages % m))
  670. printk(KERN_INFO
  671. "PM: Image saving progress: "
  672. "%3d%%\n",
  673. nr_pages / m * 10);
  674. nr_pages++;
  675. }
  676. if (!off)
  677. break;
  678. data[thr].unc_len = off;
  679. atomic_set(&data[thr].ready, 1);
  680. wake_up(&data[thr].go);
  681. }
  682. if (!thr)
  683. break;
  684. crc->run_threads = thr;
  685. atomic_set(&crc->ready, 1);
  686. wake_up(&crc->go);
  687. for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
  688. wait_event(data[thr].done,
  689. atomic_read(&data[thr].stop));
  690. atomic_set(&data[thr].stop, 0);
  691. ret = data[thr].ret;
  692. if (ret < 0) {
  693. printk(KERN_ERR "PM: LZO compression failed\n");
  694. goto out_finish;
  695. }
  696. if (unlikely(!data[thr].cmp_len ||
  697. data[thr].cmp_len >
  698. lzo1x_worst_compress(data[thr].unc_len))) {
  699. printk(KERN_ERR
  700. "PM: Invalid LZO compressed length\n");
  701. ret = -1;
  702. goto out_finish;
  703. }
  704. *(size_t *)data[thr].cmp = data[thr].cmp_len;
  705. /*
  706. * Given we are writing one page at a time to disk, we
  707. * copy that much from the buffer, although the last
  708. * bit will likely be smaller than full page. This is
  709. * OK - we saved the length of the compressed data, so
  710. * any garbage at the end will be discarded when we
  711. * read it.
  712. */
  713. for (off = 0;
  714. off < LZO_HEADER + data[thr].cmp_len;
  715. off += PAGE_SIZE) {
  716. memcpy(page, data[thr].cmp + off, PAGE_SIZE);
  717. ret = swap_write_page(handle, page, &hb);
  718. if (ret)
  719. goto out_finish;
  720. }
  721. }
  722. wait_event(crc->done, atomic_read(&crc->stop));
  723. atomic_set(&crc->stop, 0);
  724. }
  725. out_finish:
  726. err2 = hib_wait_io(&hb);
  727. stop = ktime_get();
  728. if (!ret)
  729. ret = err2;
  730. if (!ret)
  731. printk(KERN_INFO "PM: Image saving done.\n");
  732. swsusp_show_speed(start, stop, nr_to_write, "Wrote");
  733. out_clean:
  734. if (crc) {
  735. if (crc->thr)
  736. kthread_stop(crc->thr);
  737. kfree(crc);
  738. }
  739. if (data) {
  740. for (thr = 0; thr < nr_threads; thr++)
  741. if (data[thr].thr)
  742. kthread_stop(data[thr].thr);
  743. vfree(data);
  744. }
  745. if (page) free_page((unsigned long)page);
  746. return ret;
  747. }
  748. /**
  749. * enough_swap - Make sure we have enough swap to save the image.
  750. *
  751. * Returns TRUE or FALSE after checking the total amount of swap
  752. * space avaiable from the resume partition.
  753. */
  754. static int enough_swap(unsigned int nr_pages, unsigned int flags)
  755. {
  756. unsigned int free_swap = count_swap_pages(root_swap, 1);
  757. unsigned int required;
  758. pr_debug("PM: Free swap pages: %u\n", free_swap);
  759. required = PAGES_FOR_IO + nr_pages;
  760. return free_swap > required;
  761. }
  762. /**
  763. * swsusp_write - Write entire image and metadata.
  764. * @flags: flags to pass to the "boot" kernel in the image header
  765. *
  766. * It is important _NOT_ to umount filesystems at this point. We want
  767. * them synced (in case something goes wrong) but we DO not want to mark
  768. * filesystem clean: it is not. (And it does not matter, if we resume
  769. * correctly, we'll mark system clean, anyway.)
  770. */
  771. int swsusp_write(unsigned int flags)
  772. {
  773. struct swap_map_handle handle;
  774. struct snapshot_handle snapshot;
  775. struct swsusp_info *header;
  776. unsigned long pages;
  777. int error;
  778. pages = snapshot_get_image_size();
  779. error = get_swap_writer(&handle);
  780. if (error) {
  781. printk(KERN_ERR "PM: Cannot get swap writer\n");
  782. return error;
  783. }
  784. if (flags & SF_NOCOMPRESS_MODE) {
  785. if (!enough_swap(pages, flags)) {
  786. printk(KERN_ERR "PM: Not enough free swap\n");
  787. error = -ENOSPC;
  788. goto out_finish;
  789. }
  790. }
  791. memset(&snapshot, 0, sizeof(struct snapshot_handle));
  792. error = snapshot_read_next(&snapshot);
  793. if (error < PAGE_SIZE) {
  794. if (error >= 0)
  795. error = -EFAULT;
  796. goto out_finish;
  797. }
  798. header = (struct swsusp_info *)data_of(snapshot);
  799. error = swap_write_page(&handle, header, NULL);
  800. if (!error) {
  801. error = (flags & SF_NOCOMPRESS_MODE) ?
  802. save_image(&handle, &snapshot, pages - 1) :
  803. save_image_lzo(&handle, &snapshot, pages - 1);
  804. }
  805. out_finish:
  806. error = swap_writer_finish(&handle, flags, error);
  807. return error;
  808. }
  809. /**
  810. * The following functions allow us to read data using a swap map
  811. * in a file-alike way
  812. */
  813. static void release_swap_reader(struct swap_map_handle *handle)
  814. {
  815. struct swap_map_page_list *tmp;
  816. while (handle->maps) {
  817. if (handle->maps->map)
  818. free_page((unsigned long)handle->maps->map);
  819. tmp = handle->maps;
  820. handle->maps = handle->maps->next;
  821. kfree(tmp);
  822. }
  823. handle->cur = NULL;
  824. }
  825. static int get_swap_reader(struct swap_map_handle *handle,
  826. unsigned int *flags_p)
  827. {
  828. int error;
  829. struct swap_map_page_list *tmp, *last;
  830. sector_t offset;
  831. *flags_p = swsusp_header->flags;
  832. if (!swsusp_header->image) /* how can this happen? */
  833. return -EINVAL;
  834. handle->cur = NULL;
  835. last = handle->maps = NULL;
  836. offset = swsusp_header->image;
  837. while (offset) {
  838. tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
  839. if (!tmp) {
  840. release_swap_reader(handle);
  841. return -ENOMEM;
  842. }
  843. memset(tmp, 0, sizeof(*tmp));
  844. if (!handle->maps)
  845. handle->maps = tmp;
  846. if (last)
  847. last->next = tmp;
  848. last = tmp;
  849. tmp->map = (struct swap_map_page *)
  850. __get_free_page(__GFP_WAIT | __GFP_HIGH);
  851. if (!tmp->map) {
  852. release_swap_reader(handle);
  853. return -ENOMEM;
  854. }
  855. error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
  856. if (error) {
  857. release_swap_reader(handle);
  858. return error;
  859. }
  860. offset = tmp->map->next_swap;
  861. }
  862. handle->k = 0;
  863. handle->cur = handle->maps->map;
  864. return 0;
  865. }
  866. static int swap_read_page(struct swap_map_handle *handle, void *buf,
  867. struct hib_bio_batch *hb)
  868. {
  869. sector_t offset;
  870. int error;
  871. struct swap_map_page_list *tmp;
  872. if (!handle->cur)
  873. return -EINVAL;
  874. offset = handle->cur->entries[handle->k];
  875. if (!offset)
  876. return -EFAULT;
  877. error = hib_submit_io(READ_SYNC, offset, buf, hb);
  878. if (error)
  879. return error;
  880. if (++handle->k >= MAP_PAGE_ENTRIES) {
  881. handle->k = 0;
  882. free_page((unsigned long)handle->maps->map);
  883. tmp = handle->maps;
  884. handle->maps = handle->maps->next;
  885. kfree(tmp);
  886. if (!handle->maps)
  887. release_swap_reader(handle);
  888. else
  889. handle->cur = handle->maps->map;
  890. }
  891. return error;
  892. }
  893. static int swap_reader_finish(struct swap_map_handle *handle)
  894. {
  895. release_swap_reader(handle);
  896. return 0;
  897. }
  898. /**
  899. * load_image - load the image using the swap map handle
  900. * @handle and the snapshot handle @snapshot
  901. * (assume there are @nr_pages pages to load)
  902. */
  903. static int load_image(struct swap_map_handle *handle,
  904. struct snapshot_handle *snapshot,
  905. unsigned int nr_to_read)
  906. {
  907. unsigned int m;
  908. int ret = 0;
  909. ktime_t start;
  910. ktime_t stop;
  911. struct hib_bio_batch hb;
  912. int err2;
  913. unsigned nr_pages;
  914. hib_init_batch(&hb);
  915. printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
  916. nr_to_read);
  917. m = nr_to_read / 10;
  918. if (!m)
  919. m = 1;
  920. nr_pages = 0;
  921. start = ktime_get();
  922. for ( ; ; ) {
  923. ret = snapshot_write_next(snapshot);
  924. if (ret <= 0)
  925. break;
  926. ret = swap_read_page(handle, data_of(*snapshot), &hb);
  927. if (ret)
  928. break;
  929. if (snapshot->sync_read)
  930. ret = hib_wait_io(&hb);
  931. if (ret)
  932. break;
  933. if (!(nr_pages % m))
  934. printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
  935. nr_pages / m * 10);
  936. nr_pages++;
  937. }
  938. err2 = hib_wait_io(&hb);
  939. stop = ktime_get();
  940. if (!ret)
  941. ret = err2;
  942. if (!ret) {
  943. printk(KERN_INFO "PM: Image loading done.\n");
  944. snapshot_write_finalize(snapshot);
  945. if (!snapshot_image_loaded(snapshot))
  946. ret = -ENODATA;
  947. }
  948. swsusp_show_speed(start, stop, nr_to_read, "Read");
  949. return ret;
  950. }
  951. /**
  952. * Structure used for LZO data decompression.
  953. */
  954. struct dec_data {
  955. struct task_struct *thr; /* thread */
  956. atomic_t ready; /* ready to start flag */
  957. atomic_t stop; /* ready to stop flag */
  958. int ret; /* return code */
  959. wait_queue_head_t go; /* start decompression */
  960. wait_queue_head_t done; /* decompression done */
  961. size_t unc_len; /* uncompressed length */
  962. size_t cmp_len; /* compressed length */
  963. unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
  964. unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
  965. };
  966. /**
  967. * Deompression function that runs in its own thread.
  968. */
  969. static int lzo_decompress_threadfn(void *data)
  970. {
  971. struct dec_data *d = data;
  972. while (1) {
  973. wait_event(d->go, atomic_read(&d->ready) ||
  974. kthread_should_stop());
  975. if (kthread_should_stop()) {
  976. d->thr = NULL;
  977. d->ret = -1;
  978. atomic_set(&d->stop, 1);
  979. wake_up(&d->done);
  980. break;
  981. }
  982. atomic_set(&d->ready, 0);
  983. d->unc_len = LZO_UNC_SIZE;
  984. d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
  985. d->unc, &d->unc_len);
  986. atomic_set(&d->stop, 1);
  987. wake_up(&d->done);
  988. }
  989. return 0;
  990. }
  991. /**
  992. * load_image_lzo - Load compressed image data and decompress them with LZO.
  993. * @handle: Swap map handle to use for loading data.
  994. * @snapshot: Image to copy uncompressed data into.
  995. * @nr_to_read: Number of pages to load.
  996. */
  997. static int load_image_lzo(struct swap_map_handle *handle,
  998. struct snapshot_handle *snapshot,
  999. unsigned int nr_to_read)
  1000. {
  1001. unsigned int m;
  1002. int ret = 0;
  1003. int eof = 0;
  1004. struct hib_bio_batch hb;
  1005. ktime_t start;
  1006. ktime_t stop;
  1007. unsigned nr_pages;
  1008. size_t off;
  1009. unsigned i, thr, run_threads, nr_threads;
  1010. unsigned ring = 0, pg = 0, ring_size = 0,
  1011. have = 0, want, need, asked = 0;
  1012. unsigned long read_pages = 0;
  1013. unsigned char **page = NULL;
  1014. struct dec_data *data = NULL;
  1015. struct crc_data *crc = NULL;
  1016. hib_init_batch(&hb);
  1017. /*
  1018. * We'll limit the number of threads for decompression to limit memory
  1019. * footprint.
  1020. */
  1021. nr_threads = num_online_cpus() - 1;
  1022. nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
  1023. page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
  1024. if (!page) {
  1025. printk(KERN_ERR "PM: Failed to allocate LZO page\n");
  1026. ret = -ENOMEM;
  1027. goto out_clean;
  1028. }
  1029. data = vmalloc(sizeof(*data) * nr_threads);
  1030. if (!data) {
  1031. printk(KERN_ERR "PM: Failed to allocate LZO data\n");
  1032. ret = -ENOMEM;
  1033. goto out_clean;
  1034. }
  1035. for (thr = 0; thr < nr_threads; thr++)
  1036. memset(&data[thr], 0, offsetof(struct dec_data, go));
  1037. crc = kmalloc(sizeof(*crc), GFP_KERNEL);
  1038. if (!crc) {
  1039. printk(KERN_ERR "PM: Failed to allocate crc\n");
  1040. ret = -ENOMEM;
  1041. goto out_clean;
  1042. }
  1043. memset(crc, 0, offsetof(struct crc_data, go));
  1044. /*
  1045. * Start the decompression threads.
  1046. */
  1047. for (thr = 0; thr < nr_threads; thr++) {
  1048. init_waitqueue_head(&data[thr].go);
  1049. init_waitqueue_head(&data[thr].done);
  1050. data[thr].thr = kthread_run(lzo_decompress_threadfn,
  1051. &data[thr],
  1052. "image_decompress/%u", thr);
  1053. if (IS_ERR(data[thr].thr)) {
  1054. data[thr].thr = NULL;
  1055. printk(KERN_ERR
  1056. "PM: Cannot start decompression threads\n");
  1057. ret = -ENOMEM;
  1058. goto out_clean;
  1059. }
  1060. }
  1061. /*
  1062. * Start the CRC32 thread.
  1063. */
  1064. init_waitqueue_head(&crc->go);
  1065. init_waitqueue_head(&crc->done);
  1066. handle->crc32 = 0;
  1067. crc->crc32 = &handle->crc32;
  1068. for (thr = 0; thr < nr_threads; thr++) {
  1069. crc->unc[thr] = data[thr].unc;
  1070. crc->unc_len[thr] = &data[thr].unc_len;
  1071. }
  1072. crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
  1073. if (IS_ERR(crc->thr)) {
  1074. crc->thr = NULL;
  1075. printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
  1076. ret = -ENOMEM;
  1077. goto out_clean;
  1078. }
  1079. /*
  1080. * Set the number of pages for read buffering.
  1081. * This is complete guesswork, because we'll only know the real
  1082. * picture once prepare_image() is called, which is much later on
  1083. * during the image load phase. We'll assume the worst case and
  1084. * say that none of the image pages are from high memory.
  1085. */
  1086. if (low_free_pages() > snapshot_get_image_size())
  1087. read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
  1088. read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
  1089. for (i = 0; i < read_pages; i++) {
  1090. page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
  1091. __GFP_WAIT | __GFP_HIGH :
  1092. __GFP_WAIT | __GFP_NOWARN |
  1093. __GFP_NORETRY);
  1094. if (!page[i]) {
  1095. if (i < LZO_CMP_PAGES) {
  1096. ring_size = i;
  1097. printk(KERN_ERR
  1098. "PM: Failed to allocate LZO pages\n");
  1099. ret = -ENOMEM;
  1100. goto out_clean;
  1101. } else {
  1102. break;
  1103. }
  1104. }
  1105. }
  1106. want = ring_size = i;
  1107. printk(KERN_INFO
  1108. "PM: Using %u thread(s) for decompression.\n"
  1109. "PM: Loading and decompressing image data (%u pages)...\n",
  1110. nr_threads, nr_to_read);
  1111. m = nr_to_read / 10;
  1112. if (!m)
  1113. m = 1;
  1114. nr_pages = 0;
  1115. start = ktime_get();
  1116. ret = snapshot_write_next(snapshot);
  1117. if (ret <= 0)
  1118. goto out_finish;
  1119. for(;;) {
  1120. for (i = 0; !eof && i < want; i++) {
  1121. ret = swap_read_page(handle, page[ring], &hb);
  1122. if (ret) {
  1123. /*
  1124. * On real read error, finish. On end of data,
  1125. * set EOF flag and just exit the read loop.
  1126. */
  1127. if (handle->cur &&
  1128. handle->cur->entries[handle->k]) {
  1129. goto out_finish;
  1130. } else {
  1131. eof = 1;
  1132. break;
  1133. }
  1134. }
  1135. if (++ring >= ring_size)
  1136. ring = 0;
  1137. }
  1138. asked += i;
  1139. want -= i;
  1140. /*
  1141. * We are out of data, wait for some more.
  1142. */
  1143. if (!have) {
  1144. if (!asked)
  1145. break;
  1146. ret = hib_wait_io(&hb);
  1147. if (ret)
  1148. goto out_finish;
  1149. have += asked;
  1150. asked = 0;
  1151. if (eof)
  1152. eof = 2;
  1153. }
  1154. if (crc->run_threads) {
  1155. wait_event(crc->done, atomic_read(&crc->stop));
  1156. atomic_set(&crc->stop, 0);
  1157. crc->run_threads = 0;
  1158. }
  1159. for (thr = 0; have && thr < nr_threads; thr++) {
  1160. data[thr].cmp_len = *(size_t *)page[pg];
  1161. if (unlikely(!data[thr].cmp_len ||
  1162. data[thr].cmp_len >
  1163. lzo1x_worst_compress(LZO_UNC_SIZE))) {
  1164. printk(KERN_ERR
  1165. "PM: Invalid LZO compressed length\n");
  1166. ret = -1;
  1167. goto out_finish;
  1168. }
  1169. need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
  1170. PAGE_SIZE);
  1171. if (need > have) {
  1172. if (eof > 1) {
  1173. ret = -1;
  1174. goto out_finish;
  1175. }
  1176. break;
  1177. }
  1178. for (off = 0;
  1179. off < LZO_HEADER + data[thr].cmp_len;
  1180. off += PAGE_SIZE) {
  1181. memcpy(data[thr].cmp + off,
  1182. page[pg], PAGE_SIZE);
  1183. have--;
  1184. want++;
  1185. if (++pg >= ring_size)
  1186. pg = 0;
  1187. }
  1188. atomic_set(&data[thr].ready, 1);
  1189. wake_up(&data[thr].go);
  1190. }
  1191. /*
  1192. * Wait for more data while we are decompressing.
  1193. */
  1194. if (have < LZO_CMP_PAGES && asked) {
  1195. ret = hib_wait_io(&hb);
  1196. if (ret)
  1197. goto out_finish;
  1198. have += asked;
  1199. asked = 0;
  1200. if (eof)
  1201. eof = 2;
  1202. }
  1203. for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
  1204. wait_event(data[thr].done,
  1205. atomic_read(&data[thr].stop));
  1206. atomic_set(&data[thr].stop, 0);
  1207. ret = data[thr].ret;
  1208. if (ret < 0) {
  1209. printk(KERN_ERR
  1210. "PM: LZO decompression failed\n");
  1211. goto out_finish;
  1212. }
  1213. if (unlikely(!data[thr].unc_len ||
  1214. data[thr].unc_len > LZO_UNC_SIZE ||
  1215. data[thr].unc_len & (PAGE_SIZE - 1))) {
  1216. printk(KERN_ERR
  1217. "PM: Invalid LZO uncompressed length\n");
  1218. ret = -1;
  1219. goto out_finish;
  1220. }
  1221. for (off = 0;
  1222. off < data[thr].unc_len; off += PAGE_SIZE) {
  1223. memcpy(data_of(*snapshot),
  1224. data[thr].unc + off, PAGE_SIZE);
  1225. if (!(nr_pages % m))
  1226. printk(KERN_INFO
  1227. "PM: Image loading progress: "
  1228. "%3d%%\n",
  1229. nr_pages / m * 10);
  1230. nr_pages++;
  1231. ret = snapshot_write_next(snapshot);
  1232. if (ret <= 0) {
  1233. crc->run_threads = thr + 1;
  1234. atomic_set(&crc->ready, 1);
  1235. wake_up(&crc->go);
  1236. goto out_finish;
  1237. }
  1238. }
  1239. }
  1240. crc->run_threads = thr;
  1241. atomic_set(&crc->ready, 1);
  1242. wake_up(&crc->go);
  1243. }
  1244. out_finish:
  1245. if (crc->run_threads) {
  1246. wait_event(crc->done, atomic_read(&crc->stop));
  1247. atomic_set(&crc->stop, 0);
  1248. }
  1249. stop = ktime_get();
  1250. if (!ret) {
  1251. printk(KERN_INFO "PM: Image loading done.\n");
  1252. snapshot_write_finalize(snapshot);
  1253. if (!snapshot_image_loaded(snapshot))
  1254. ret = -ENODATA;
  1255. if (!ret) {
  1256. if (swsusp_header->flags & SF_CRC32_MODE) {
  1257. if(handle->crc32 != swsusp_header->crc32) {
  1258. printk(KERN_ERR
  1259. "PM: Invalid image CRC32!\n");
  1260. ret = -ENODATA;
  1261. }
  1262. }
  1263. }
  1264. }
  1265. swsusp_show_speed(start, stop, nr_to_read, "Read");
  1266. out_clean:
  1267. for (i = 0; i < ring_size; i++)
  1268. free_page((unsigned long)page[i]);
  1269. if (crc) {
  1270. if (crc->thr)
  1271. kthread_stop(crc->thr);
  1272. kfree(crc);
  1273. }
  1274. if (data) {
  1275. for (thr = 0; thr < nr_threads; thr++)
  1276. if (data[thr].thr)
  1277. kthread_stop(data[thr].thr);
  1278. vfree(data);
  1279. }
  1280. vfree(page);
  1281. return ret;
  1282. }
  1283. /**
  1284. * swsusp_read - read the hibernation image.
  1285. * @flags_p: flags passed by the "frozen" kernel in the image header should
  1286. * be written into this memory location
  1287. */
  1288. int swsusp_read(unsigned int *flags_p)
  1289. {
  1290. int error;
  1291. struct swap_map_handle handle;
  1292. struct snapshot_handle snapshot;
  1293. struct swsusp_info *header;
  1294. memset(&snapshot, 0, sizeof(struct snapshot_handle));
  1295. error = snapshot_write_next(&snapshot);
  1296. if (error < PAGE_SIZE)
  1297. return error < 0 ? error : -EFAULT;
  1298. header = (struct swsusp_info *)data_of(snapshot);
  1299. error = get_swap_reader(&handle, flags_p);
  1300. if (error)
  1301. goto end;
  1302. if (!error)
  1303. error = swap_read_page(&handle, header, NULL);
  1304. if (!error) {
  1305. error = (*flags_p & SF_NOCOMPRESS_MODE) ?
  1306. load_image(&handle, &snapshot, header->pages - 1) :
  1307. load_image_lzo(&handle, &snapshot, header->pages - 1);
  1308. }
  1309. swap_reader_finish(&handle);
  1310. end:
  1311. if (!error)
  1312. pr_debug("PM: Image successfully loaded\n");
  1313. else
  1314. pr_debug("PM: Error %d resuming\n", error);
  1315. return error;
  1316. }
  1317. /**
  1318. * swsusp_check - Check for swsusp signature in the resume device
  1319. */
  1320. int swsusp_check(void)
  1321. {
  1322. int error;
  1323. hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
  1324. FMODE_READ, NULL);
  1325. if (!IS_ERR(hib_resume_bdev)) {
  1326. set_blocksize(hib_resume_bdev, PAGE_SIZE);
  1327. clear_page(swsusp_header);
  1328. error = hib_submit_io(READ_SYNC, swsusp_resume_block,
  1329. swsusp_header, NULL);
  1330. if (error)
  1331. goto put;
  1332. if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
  1333. memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
  1334. /* Reset swap signature now */
  1335. error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
  1336. swsusp_header, NULL);
  1337. } else {
  1338. error = -EINVAL;
  1339. }
  1340. put:
  1341. if (error)
  1342. blkdev_put(hib_resume_bdev, FMODE_READ);
  1343. else
  1344. pr_debug("PM: Image signature found, resuming\n");
  1345. } else {
  1346. error = PTR_ERR(hib_resume_bdev);
  1347. }
  1348. if (error)
  1349. pr_debug("PM: Image not found (code %d)\n", error);
  1350. return error;
  1351. }
  1352. /**
  1353. * swsusp_close - close swap device.
  1354. */
  1355. void swsusp_close(fmode_t mode)
  1356. {
  1357. if (IS_ERR(hib_resume_bdev)) {
  1358. pr_debug("PM: Image device not initialised\n");
  1359. return;
  1360. }
  1361. blkdev_put(hib_resume_bdev, mode);
  1362. }
  1363. /**
  1364. * swsusp_unmark - Unmark swsusp signature in the resume device
  1365. */
  1366. #ifdef CONFIG_SUSPEND
  1367. int swsusp_unmark(void)
  1368. {
  1369. int error;
  1370. hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
  1371. if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
  1372. memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
  1373. error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
  1374. swsusp_header, NULL);
  1375. } else {
  1376. printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
  1377. error = -ENODEV;
  1378. }
  1379. /*
  1380. * We just returned from suspend, we don't need the image any more.
  1381. */
  1382. free_all_swap_pages(root_swap);
  1383. return error;
  1384. }
  1385. #endif
  1386. static int swsusp_header_init(void)
  1387. {
  1388. swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
  1389. if (!swsusp_header)
  1390. panic("Could not allocate memory for swsusp_header\n");
  1391. return 0;
  1392. }
  1393. core_initcall(swsusp_header_init);