namei.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049
  1. /*
  2. * fs/f2fs/namei.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/sched.h>
  15. #include <linux/ctype.h>
  16. #include <linux/dcache.h>
  17. #include <linux/namei.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "xattr.h"
  21. #include "acl.h"
  22. #include <trace/events/f2fs.h>
  23. static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
  24. {
  25. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  26. nid_t ino;
  27. struct inode *inode;
  28. bool nid_free = false;
  29. int err;
  30. inode = new_inode(dir->i_sb);
  31. if (!inode)
  32. return ERR_PTR(-ENOMEM);
  33. f2fs_lock_op(sbi);
  34. if (!alloc_nid(sbi, &ino)) {
  35. f2fs_unlock_op(sbi);
  36. err = -ENOSPC;
  37. goto fail;
  38. }
  39. f2fs_unlock_op(sbi);
  40. inode_init_owner(inode, dir, mode);
  41. inode->i_ino = ino;
  42. inode->i_blocks = 0;
  43. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  44. inode->i_generation = sbi->s_next_generation++;
  45. err = insert_inode_locked(inode);
  46. if (err) {
  47. err = -EINVAL;
  48. nid_free = true;
  49. goto fail;
  50. }
  51. /* If the directory encrypted, then we should encrypt the inode. */
  52. if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode))
  53. f2fs_set_encrypted_inode(inode);
  54. if (f2fs_may_inline_data(inode))
  55. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  56. if (f2fs_may_inline_dentry(inode))
  57. set_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY);
  58. f2fs_init_extent_tree(inode, NULL);
  59. stat_inc_inline_xattr(inode);
  60. stat_inc_inline_inode(inode);
  61. stat_inc_inline_dir(inode);
  62. trace_f2fs_new_inode(inode, 0);
  63. mark_inode_dirty(inode);
  64. return inode;
  65. fail:
  66. trace_f2fs_new_inode(inode, err);
  67. make_bad_inode(inode);
  68. if (nid_free)
  69. set_inode_flag(F2FS_I(inode), FI_FREE_NID);
  70. iput(inode);
  71. return ERR_PTR(err);
  72. }
  73. static int is_multimedia_file(const unsigned char *s, const char *sub)
  74. {
  75. size_t slen = strlen(s);
  76. size_t sublen = strlen(sub);
  77. /*
  78. * filename format of multimedia file should be defined as:
  79. * "filename + '.' + extension".
  80. */
  81. if (slen < sublen + 2)
  82. return 0;
  83. if (s[slen - sublen - 1] != '.')
  84. return 0;
  85. return !strncasecmp(s + slen - sublen, sub, sublen);
  86. }
  87. /*
  88. * Set multimedia files as cold files for hot/cold data separation
  89. */
  90. static inline void set_cold_files(struct f2fs_sb_info *sbi, struct inode *inode,
  91. const unsigned char *name)
  92. {
  93. int i;
  94. __u8 (*extlist)[8] = sbi->raw_super->extension_list;
  95. int count = le32_to_cpu(sbi->raw_super->extension_count);
  96. for (i = 0; i < count; i++) {
  97. if (is_multimedia_file(name, extlist[i])) {
  98. file_set_cold(inode);
  99. break;
  100. }
  101. }
  102. }
  103. static int f2fs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
  104. bool excl)
  105. {
  106. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  107. struct inode *inode;
  108. nid_t ino = 0;
  109. int err;
  110. f2fs_balance_fs(sbi);
  111. inode = f2fs_new_inode(dir, mode);
  112. if (IS_ERR(inode))
  113. return PTR_ERR(inode);
  114. if (!test_opt(sbi, DISABLE_EXT_IDENTIFY))
  115. set_cold_files(sbi, inode, dentry->d_name.name);
  116. inode->i_op = &f2fs_file_inode_operations;
  117. inode->i_fop = &f2fs_file_operations;
  118. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  119. ino = inode->i_ino;
  120. f2fs_lock_op(sbi);
  121. err = f2fs_add_link(dentry, inode);
  122. if (err)
  123. goto out;
  124. f2fs_unlock_op(sbi);
  125. alloc_nid_done(sbi, ino);
  126. d_instantiate(dentry, inode);
  127. unlock_new_inode(inode);
  128. if (IS_DIRSYNC(dir))
  129. f2fs_sync_fs(sbi->sb, 1);
  130. return 0;
  131. out:
  132. handle_failed_inode(inode);
  133. return err;
  134. }
  135. static int f2fs_link(struct dentry *old_dentry, struct inode *dir,
  136. struct dentry *dentry)
  137. {
  138. struct inode *inode = d_inode(old_dentry);
  139. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  140. int err;
  141. if (f2fs_encrypted_inode(dir) &&
  142. !f2fs_is_child_context_consistent_with_parent(dir, inode))
  143. return -EPERM;
  144. f2fs_balance_fs(sbi);
  145. inode->i_ctime = CURRENT_TIME;
  146. ihold(inode);
  147. set_inode_flag(F2FS_I(inode), FI_INC_LINK);
  148. f2fs_lock_op(sbi);
  149. err = f2fs_add_link(dentry, inode);
  150. if (err)
  151. goto out;
  152. f2fs_unlock_op(sbi);
  153. d_instantiate(dentry, inode);
  154. if (IS_DIRSYNC(dir))
  155. f2fs_sync_fs(sbi->sb, 1);
  156. return 0;
  157. out:
  158. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  159. iput(inode);
  160. f2fs_unlock_op(sbi);
  161. return err;
  162. }
  163. struct dentry *f2fs_get_parent(struct dentry *child)
  164. {
  165. struct qstr dotdot = QSTR_INIT("..", 2);
  166. unsigned long ino = f2fs_inode_by_name(d_inode(child), &dotdot);
  167. if (!ino)
  168. return ERR_PTR(-ENOENT);
  169. return d_obtain_alias(f2fs_iget(d_inode(child)->i_sb, ino));
  170. }
  171. static int __recover_dot_dentries(struct inode *dir, nid_t pino)
  172. {
  173. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  174. struct qstr dot = QSTR_INIT(".", 1);
  175. struct qstr dotdot = QSTR_INIT("..", 2);
  176. struct f2fs_dir_entry *de;
  177. struct page *page;
  178. int err = 0;
  179. f2fs_lock_op(sbi);
  180. de = f2fs_find_entry(dir, &dot, &page);
  181. if (de) {
  182. f2fs_dentry_kunmap(dir, page);
  183. f2fs_put_page(page, 0);
  184. } else {
  185. err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR);
  186. if (err)
  187. goto out;
  188. }
  189. de = f2fs_find_entry(dir, &dotdot, &page);
  190. if (de) {
  191. f2fs_dentry_kunmap(dir, page);
  192. f2fs_put_page(page, 0);
  193. } else {
  194. err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR);
  195. }
  196. out:
  197. if (!err) {
  198. clear_inode_flag(F2FS_I(dir), FI_INLINE_DOTS);
  199. mark_inode_dirty(dir);
  200. }
  201. f2fs_unlock_op(sbi);
  202. return err;
  203. }
  204. static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
  205. unsigned int flags)
  206. {
  207. struct inode *inode = NULL;
  208. struct f2fs_dir_entry *de;
  209. struct page *page;
  210. nid_t ino;
  211. int err = 0;
  212. if (dentry->d_name.len > F2FS_NAME_LEN)
  213. return ERR_PTR(-ENAMETOOLONG);
  214. de = f2fs_find_entry(dir, &dentry->d_name, &page);
  215. if (!de)
  216. return d_splice_alias(inode, dentry);
  217. ino = le32_to_cpu(de->ino);
  218. f2fs_dentry_kunmap(dir, page);
  219. f2fs_put_page(page, 0);
  220. inode = f2fs_iget(dir->i_sb, ino);
  221. if (IS_ERR(inode))
  222. return ERR_CAST(inode);
  223. if (f2fs_has_inline_dots(inode)) {
  224. err = __recover_dot_dentries(inode, dir->i_ino);
  225. if (err)
  226. goto err_out;
  227. }
  228. return d_splice_alias(inode, dentry);
  229. err_out:
  230. iget_failed(inode);
  231. return ERR_PTR(err);
  232. }
  233. static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
  234. {
  235. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  236. struct inode *inode = d_inode(dentry);
  237. struct f2fs_dir_entry *de;
  238. struct page *page;
  239. int err = -ENOENT;
  240. trace_f2fs_unlink_enter(dir, dentry);
  241. f2fs_balance_fs(sbi);
  242. de = f2fs_find_entry(dir, &dentry->d_name, &page);
  243. if (!de)
  244. goto fail;
  245. f2fs_lock_op(sbi);
  246. err = acquire_orphan_inode(sbi);
  247. if (err) {
  248. f2fs_unlock_op(sbi);
  249. f2fs_dentry_kunmap(dir, page);
  250. f2fs_put_page(page, 0);
  251. goto fail;
  252. }
  253. f2fs_delete_entry(de, page, dir, inode);
  254. f2fs_unlock_op(sbi);
  255. /* In order to evict this inode, we set it dirty */
  256. mark_inode_dirty(inode);
  257. if (IS_DIRSYNC(dir))
  258. f2fs_sync_fs(sbi->sb, 1);
  259. fail:
  260. trace_f2fs_unlink_exit(inode, err);
  261. return err;
  262. }
  263. static const char *f2fs_follow_link(struct dentry *dentry, void **cookie)
  264. {
  265. const char *link = page_follow_link_light(dentry, cookie);
  266. if (!IS_ERR(link) && !*link) {
  267. /* this is broken symlink case */
  268. page_put_link(NULL, *cookie);
  269. link = ERR_PTR(-ENOENT);
  270. }
  271. return link;
  272. }
  273. static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
  274. const char *symname)
  275. {
  276. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  277. struct inode *inode;
  278. size_t len = strlen(symname);
  279. size_t p_len;
  280. char *p_str;
  281. struct f2fs_str disk_link = FSTR_INIT(NULL, 0);
  282. struct f2fs_encrypted_symlink_data *sd = NULL;
  283. int err;
  284. if (len > dir->i_sb->s_blocksize)
  285. return -ENAMETOOLONG;
  286. f2fs_balance_fs(sbi);
  287. inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
  288. if (IS_ERR(inode))
  289. return PTR_ERR(inode);
  290. if (f2fs_encrypted_inode(inode))
  291. inode->i_op = &f2fs_encrypted_symlink_inode_operations;
  292. else
  293. inode->i_op = &f2fs_symlink_inode_operations;
  294. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  295. f2fs_lock_op(sbi);
  296. err = f2fs_add_link(dentry, inode);
  297. if (err)
  298. goto out;
  299. f2fs_unlock_op(sbi);
  300. alloc_nid_done(sbi, inode->i_ino);
  301. if (f2fs_encrypted_inode(dir)) {
  302. struct qstr istr = QSTR_INIT(symname, len);
  303. err = f2fs_get_encryption_info(inode);
  304. if (err)
  305. goto err_out;
  306. err = f2fs_fname_crypto_alloc_buffer(inode, len, &disk_link);
  307. if (err)
  308. goto err_out;
  309. err = f2fs_fname_usr_to_disk(inode, &istr, &disk_link);
  310. if (err < 0)
  311. goto err_out;
  312. p_len = encrypted_symlink_data_len(disk_link.len) + 1;
  313. if (p_len > dir->i_sb->s_blocksize) {
  314. err = -ENAMETOOLONG;
  315. goto err_out;
  316. }
  317. sd = kzalloc(p_len, GFP_NOFS);
  318. if (!sd) {
  319. err = -ENOMEM;
  320. goto err_out;
  321. }
  322. memcpy(sd->encrypted_path, disk_link.name, disk_link.len);
  323. sd->len = cpu_to_le16(disk_link.len);
  324. p_str = (char *)sd;
  325. } else {
  326. p_len = len + 1;
  327. p_str = (char *)symname;
  328. }
  329. err = page_symlink(inode, p_str, p_len);
  330. err_out:
  331. d_instantiate(dentry, inode);
  332. unlock_new_inode(inode);
  333. /*
  334. * Let's flush symlink data in order to avoid broken symlink as much as
  335. * possible. Nevertheless, fsyncing is the best way, but there is no
  336. * way to get a file descriptor in order to flush that.
  337. *
  338. * Note that, it needs to do dir->fsync to make this recoverable.
  339. * If the symlink path is stored into inline_data, there is no
  340. * performance regression.
  341. */
  342. if (!err)
  343. filemap_write_and_wait_range(inode->i_mapping, 0, p_len - 1);
  344. if (IS_DIRSYNC(dir))
  345. f2fs_sync_fs(sbi->sb, 1);
  346. kfree(sd);
  347. f2fs_fname_crypto_free_buffer(&disk_link);
  348. return err;
  349. out:
  350. handle_failed_inode(inode);
  351. return err;
  352. }
  353. static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  354. {
  355. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  356. struct inode *inode;
  357. int err;
  358. f2fs_balance_fs(sbi);
  359. inode = f2fs_new_inode(dir, S_IFDIR | mode);
  360. if (IS_ERR(inode))
  361. return PTR_ERR(inode);
  362. inode->i_op = &f2fs_dir_inode_operations;
  363. inode->i_fop = &f2fs_dir_operations;
  364. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  365. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
  366. set_inode_flag(F2FS_I(inode), FI_INC_LINK);
  367. f2fs_lock_op(sbi);
  368. err = f2fs_add_link(dentry, inode);
  369. if (err)
  370. goto out_fail;
  371. f2fs_unlock_op(sbi);
  372. alloc_nid_done(sbi, inode->i_ino);
  373. d_instantiate(dentry, inode);
  374. unlock_new_inode(inode);
  375. if (IS_DIRSYNC(dir))
  376. f2fs_sync_fs(sbi->sb, 1);
  377. return 0;
  378. out_fail:
  379. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  380. handle_failed_inode(inode);
  381. return err;
  382. }
  383. static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
  384. {
  385. struct inode *inode = d_inode(dentry);
  386. if (f2fs_empty_dir(inode))
  387. return f2fs_unlink(dir, dentry);
  388. return -ENOTEMPTY;
  389. }
  390. static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
  391. umode_t mode, dev_t rdev)
  392. {
  393. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  394. struct inode *inode;
  395. int err = 0;
  396. if (!new_valid_dev(rdev))
  397. return -EINVAL;
  398. f2fs_balance_fs(sbi);
  399. inode = f2fs_new_inode(dir, mode);
  400. if (IS_ERR(inode))
  401. return PTR_ERR(inode);
  402. init_special_inode(inode, inode->i_mode, rdev);
  403. inode->i_op = &f2fs_special_inode_operations;
  404. f2fs_lock_op(sbi);
  405. err = f2fs_add_link(dentry, inode);
  406. if (err)
  407. goto out;
  408. f2fs_unlock_op(sbi);
  409. alloc_nid_done(sbi, inode->i_ino);
  410. d_instantiate(dentry, inode);
  411. unlock_new_inode(inode);
  412. if (IS_DIRSYNC(dir))
  413. f2fs_sync_fs(sbi->sb, 1);
  414. return 0;
  415. out:
  416. handle_failed_inode(inode);
  417. return err;
  418. }
  419. static int __f2fs_tmpfile(struct inode *dir, struct dentry *dentry,
  420. umode_t mode, struct inode **whiteout)
  421. {
  422. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  423. struct inode *inode;
  424. int err;
  425. if (!whiteout)
  426. f2fs_balance_fs(sbi);
  427. inode = f2fs_new_inode(dir, mode);
  428. if (IS_ERR(inode))
  429. return PTR_ERR(inode);
  430. if (whiteout) {
  431. init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
  432. inode->i_op = &f2fs_special_inode_operations;
  433. } else {
  434. inode->i_op = &f2fs_file_inode_operations;
  435. inode->i_fop = &f2fs_file_operations;
  436. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  437. }
  438. f2fs_lock_op(sbi);
  439. err = acquire_orphan_inode(sbi);
  440. if (err)
  441. goto out;
  442. err = f2fs_do_tmpfile(inode, dir);
  443. if (err)
  444. goto release_out;
  445. /*
  446. * add this non-linked tmpfile to orphan list, in this way we could
  447. * remove all unused data of tmpfile after abnormal power-off.
  448. */
  449. add_orphan_inode(sbi, inode->i_ino);
  450. f2fs_unlock_op(sbi);
  451. alloc_nid_done(sbi, inode->i_ino);
  452. if (whiteout) {
  453. inode_dec_link_count(inode);
  454. *whiteout = inode;
  455. } else {
  456. d_tmpfile(dentry, inode);
  457. }
  458. unlock_new_inode(inode);
  459. return 0;
  460. release_out:
  461. release_orphan_inode(sbi);
  462. out:
  463. handle_failed_inode(inode);
  464. return err;
  465. }
  466. static int f2fs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
  467. {
  468. if (f2fs_encrypted_inode(dir)) {
  469. int err = f2fs_get_encryption_info(dir);
  470. if (err)
  471. return err;
  472. }
  473. return __f2fs_tmpfile(dir, dentry, mode, NULL);
  474. }
  475. static int f2fs_create_whiteout(struct inode *dir, struct inode **whiteout)
  476. {
  477. return __f2fs_tmpfile(dir, NULL, S_IFCHR | WHITEOUT_MODE, whiteout);
  478. }
  479. static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
  480. struct inode *new_dir, struct dentry *new_dentry,
  481. unsigned int flags)
  482. {
  483. struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
  484. struct inode *old_inode = d_inode(old_dentry);
  485. struct inode *new_inode = d_inode(new_dentry);
  486. struct inode *whiteout = NULL;
  487. struct page *old_dir_page;
  488. struct page *old_page, *new_page = NULL;
  489. struct f2fs_dir_entry *old_dir_entry = NULL;
  490. struct f2fs_dir_entry *old_entry;
  491. struct f2fs_dir_entry *new_entry;
  492. int err = -ENOENT;
  493. if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) &&
  494. !f2fs_is_child_context_consistent_with_parent(new_dir,
  495. old_inode)) {
  496. err = -EPERM;
  497. goto out;
  498. }
  499. f2fs_balance_fs(sbi);
  500. old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
  501. if (!old_entry)
  502. goto out;
  503. if (S_ISDIR(old_inode->i_mode)) {
  504. err = -EIO;
  505. old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
  506. if (!old_dir_entry)
  507. goto out_old;
  508. }
  509. if (flags & RENAME_WHITEOUT) {
  510. err = f2fs_create_whiteout(old_dir, &whiteout);
  511. if (err)
  512. goto out_dir;
  513. }
  514. if (new_inode) {
  515. err = -ENOTEMPTY;
  516. if (old_dir_entry && !f2fs_empty_dir(new_inode))
  517. goto out_whiteout;
  518. err = -ENOENT;
  519. new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
  520. &new_page);
  521. if (!new_entry)
  522. goto out_whiteout;
  523. f2fs_lock_op(sbi);
  524. err = acquire_orphan_inode(sbi);
  525. if (err)
  526. goto put_out_dir;
  527. if (update_dent_inode(old_inode, new_inode,
  528. &new_dentry->d_name)) {
  529. release_orphan_inode(sbi);
  530. goto put_out_dir;
  531. }
  532. f2fs_set_link(new_dir, new_entry, new_page, old_inode);
  533. new_inode->i_ctime = CURRENT_TIME;
  534. down_write(&F2FS_I(new_inode)->i_sem);
  535. if (old_dir_entry)
  536. drop_nlink(new_inode);
  537. drop_nlink(new_inode);
  538. up_write(&F2FS_I(new_inode)->i_sem);
  539. mark_inode_dirty(new_inode);
  540. if (!new_inode->i_nlink)
  541. add_orphan_inode(sbi, new_inode->i_ino);
  542. else
  543. release_orphan_inode(sbi);
  544. update_inode_page(old_inode);
  545. update_inode_page(new_inode);
  546. } else {
  547. f2fs_lock_op(sbi);
  548. err = f2fs_add_link(new_dentry, old_inode);
  549. if (err) {
  550. f2fs_unlock_op(sbi);
  551. goto out_whiteout;
  552. }
  553. if (old_dir_entry) {
  554. inc_nlink(new_dir);
  555. update_inode_page(new_dir);
  556. }
  557. }
  558. down_write(&F2FS_I(old_inode)->i_sem);
  559. file_lost_pino(old_inode);
  560. if (new_inode && file_enc_name(new_inode))
  561. file_set_enc_name(old_inode);
  562. up_write(&F2FS_I(old_inode)->i_sem);
  563. old_inode->i_ctime = CURRENT_TIME;
  564. mark_inode_dirty(old_inode);
  565. f2fs_delete_entry(old_entry, old_page, old_dir, NULL);
  566. if (whiteout) {
  567. whiteout->i_state |= I_LINKABLE;
  568. set_inode_flag(F2FS_I(whiteout), FI_INC_LINK);
  569. err = f2fs_add_link(old_dentry, whiteout);
  570. if (err)
  571. goto put_out_dir;
  572. whiteout->i_state &= ~I_LINKABLE;
  573. iput(whiteout);
  574. }
  575. if (old_dir_entry) {
  576. if (old_dir != new_dir && !whiteout) {
  577. f2fs_set_link(old_inode, old_dir_entry,
  578. old_dir_page, new_dir);
  579. update_inode_page(old_inode);
  580. } else {
  581. f2fs_dentry_kunmap(old_inode, old_dir_page);
  582. f2fs_put_page(old_dir_page, 0);
  583. }
  584. drop_nlink(old_dir);
  585. mark_inode_dirty(old_dir);
  586. update_inode_page(old_dir);
  587. }
  588. f2fs_unlock_op(sbi);
  589. if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
  590. f2fs_sync_fs(sbi->sb, 1);
  591. return 0;
  592. put_out_dir:
  593. f2fs_unlock_op(sbi);
  594. if (new_page) {
  595. f2fs_dentry_kunmap(new_dir, new_page);
  596. f2fs_put_page(new_page, 0);
  597. }
  598. out_whiteout:
  599. if (whiteout)
  600. iput(whiteout);
  601. out_dir:
  602. if (old_dir_entry) {
  603. f2fs_dentry_kunmap(old_inode, old_dir_page);
  604. f2fs_put_page(old_dir_page, 0);
  605. }
  606. out_old:
  607. f2fs_dentry_kunmap(old_dir, old_page);
  608. f2fs_put_page(old_page, 0);
  609. out:
  610. return err;
  611. }
  612. static int f2fs_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
  613. struct inode *new_dir, struct dentry *new_dentry)
  614. {
  615. struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
  616. struct inode *old_inode = d_inode(old_dentry);
  617. struct inode *new_inode = d_inode(new_dentry);
  618. struct page *old_dir_page, *new_dir_page;
  619. struct page *old_page, *new_page;
  620. struct f2fs_dir_entry *old_dir_entry = NULL, *new_dir_entry = NULL;
  621. struct f2fs_dir_entry *old_entry, *new_entry;
  622. int old_nlink = 0, new_nlink = 0;
  623. int err = -ENOENT;
  624. if ((f2fs_encrypted_inode(old_dir) || f2fs_encrypted_inode(new_dir)) &&
  625. (old_dir != new_dir) &&
  626. (!f2fs_is_child_context_consistent_with_parent(new_dir,
  627. old_inode) ||
  628. !f2fs_is_child_context_consistent_with_parent(old_dir,
  629. new_inode)))
  630. return -EPERM;
  631. f2fs_balance_fs(sbi);
  632. old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
  633. if (!old_entry)
  634. goto out;
  635. new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page);
  636. if (!new_entry)
  637. goto out_old;
  638. /* prepare for updating ".." directory entry info later */
  639. if (old_dir != new_dir) {
  640. if (S_ISDIR(old_inode->i_mode)) {
  641. err = -EIO;
  642. old_dir_entry = f2fs_parent_dir(old_inode,
  643. &old_dir_page);
  644. if (!old_dir_entry)
  645. goto out_new;
  646. }
  647. if (S_ISDIR(new_inode->i_mode)) {
  648. err = -EIO;
  649. new_dir_entry = f2fs_parent_dir(new_inode,
  650. &new_dir_page);
  651. if (!new_dir_entry)
  652. goto out_old_dir;
  653. }
  654. }
  655. /*
  656. * If cross rename between file and directory those are not
  657. * in the same directory, we will inc nlink of file's parent
  658. * later, so we should check upper boundary of its nlink.
  659. */
  660. if ((!old_dir_entry || !new_dir_entry) &&
  661. old_dir_entry != new_dir_entry) {
  662. old_nlink = old_dir_entry ? -1 : 1;
  663. new_nlink = -old_nlink;
  664. err = -EMLINK;
  665. if ((old_nlink > 0 && old_inode->i_nlink >= F2FS_LINK_MAX) ||
  666. (new_nlink > 0 && new_inode->i_nlink >= F2FS_LINK_MAX))
  667. goto out_new_dir;
  668. }
  669. f2fs_lock_op(sbi);
  670. err = update_dent_inode(old_inode, new_inode, &new_dentry->d_name);
  671. if (err)
  672. goto out_unlock;
  673. if (file_enc_name(new_inode))
  674. file_set_enc_name(old_inode);
  675. err = update_dent_inode(new_inode, old_inode, &old_dentry->d_name);
  676. if (err)
  677. goto out_undo;
  678. if (file_enc_name(old_inode))
  679. file_set_enc_name(new_inode);
  680. /* update ".." directory entry info of old dentry */
  681. if (old_dir_entry)
  682. f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir);
  683. /* update ".." directory entry info of new dentry */
  684. if (new_dir_entry)
  685. f2fs_set_link(new_inode, new_dir_entry, new_dir_page, old_dir);
  686. /* update directory entry info of old dir inode */
  687. f2fs_set_link(old_dir, old_entry, old_page, new_inode);
  688. down_write(&F2FS_I(old_inode)->i_sem);
  689. file_lost_pino(old_inode);
  690. up_write(&F2FS_I(old_inode)->i_sem);
  691. update_inode_page(old_inode);
  692. old_dir->i_ctime = CURRENT_TIME;
  693. if (old_nlink) {
  694. down_write(&F2FS_I(old_dir)->i_sem);
  695. if (old_nlink < 0)
  696. drop_nlink(old_dir);
  697. else
  698. inc_nlink(old_dir);
  699. up_write(&F2FS_I(old_dir)->i_sem);
  700. }
  701. mark_inode_dirty(old_dir);
  702. update_inode_page(old_dir);
  703. /* update directory entry info of new dir inode */
  704. f2fs_set_link(new_dir, new_entry, new_page, old_inode);
  705. down_write(&F2FS_I(new_inode)->i_sem);
  706. file_lost_pino(new_inode);
  707. up_write(&F2FS_I(new_inode)->i_sem);
  708. update_inode_page(new_inode);
  709. new_dir->i_ctime = CURRENT_TIME;
  710. if (new_nlink) {
  711. down_write(&F2FS_I(new_dir)->i_sem);
  712. if (new_nlink < 0)
  713. drop_nlink(new_dir);
  714. else
  715. inc_nlink(new_dir);
  716. up_write(&F2FS_I(new_dir)->i_sem);
  717. }
  718. mark_inode_dirty(new_dir);
  719. update_inode_page(new_dir);
  720. f2fs_unlock_op(sbi);
  721. if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
  722. f2fs_sync_fs(sbi->sb, 1);
  723. return 0;
  724. out_undo:
  725. /*
  726. * Still we may fail to recover name info of f2fs_inode here
  727. * Drop it, once its name is set as encrypted
  728. */
  729. update_dent_inode(old_inode, old_inode, &old_dentry->d_name);
  730. out_unlock:
  731. f2fs_unlock_op(sbi);
  732. out_new_dir:
  733. if (new_dir_entry) {
  734. f2fs_dentry_kunmap(new_inode, new_dir_page);
  735. f2fs_put_page(new_dir_page, 0);
  736. }
  737. out_old_dir:
  738. if (old_dir_entry) {
  739. f2fs_dentry_kunmap(old_inode, old_dir_page);
  740. f2fs_put_page(old_dir_page, 0);
  741. }
  742. out_new:
  743. f2fs_dentry_kunmap(new_dir, new_page);
  744. f2fs_put_page(new_page, 0);
  745. out_old:
  746. f2fs_dentry_kunmap(old_dir, old_page);
  747. f2fs_put_page(old_page, 0);
  748. out:
  749. return err;
  750. }
  751. static int f2fs_rename2(struct inode *old_dir, struct dentry *old_dentry,
  752. struct inode *new_dir, struct dentry *new_dentry,
  753. unsigned int flags)
  754. {
  755. if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
  756. return -EINVAL;
  757. if (flags & RENAME_EXCHANGE) {
  758. return f2fs_cross_rename(old_dir, old_dentry,
  759. new_dir, new_dentry);
  760. }
  761. /*
  762. * VFS has already handled the new dentry existence case,
  763. * here, we just deal with "RENAME_NOREPLACE" as regular rename.
  764. */
  765. return f2fs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
  766. }
  767. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  768. static const char *f2fs_encrypted_follow_link(struct dentry *dentry, void **cookie)
  769. {
  770. struct page *cpage = NULL;
  771. char *caddr, *paddr = NULL;
  772. struct f2fs_str cstr;
  773. struct f2fs_str pstr = FSTR_INIT(NULL, 0);
  774. struct inode *inode = d_inode(dentry);
  775. struct f2fs_encrypted_symlink_data *sd;
  776. loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1);
  777. u32 max_size = inode->i_sb->s_blocksize;
  778. int res;
  779. res = f2fs_get_encryption_info(inode);
  780. if (res)
  781. return ERR_PTR(res);
  782. cpage = read_mapping_page(inode->i_mapping, 0, NULL);
  783. if (IS_ERR(cpage))
  784. return ERR_CAST(cpage);
  785. caddr = kmap(cpage);
  786. caddr[size] = 0;
  787. /* Symlink is encrypted */
  788. sd = (struct f2fs_encrypted_symlink_data *)caddr;
  789. cstr.name = sd->encrypted_path;
  790. cstr.len = le16_to_cpu(sd->len);
  791. /* this is broken symlink case */
  792. if (cstr.name[0] == 0 && cstr.len == 0) {
  793. res = -ENOENT;
  794. goto errout;
  795. }
  796. if ((cstr.len + sizeof(struct f2fs_encrypted_symlink_data) - 1) >
  797. max_size) {
  798. /* Symlink data on the disk is corrupted */
  799. res = -EIO;
  800. goto errout;
  801. }
  802. res = f2fs_fname_crypto_alloc_buffer(inode, cstr.len, &pstr);
  803. if (res)
  804. goto errout;
  805. res = f2fs_fname_disk_to_usr(inode, NULL, &cstr, &pstr);
  806. if (res < 0)
  807. goto errout;
  808. paddr = pstr.name;
  809. /* Null-terminate the name */
  810. paddr[res] = '\0';
  811. kunmap(cpage);
  812. page_cache_release(cpage);
  813. return *cookie = paddr;
  814. errout:
  815. f2fs_fname_crypto_free_buffer(&pstr);
  816. kunmap(cpage);
  817. page_cache_release(cpage);
  818. return ERR_PTR(res);
  819. }
  820. const struct inode_operations f2fs_encrypted_symlink_inode_operations = {
  821. .readlink = generic_readlink,
  822. .follow_link = f2fs_encrypted_follow_link,
  823. .put_link = kfree_put_link,
  824. .getattr = f2fs_getattr,
  825. .setattr = f2fs_setattr,
  826. .setxattr = generic_setxattr,
  827. .getxattr = generic_getxattr,
  828. .listxattr = f2fs_listxattr,
  829. .removexattr = generic_removexattr,
  830. };
  831. #endif
  832. const struct inode_operations f2fs_dir_inode_operations = {
  833. .create = f2fs_create,
  834. .lookup = f2fs_lookup,
  835. .link = f2fs_link,
  836. .unlink = f2fs_unlink,
  837. .symlink = f2fs_symlink,
  838. .mkdir = f2fs_mkdir,
  839. .rmdir = f2fs_rmdir,
  840. .mknod = f2fs_mknod,
  841. .rename2 = f2fs_rename2,
  842. .tmpfile = f2fs_tmpfile,
  843. .getattr = f2fs_getattr,
  844. .setattr = f2fs_setattr,
  845. .get_acl = f2fs_get_acl,
  846. .set_acl = f2fs_set_acl,
  847. #ifdef CONFIG_F2FS_FS_XATTR
  848. .setxattr = generic_setxattr,
  849. .getxattr = generic_getxattr,
  850. .listxattr = f2fs_listxattr,
  851. .removexattr = generic_removexattr,
  852. #endif
  853. };
  854. const struct inode_operations f2fs_symlink_inode_operations = {
  855. .readlink = generic_readlink,
  856. .follow_link = f2fs_follow_link,
  857. .put_link = page_put_link,
  858. .getattr = f2fs_getattr,
  859. .setattr = f2fs_setattr,
  860. #ifdef CONFIG_F2FS_FS_XATTR
  861. .setxattr = generic_setxattr,
  862. .getxattr = generic_getxattr,
  863. .listxattr = f2fs_listxattr,
  864. .removexattr = generic_removexattr,
  865. #endif
  866. };
  867. const struct inode_operations f2fs_special_inode_operations = {
  868. .getattr = f2fs_getattr,
  869. .setattr = f2fs_setattr,
  870. .get_acl = f2fs_get_acl,
  871. .set_acl = f2fs_set_acl,
  872. #ifdef CONFIG_F2FS_FS_XATTR
  873. .setxattr = generic_setxattr,
  874. .getxattr = generic_getxattr,
  875. .listxattr = f2fs_listxattr,
  876. .removexattr = generic_removexattr,
  877. #endif
  878. };