mmu.c 123 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. #undef MMU_DEBUG
  58. #ifdef MMU_DEBUG
  59. static bool dbg = 0;
  60. module_param(dbg, bool, 0644);
  61. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  62. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  63. #define MMU_WARN_ON(x) WARN_ON(x)
  64. #else
  65. #define pgprintk(x...) do { } while (0)
  66. #define rmap_printk(x...) do { } while (0)
  67. #define MMU_WARN_ON(x) do { } while (0)
  68. #endif
  69. #define PTE_PREFETCH_NUM 8
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define PT64_LEVEL_BITS 9
  73. #define PT64_LEVEL_SHIFT(level) \
  74. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  75. #define PT64_INDEX(address, level)\
  76. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  77. #define PT32_LEVEL_BITS 10
  78. #define PT32_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  80. #define PT32_LVL_OFFSET_MASK(level) \
  81. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  82. * PT32_LEVEL_BITS))) - 1))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT64_LVL_ADDR_MASK(level) \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT64_LEVEL_BITS))) - 1))
  91. #define PT64_LVL_OFFSET_MASK(level) \
  92. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  93. * PT64_LEVEL_BITS))) - 1))
  94. #define PT32_BASE_ADDR_MASK PAGE_MASK
  95. #define PT32_DIR_BASE_ADDR_MASK \
  96. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  97. #define PT32_LVL_ADDR_MASK(level) \
  98. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT32_LEVEL_BITS))) - 1))
  100. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  101. | shadow_x_mask | shadow_nx_mask)
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #include <trace/events/kvm.h>
  107. #define CREATE_TRACE_POINTS
  108. #include "mmutrace.h"
  109. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  110. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  111. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  112. /* make pte_list_desc fit well in cache line */
  113. #define PTE_LIST_EXT 3
  114. struct pte_list_desc {
  115. u64 *sptes[PTE_LIST_EXT];
  116. struct pte_list_desc *more;
  117. };
  118. struct kvm_shadow_walk_iterator {
  119. u64 addr;
  120. hpa_t shadow_addr;
  121. u64 *sptep;
  122. int level;
  123. unsigned index;
  124. };
  125. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  126. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  127. shadow_walk_okay(&(_walker)); \
  128. shadow_walk_next(&(_walker)))
  129. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  130. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  131. shadow_walk_okay(&(_walker)) && \
  132. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  133. __shadow_walk_next(&(_walker), spte))
  134. static struct kmem_cache *pte_list_desc_cache;
  135. static struct kmem_cache *mmu_page_header_cache;
  136. static struct percpu_counter kvm_total_used_mmu_pages;
  137. static u64 __read_mostly shadow_nx_mask;
  138. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  139. static u64 __read_mostly shadow_user_mask;
  140. static u64 __read_mostly shadow_accessed_mask;
  141. static u64 __read_mostly shadow_dirty_mask;
  142. static u64 __read_mostly shadow_mmio_mask;
  143. static void mmu_spte_set(u64 *sptep, u64 spte);
  144. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  145. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  146. {
  147. shadow_mmio_mask = mmio_mask;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  150. /*
  151. * the low bit of the generation number is always presumed to be zero.
  152. * This disables mmio caching during memslot updates. The concept is
  153. * similar to a seqcount but instead of retrying the access we just punt
  154. * and ignore the cache.
  155. *
  156. * spte bits 3-11 are used as bits 1-9 of the generation number,
  157. * the bits 52-61 are used as bits 10-19 of the generation number.
  158. */
  159. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  160. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  161. #define MMIO_GEN_SHIFT 20
  162. #define MMIO_GEN_LOW_SHIFT 10
  163. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  164. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  165. static u64 generation_mmio_spte_mask(unsigned int gen)
  166. {
  167. u64 mask;
  168. WARN_ON(gen & ~MMIO_GEN_MASK);
  169. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  170. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  171. return mask;
  172. }
  173. static unsigned int get_mmio_spte_generation(u64 spte)
  174. {
  175. unsigned int gen;
  176. spte &= ~shadow_mmio_mask;
  177. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  178. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  179. return gen;
  180. }
  181. static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
  182. {
  183. return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
  184. }
  185. static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
  186. unsigned access)
  187. {
  188. unsigned int gen = kvm_current_mmio_generation(vcpu);
  189. u64 mask = generation_mmio_spte_mask(gen);
  190. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  191. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  192. trace_mark_mmio_spte(sptep, gfn, access, gen);
  193. mmu_spte_set(sptep, mask);
  194. }
  195. static bool is_mmio_spte(u64 spte)
  196. {
  197. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  198. }
  199. static gfn_t get_mmio_spte_gfn(u64 spte)
  200. {
  201. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  202. return (spte & ~mask) >> PAGE_SHIFT;
  203. }
  204. static unsigned get_mmio_spte_access(u64 spte)
  205. {
  206. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  207. return (spte & ~mask) & ~PAGE_MASK;
  208. }
  209. static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  210. pfn_t pfn, unsigned access)
  211. {
  212. if (unlikely(is_noslot_pfn(pfn))) {
  213. mark_mmio_spte(vcpu, sptep, gfn, access);
  214. return true;
  215. }
  216. return false;
  217. }
  218. static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
  219. {
  220. unsigned int kvm_gen, spte_gen;
  221. kvm_gen = kvm_current_mmio_generation(vcpu);
  222. spte_gen = get_mmio_spte_generation(spte);
  223. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  224. return likely(kvm_gen == spte_gen);
  225. }
  226. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  227. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  228. {
  229. shadow_user_mask = user_mask;
  230. shadow_accessed_mask = accessed_mask;
  231. shadow_dirty_mask = dirty_mask;
  232. shadow_nx_mask = nx_mask;
  233. shadow_x_mask = x_mask;
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  236. static int is_cpuid_PSE36(void)
  237. {
  238. return 1;
  239. }
  240. static int is_nx(struct kvm_vcpu *vcpu)
  241. {
  242. return vcpu->arch.efer & EFER_NX;
  243. }
  244. static int is_shadow_present_pte(u64 pte)
  245. {
  246. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  247. }
  248. static int is_large_pte(u64 pte)
  249. {
  250. return pte & PT_PAGE_SIZE_MASK;
  251. }
  252. static int is_rmap_spte(u64 pte)
  253. {
  254. return is_shadow_present_pte(pte);
  255. }
  256. static int is_last_spte(u64 pte, int level)
  257. {
  258. if (level == PT_PAGE_TABLE_LEVEL)
  259. return 1;
  260. if (is_large_pte(pte))
  261. return 1;
  262. return 0;
  263. }
  264. static pfn_t spte_to_pfn(u64 pte)
  265. {
  266. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  267. }
  268. static gfn_t pse36_gfn_delta(u32 gpte)
  269. {
  270. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  271. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  272. }
  273. #ifdef CONFIG_X86_64
  274. static void __set_spte(u64 *sptep, u64 spte)
  275. {
  276. *sptep = spte;
  277. }
  278. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  279. {
  280. *sptep = spte;
  281. }
  282. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  283. {
  284. return xchg(sptep, spte);
  285. }
  286. static u64 __get_spte_lockless(u64 *sptep)
  287. {
  288. return ACCESS_ONCE(*sptep);
  289. }
  290. #else
  291. union split_spte {
  292. struct {
  293. u32 spte_low;
  294. u32 spte_high;
  295. };
  296. u64 spte;
  297. };
  298. static void count_spte_clear(u64 *sptep, u64 spte)
  299. {
  300. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  301. if (is_shadow_present_pte(spte))
  302. return;
  303. /* Ensure the spte is completely set before we increase the count */
  304. smp_wmb();
  305. sp->clear_spte_count++;
  306. }
  307. static void __set_spte(u64 *sptep, u64 spte)
  308. {
  309. union split_spte *ssptep, sspte;
  310. ssptep = (union split_spte *)sptep;
  311. sspte = (union split_spte)spte;
  312. ssptep->spte_high = sspte.spte_high;
  313. /*
  314. * If we map the spte from nonpresent to present, We should store
  315. * the high bits firstly, then set present bit, so cpu can not
  316. * fetch this spte while we are setting the spte.
  317. */
  318. smp_wmb();
  319. ssptep->spte_low = sspte.spte_low;
  320. }
  321. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  322. {
  323. union split_spte *ssptep, sspte;
  324. ssptep = (union split_spte *)sptep;
  325. sspte = (union split_spte)spte;
  326. ssptep->spte_low = sspte.spte_low;
  327. /*
  328. * If we map the spte from present to nonpresent, we should clear
  329. * present bit firstly to avoid vcpu fetch the old high bits.
  330. */
  331. smp_wmb();
  332. ssptep->spte_high = sspte.spte_high;
  333. count_spte_clear(sptep, spte);
  334. }
  335. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  336. {
  337. union split_spte *ssptep, sspte, orig;
  338. ssptep = (union split_spte *)sptep;
  339. sspte = (union split_spte)spte;
  340. /* xchg acts as a barrier before the setting of the high bits */
  341. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  342. orig.spte_high = ssptep->spte_high;
  343. ssptep->spte_high = sspte.spte_high;
  344. count_spte_clear(sptep, spte);
  345. return orig.spte;
  346. }
  347. /*
  348. * The idea using the light way get the spte on x86_32 guest is from
  349. * gup_get_pte(arch/x86/mm/gup.c).
  350. *
  351. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  352. * coalesces them and we are running out of the MMU lock. Therefore
  353. * we need to protect against in-progress updates of the spte.
  354. *
  355. * Reading the spte while an update is in progress may get the old value
  356. * for the high part of the spte. The race is fine for a present->non-present
  357. * change (because the high part of the spte is ignored for non-present spte),
  358. * but for a present->present change we must reread the spte.
  359. *
  360. * All such changes are done in two steps (present->non-present and
  361. * non-present->present), hence it is enough to count the number of
  362. * present->non-present updates: if it changed while reading the spte,
  363. * we might have hit the race. This is done using clear_spte_count.
  364. */
  365. static u64 __get_spte_lockless(u64 *sptep)
  366. {
  367. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  368. union split_spte spte, *orig = (union split_spte *)sptep;
  369. int count;
  370. retry:
  371. count = sp->clear_spte_count;
  372. smp_rmb();
  373. spte.spte_low = orig->spte_low;
  374. smp_rmb();
  375. spte.spte_high = orig->spte_high;
  376. smp_rmb();
  377. if (unlikely(spte.spte_low != orig->spte_low ||
  378. count != sp->clear_spte_count))
  379. goto retry;
  380. return spte.spte;
  381. }
  382. #endif
  383. static bool spte_is_locklessly_modifiable(u64 spte)
  384. {
  385. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  386. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  387. }
  388. static bool spte_has_volatile_bits(u64 spte)
  389. {
  390. /*
  391. * Always atomicly update spte if it can be updated
  392. * out of mmu-lock, it can ensure dirty bit is not lost,
  393. * also, it can help us to get a stable is_writable_pte()
  394. * to ensure tlb flush is not missed.
  395. */
  396. if (spte_is_locklessly_modifiable(spte))
  397. return true;
  398. if (!shadow_accessed_mask)
  399. return false;
  400. if (!is_shadow_present_pte(spte))
  401. return false;
  402. if ((spte & shadow_accessed_mask) &&
  403. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  404. return false;
  405. return true;
  406. }
  407. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  408. {
  409. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  410. }
  411. static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
  412. {
  413. return (old_spte & bit_mask) != (new_spte & bit_mask);
  414. }
  415. /* Rules for using mmu_spte_set:
  416. * Set the sptep from nonpresent to present.
  417. * Note: the sptep being assigned *must* be either not present
  418. * or in a state where the hardware will not attempt to update
  419. * the spte.
  420. */
  421. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  422. {
  423. WARN_ON(is_shadow_present_pte(*sptep));
  424. __set_spte(sptep, new_spte);
  425. }
  426. /* Rules for using mmu_spte_update:
  427. * Update the state bits, it means the mapped pfn is not changged.
  428. *
  429. * Whenever we overwrite a writable spte with a read-only one we
  430. * should flush remote TLBs. Otherwise rmap_write_protect
  431. * will find a read-only spte, even though the writable spte
  432. * might be cached on a CPU's TLB, the return value indicates this
  433. * case.
  434. */
  435. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  436. {
  437. u64 old_spte = *sptep;
  438. bool ret = false;
  439. WARN_ON(!is_rmap_spte(new_spte));
  440. if (!is_shadow_present_pte(old_spte)) {
  441. mmu_spte_set(sptep, new_spte);
  442. return ret;
  443. }
  444. if (!spte_has_volatile_bits(old_spte))
  445. __update_clear_spte_fast(sptep, new_spte);
  446. else
  447. old_spte = __update_clear_spte_slow(sptep, new_spte);
  448. /*
  449. * For the spte updated out of mmu-lock is safe, since
  450. * we always atomicly update it, see the comments in
  451. * spte_has_volatile_bits().
  452. */
  453. if (spte_is_locklessly_modifiable(old_spte) &&
  454. !is_writable_pte(new_spte))
  455. ret = true;
  456. if (!shadow_accessed_mask)
  457. return ret;
  458. /*
  459. * Flush TLB when accessed/dirty bits are changed in the page tables,
  460. * to guarantee consistency between TLB and page tables.
  461. */
  462. if (spte_is_bit_changed(old_spte, new_spte,
  463. shadow_accessed_mask | shadow_dirty_mask))
  464. ret = true;
  465. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  466. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  467. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  468. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  469. return ret;
  470. }
  471. /*
  472. * Rules for using mmu_spte_clear_track_bits:
  473. * It sets the sptep from present to nonpresent, and track the
  474. * state bits, it is used to clear the last level sptep.
  475. */
  476. static int mmu_spte_clear_track_bits(u64 *sptep)
  477. {
  478. pfn_t pfn;
  479. u64 old_spte = *sptep;
  480. if (!spte_has_volatile_bits(old_spte))
  481. __update_clear_spte_fast(sptep, 0ull);
  482. else
  483. old_spte = __update_clear_spte_slow(sptep, 0ull);
  484. if (!is_rmap_spte(old_spte))
  485. return 0;
  486. pfn = spte_to_pfn(old_spte);
  487. /*
  488. * KVM does not hold the refcount of the page used by
  489. * kvm mmu, before reclaiming the page, we should
  490. * unmap it from mmu first.
  491. */
  492. WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  493. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  494. kvm_set_pfn_accessed(pfn);
  495. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  496. kvm_set_pfn_dirty(pfn);
  497. return 1;
  498. }
  499. /*
  500. * Rules for using mmu_spte_clear_no_track:
  501. * Directly clear spte without caring the state bits of sptep,
  502. * it is used to set the upper level spte.
  503. */
  504. static void mmu_spte_clear_no_track(u64 *sptep)
  505. {
  506. __update_clear_spte_fast(sptep, 0ull);
  507. }
  508. static u64 mmu_spte_get_lockless(u64 *sptep)
  509. {
  510. return __get_spte_lockless(sptep);
  511. }
  512. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  513. {
  514. /*
  515. * Prevent page table teardown by making any free-er wait during
  516. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  517. */
  518. local_irq_disable();
  519. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  520. /*
  521. * Make sure a following spte read is not reordered ahead of the write
  522. * to vcpu->mode.
  523. */
  524. smp_mb();
  525. }
  526. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  527. {
  528. /*
  529. * Make sure the write to vcpu->mode is not reordered in front of
  530. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  531. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  532. */
  533. smp_mb();
  534. vcpu->mode = OUTSIDE_GUEST_MODE;
  535. local_irq_enable();
  536. }
  537. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  538. struct kmem_cache *base_cache, int min)
  539. {
  540. void *obj;
  541. if (cache->nobjs >= min)
  542. return 0;
  543. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  544. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  545. if (!obj)
  546. return -ENOMEM;
  547. cache->objects[cache->nobjs++] = obj;
  548. }
  549. return 0;
  550. }
  551. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  552. {
  553. return cache->nobjs;
  554. }
  555. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  556. struct kmem_cache *cache)
  557. {
  558. while (mc->nobjs)
  559. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  560. }
  561. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  562. int min)
  563. {
  564. void *page;
  565. if (cache->nobjs >= min)
  566. return 0;
  567. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  568. page = (void *)__get_free_page(GFP_KERNEL);
  569. if (!page)
  570. return -ENOMEM;
  571. cache->objects[cache->nobjs++] = page;
  572. }
  573. return 0;
  574. }
  575. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  576. {
  577. while (mc->nobjs)
  578. free_page((unsigned long)mc->objects[--mc->nobjs]);
  579. }
  580. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  581. {
  582. int r;
  583. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  584. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  585. if (r)
  586. goto out;
  587. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  588. if (r)
  589. goto out;
  590. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  591. mmu_page_header_cache, 4);
  592. out:
  593. return r;
  594. }
  595. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  596. {
  597. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  598. pte_list_desc_cache);
  599. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  600. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  601. mmu_page_header_cache);
  602. }
  603. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  604. {
  605. void *p;
  606. BUG_ON(!mc->nobjs);
  607. p = mc->objects[--mc->nobjs];
  608. return p;
  609. }
  610. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  611. {
  612. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  613. }
  614. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  615. {
  616. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  617. }
  618. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  619. {
  620. if (!sp->role.direct)
  621. return sp->gfns[index];
  622. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  623. }
  624. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  625. {
  626. if (sp->role.direct)
  627. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  628. else
  629. sp->gfns[index] = gfn;
  630. }
  631. /*
  632. * Return the pointer to the large page information for a given gfn,
  633. * handling slots that are not large page aligned.
  634. */
  635. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  636. struct kvm_memory_slot *slot,
  637. int level)
  638. {
  639. unsigned long idx;
  640. idx = gfn_to_index(gfn, slot->base_gfn, level);
  641. return &slot->arch.lpage_info[level - 2][idx];
  642. }
  643. static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  644. {
  645. struct kvm_memslots *slots;
  646. struct kvm_memory_slot *slot;
  647. struct kvm_lpage_info *linfo;
  648. gfn_t gfn;
  649. int i;
  650. gfn = sp->gfn;
  651. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  652. slot = __gfn_to_memslot(slots, gfn);
  653. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  654. linfo = lpage_info_slot(gfn, slot, i);
  655. linfo->write_count += 1;
  656. }
  657. kvm->arch.indirect_shadow_pages++;
  658. }
  659. static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  660. {
  661. struct kvm_memslots *slots;
  662. struct kvm_memory_slot *slot;
  663. struct kvm_lpage_info *linfo;
  664. gfn_t gfn;
  665. int i;
  666. gfn = sp->gfn;
  667. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  668. slot = __gfn_to_memslot(slots, gfn);
  669. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  670. linfo = lpage_info_slot(gfn, slot, i);
  671. linfo->write_count -= 1;
  672. WARN_ON(linfo->write_count < 0);
  673. }
  674. kvm->arch.indirect_shadow_pages--;
  675. }
  676. static int has_wrprotected_page(struct kvm_vcpu *vcpu,
  677. gfn_t gfn,
  678. int level)
  679. {
  680. struct kvm_memory_slot *slot;
  681. struct kvm_lpage_info *linfo;
  682. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  683. if (slot) {
  684. linfo = lpage_info_slot(gfn, slot, level);
  685. return linfo->write_count;
  686. }
  687. return 1;
  688. }
  689. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  690. {
  691. unsigned long page_size;
  692. int i, ret = 0;
  693. page_size = kvm_host_page_size(kvm, gfn);
  694. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  695. if (page_size >= KVM_HPAGE_SIZE(i))
  696. ret = i;
  697. else
  698. break;
  699. }
  700. return ret;
  701. }
  702. static struct kvm_memory_slot *
  703. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  704. bool no_dirty_log)
  705. {
  706. struct kvm_memory_slot *slot;
  707. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  708. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  709. (no_dirty_log && slot->dirty_bitmap))
  710. slot = NULL;
  711. return slot;
  712. }
  713. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  714. {
  715. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  716. }
  717. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  718. {
  719. int host_level, level, max_level;
  720. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  721. if (host_level == PT_PAGE_TABLE_LEVEL)
  722. return host_level;
  723. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  724. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  725. if (has_wrprotected_page(vcpu, large_gfn, level))
  726. break;
  727. return level - 1;
  728. }
  729. /*
  730. * Pte mapping structures:
  731. *
  732. * If pte_list bit zero is zero, then pte_list point to the spte.
  733. *
  734. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  735. * pte_list_desc containing more mappings.
  736. *
  737. * Returns the number of pte entries before the spte was added or zero if
  738. * the spte was not added.
  739. *
  740. */
  741. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  742. unsigned long *pte_list)
  743. {
  744. struct pte_list_desc *desc;
  745. int i, count = 0;
  746. if (!*pte_list) {
  747. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  748. *pte_list = (unsigned long)spte;
  749. } else if (!(*pte_list & 1)) {
  750. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  751. desc = mmu_alloc_pte_list_desc(vcpu);
  752. desc->sptes[0] = (u64 *)*pte_list;
  753. desc->sptes[1] = spte;
  754. *pte_list = (unsigned long)desc | 1;
  755. ++count;
  756. } else {
  757. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  758. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  759. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  760. desc = desc->more;
  761. count += PTE_LIST_EXT;
  762. }
  763. if (desc->sptes[PTE_LIST_EXT-1]) {
  764. desc->more = mmu_alloc_pte_list_desc(vcpu);
  765. desc = desc->more;
  766. }
  767. for (i = 0; desc->sptes[i]; ++i)
  768. ++count;
  769. desc->sptes[i] = spte;
  770. }
  771. return count;
  772. }
  773. static void
  774. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  775. int i, struct pte_list_desc *prev_desc)
  776. {
  777. int j;
  778. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  779. ;
  780. desc->sptes[i] = desc->sptes[j];
  781. desc->sptes[j] = NULL;
  782. if (j != 0)
  783. return;
  784. if (!prev_desc && !desc->more)
  785. *pte_list = (unsigned long)desc->sptes[0];
  786. else
  787. if (prev_desc)
  788. prev_desc->more = desc->more;
  789. else
  790. *pte_list = (unsigned long)desc->more | 1;
  791. mmu_free_pte_list_desc(desc);
  792. }
  793. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  794. {
  795. struct pte_list_desc *desc;
  796. struct pte_list_desc *prev_desc;
  797. int i;
  798. if (!*pte_list) {
  799. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  800. BUG();
  801. } else if (!(*pte_list & 1)) {
  802. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  803. if ((u64 *)*pte_list != spte) {
  804. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  805. BUG();
  806. }
  807. *pte_list = 0;
  808. } else {
  809. rmap_printk("pte_list_remove: %p many->many\n", spte);
  810. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  811. prev_desc = NULL;
  812. while (desc) {
  813. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  814. if (desc->sptes[i] == spte) {
  815. pte_list_desc_remove_entry(pte_list,
  816. desc, i,
  817. prev_desc);
  818. return;
  819. }
  820. prev_desc = desc;
  821. desc = desc->more;
  822. }
  823. pr_err("pte_list_remove: %p many->many\n", spte);
  824. BUG();
  825. }
  826. }
  827. typedef void (*pte_list_walk_fn) (u64 *spte);
  828. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  829. {
  830. struct pte_list_desc *desc;
  831. int i;
  832. if (!*pte_list)
  833. return;
  834. if (!(*pte_list & 1))
  835. return fn((u64 *)*pte_list);
  836. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  837. while (desc) {
  838. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  839. fn(desc->sptes[i]);
  840. desc = desc->more;
  841. }
  842. }
  843. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  844. struct kvm_memory_slot *slot)
  845. {
  846. unsigned long idx;
  847. idx = gfn_to_index(gfn, slot->base_gfn, level);
  848. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  849. }
  850. /*
  851. * Take gfn and return the reverse mapping to it.
  852. */
  853. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
  854. {
  855. struct kvm_memslots *slots;
  856. struct kvm_memory_slot *slot;
  857. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  858. slot = __gfn_to_memslot(slots, gfn);
  859. return __gfn_to_rmap(gfn, sp->role.level, slot);
  860. }
  861. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  862. {
  863. struct kvm_mmu_memory_cache *cache;
  864. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  865. return mmu_memory_cache_free_objects(cache);
  866. }
  867. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  868. {
  869. struct kvm_mmu_page *sp;
  870. unsigned long *rmapp;
  871. sp = page_header(__pa(spte));
  872. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  873. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
  874. return pte_list_add(vcpu, spte, rmapp);
  875. }
  876. static void rmap_remove(struct kvm *kvm, u64 *spte)
  877. {
  878. struct kvm_mmu_page *sp;
  879. gfn_t gfn;
  880. unsigned long *rmapp;
  881. sp = page_header(__pa(spte));
  882. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  883. rmapp = gfn_to_rmap(kvm, gfn, sp);
  884. pte_list_remove(spte, rmapp);
  885. }
  886. /*
  887. * Used by the following functions to iterate through the sptes linked by a
  888. * rmap. All fields are private and not assumed to be used outside.
  889. */
  890. struct rmap_iterator {
  891. /* private fields */
  892. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  893. int pos; /* index of the sptep */
  894. };
  895. /*
  896. * Iteration must be started by this function. This should also be used after
  897. * removing/dropping sptes from the rmap link because in such cases the
  898. * information in the itererator may not be valid.
  899. *
  900. * Returns sptep if found, NULL otherwise.
  901. */
  902. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  903. {
  904. if (!rmap)
  905. return NULL;
  906. if (!(rmap & 1)) {
  907. iter->desc = NULL;
  908. return (u64 *)rmap;
  909. }
  910. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  911. iter->pos = 0;
  912. return iter->desc->sptes[iter->pos];
  913. }
  914. /*
  915. * Must be used with a valid iterator: e.g. after rmap_get_first().
  916. *
  917. * Returns sptep if found, NULL otherwise.
  918. */
  919. static u64 *rmap_get_next(struct rmap_iterator *iter)
  920. {
  921. if (iter->desc) {
  922. if (iter->pos < PTE_LIST_EXT - 1) {
  923. u64 *sptep;
  924. ++iter->pos;
  925. sptep = iter->desc->sptes[iter->pos];
  926. if (sptep)
  927. return sptep;
  928. }
  929. iter->desc = iter->desc->more;
  930. if (iter->desc) {
  931. iter->pos = 0;
  932. /* desc->sptes[0] cannot be NULL */
  933. return iter->desc->sptes[iter->pos];
  934. }
  935. }
  936. return NULL;
  937. }
  938. #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
  939. for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
  940. _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
  941. _spte_ = rmap_get_next(_iter_))
  942. static void drop_spte(struct kvm *kvm, u64 *sptep)
  943. {
  944. if (mmu_spte_clear_track_bits(sptep))
  945. rmap_remove(kvm, sptep);
  946. }
  947. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  948. {
  949. if (is_large_pte(*sptep)) {
  950. WARN_ON(page_header(__pa(sptep))->role.level ==
  951. PT_PAGE_TABLE_LEVEL);
  952. drop_spte(kvm, sptep);
  953. --kvm->stat.lpages;
  954. return true;
  955. }
  956. return false;
  957. }
  958. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  959. {
  960. if (__drop_large_spte(vcpu->kvm, sptep))
  961. kvm_flush_remote_tlbs(vcpu->kvm);
  962. }
  963. /*
  964. * Write-protect on the specified @sptep, @pt_protect indicates whether
  965. * spte write-protection is caused by protecting shadow page table.
  966. *
  967. * Note: write protection is difference between dirty logging and spte
  968. * protection:
  969. * - for dirty logging, the spte can be set to writable at anytime if
  970. * its dirty bitmap is properly set.
  971. * - for spte protection, the spte can be writable only after unsync-ing
  972. * shadow page.
  973. *
  974. * Return true if tlb need be flushed.
  975. */
  976. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  977. {
  978. u64 spte = *sptep;
  979. if (!is_writable_pte(spte) &&
  980. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  981. return false;
  982. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  983. if (pt_protect)
  984. spte &= ~SPTE_MMU_WRITEABLE;
  985. spte = spte & ~PT_WRITABLE_MASK;
  986. return mmu_spte_update(sptep, spte);
  987. }
  988. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  989. bool pt_protect)
  990. {
  991. u64 *sptep;
  992. struct rmap_iterator iter;
  993. bool flush = false;
  994. for_each_rmap_spte(rmapp, &iter, sptep)
  995. flush |= spte_write_protect(kvm, sptep, pt_protect);
  996. return flush;
  997. }
  998. static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
  999. {
  1000. u64 spte = *sptep;
  1001. rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
  1002. spte &= ~shadow_dirty_mask;
  1003. return mmu_spte_update(sptep, spte);
  1004. }
  1005. static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  1006. {
  1007. u64 *sptep;
  1008. struct rmap_iterator iter;
  1009. bool flush = false;
  1010. for_each_rmap_spte(rmapp, &iter, sptep)
  1011. flush |= spte_clear_dirty(kvm, sptep);
  1012. return flush;
  1013. }
  1014. static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
  1015. {
  1016. u64 spte = *sptep;
  1017. rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
  1018. spte |= shadow_dirty_mask;
  1019. return mmu_spte_update(sptep, spte);
  1020. }
  1021. static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
  1022. {
  1023. u64 *sptep;
  1024. struct rmap_iterator iter;
  1025. bool flush = false;
  1026. for_each_rmap_spte(rmapp, &iter, sptep)
  1027. flush |= spte_set_dirty(kvm, sptep);
  1028. return flush;
  1029. }
  1030. /**
  1031. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1032. * @kvm: kvm instance
  1033. * @slot: slot to protect
  1034. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1035. * @mask: indicates which pages we should protect
  1036. *
  1037. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1038. * logging we do not have any such mappings.
  1039. */
  1040. static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1041. struct kvm_memory_slot *slot,
  1042. gfn_t gfn_offset, unsigned long mask)
  1043. {
  1044. unsigned long *rmapp;
  1045. while (mask) {
  1046. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1047. PT_PAGE_TABLE_LEVEL, slot);
  1048. __rmap_write_protect(kvm, rmapp, false);
  1049. /* clear the first set bit */
  1050. mask &= mask - 1;
  1051. }
  1052. }
  1053. /**
  1054. * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
  1055. * @kvm: kvm instance
  1056. * @slot: slot to clear D-bit
  1057. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1058. * @mask: indicates which pages we should clear D-bit
  1059. *
  1060. * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
  1061. */
  1062. void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
  1063. struct kvm_memory_slot *slot,
  1064. gfn_t gfn_offset, unsigned long mask)
  1065. {
  1066. unsigned long *rmapp;
  1067. while (mask) {
  1068. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1069. PT_PAGE_TABLE_LEVEL, slot);
  1070. __rmap_clear_dirty(kvm, rmapp);
  1071. /* clear the first set bit */
  1072. mask &= mask - 1;
  1073. }
  1074. }
  1075. EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
  1076. /**
  1077. * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
  1078. * PT level pages.
  1079. *
  1080. * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
  1081. * enable dirty logging for them.
  1082. *
  1083. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1084. * logging we do not have any such mappings.
  1085. */
  1086. void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
  1087. struct kvm_memory_slot *slot,
  1088. gfn_t gfn_offset, unsigned long mask)
  1089. {
  1090. if (kvm_x86_ops->enable_log_dirty_pt_masked)
  1091. kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
  1092. mask);
  1093. else
  1094. kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
  1095. }
  1096. static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  1097. {
  1098. struct kvm_memory_slot *slot;
  1099. unsigned long *rmapp;
  1100. int i;
  1101. bool write_protected = false;
  1102. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1103. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  1104. rmapp = __gfn_to_rmap(gfn, i, slot);
  1105. write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
  1106. }
  1107. return write_protected;
  1108. }
  1109. static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  1110. {
  1111. u64 *sptep;
  1112. struct rmap_iterator iter;
  1113. bool flush = false;
  1114. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1115. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1116. rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
  1117. drop_spte(kvm, sptep);
  1118. flush = true;
  1119. }
  1120. return flush;
  1121. }
  1122. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1123. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1124. unsigned long data)
  1125. {
  1126. return kvm_zap_rmapp(kvm, rmapp);
  1127. }
  1128. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1129. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1130. unsigned long data)
  1131. {
  1132. u64 *sptep;
  1133. struct rmap_iterator iter;
  1134. int need_flush = 0;
  1135. u64 new_spte;
  1136. pte_t *ptep = (pte_t *)data;
  1137. pfn_t new_pfn;
  1138. WARN_ON(pte_huge(*ptep));
  1139. new_pfn = pte_pfn(*ptep);
  1140. restart:
  1141. for_each_rmap_spte(rmapp, &iter, sptep) {
  1142. rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
  1143. sptep, *sptep, gfn, level);
  1144. need_flush = 1;
  1145. if (pte_write(*ptep)) {
  1146. drop_spte(kvm, sptep);
  1147. goto restart;
  1148. } else {
  1149. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1150. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1151. new_spte &= ~PT_WRITABLE_MASK;
  1152. new_spte &= ~SPTE_HOST_WRITEABLE;
  1153. new_spte &= ~shadow_accessed_mask;
  1154. mmu_spte_clear_track_bits(sptep);
  1155. mmu_spte_set(sptep, new_spte);
  1156. }
  1157. }
  1158. if (need_flush)
  1159. kvm_flush_remote_tlbs(kvm);
  1160. return 0;
  1161. }
  1162. struct slot_rmap_walk_iterator {
  1163. /* input fields. */
  1164. struct kvm_memory_slot *slot;
  1165. gfn_t start_gfn;
  1166. gfn_t end_gfn;
  1167. int start_level;
  1168. int end_level;
  1169. /* output fields. */
  1170. gfn_t gfn;
  1171. unsigned long *rmap;
  1172. int level;
  1173. /* private field. */
  1174. unsigned long *end_rmap;
  1175. };
  1176. static void
  1177. rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
  1178. {
  1179. iterator->level = level;
  1180. iterator->gfn = iterator->start_gfn;
  1181. iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
  1182. iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
  1183. iterator->slot);
  1184. }
  1185. static void
  1186. slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
  1187. struct kvm_memory_slot *slot, int start_level,
  1188. int end_level, gfn_t start_gfn, gfn_t end_gfn)
  1189. {
  1190. iterator->slot = slot;
  1191. iterator->start_level = start_level;
  1192. iterator->end_level = end_level;
  1193. iterator->start_gfn = start_gfn;
  1194. iterator->end_gfn = end_gfn;
  1195. rmap_walk_init_level(iterator, iterator->start_level);
  1196. }
  1197. static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
  1198. {
  1199. return !!iterator->rmap;
  1200. }
  1201. static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
  1202. {
  1203. if (++iterator->rmap <= iterator->end_rmap) {
  1204. iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
  1205. return;
  1206. }
  1207. if (++iterator->level > iterator->end_level) {
  1208. iterator->rmap = NULL;
  1209. return;
  1210. }
  1211. rmap_walk_init_level(iterator, iterator->level);
  1212. }
  1213. #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
  1214. _start_gfn, _end_gfn, _iter_) \
  1215. for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
  1216. _end_level_, _start_gfn, _end_gfn); \
  1217. slot_rmap_walk_okay(_iter_); \
  1218. slot_rmap_walk_next(_iter_))
  1219. static int kvm_handle_hva_range(struct kvm *kvm,
  1220. unsigned long start,
  1221. unsigned long end,
  1222. unsigned long data,
  1223. int (*handler)(struct kvm *kvm,
  1224. unsigned long *rmapp,
  1225. struct kvm_memory_slot *slot,
  1226. gfn_t gfn,
  1227. int level,
  1228. unsigned long data))
  1229. {
  1230. struct kvm_memslots *slots;
  1231. struct kvm_memory_slot *memslot;
  1232. struct slot_rmap_walk_iterator iterator;
  1233. int ret = 0;
  1234. int i;
  1235. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  1236. slots = __kvm_memslots(kvm, i);
  1237. kvm_for_each_memslot(memslot, slots) {
  1238. unsigned long hva_start, hva_end;
  1239. gfn_t gfn_start, gfn_end;
  1240. hva_start = max(start, memslot->userspace_addr);
  1241. hva_end = min(end, memslot->userspace_addr +
  1242. (memslot->npages << PAGE_SHIFT));
  1243. if (hva_start >= hva_end)
  1244. continue;
  1245. /*
  1246. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1247. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1248. */
  1249. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1250. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1251. for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
  1252. PT_MAX_HUGEPAGE_LEVEL,
  1253. gfn_start, gfn_end - 1,
  1254. &iterator)
  1255. ret |= handler(kvm, iterator.rmap, memslot,
  1256. iterator.gfn, iterator.level, data);
  1257. }
  1258. }
  1259. return ret;
  1260. }
  1261. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1262. unsigned long data,
  1263. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1264. struct kvm_memory_slot *slot,
  1265. gfn_t gfn, int level,
  1266. unsigned long data))
  1267. {
  1268. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1269. }
  1270. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1271. {
  1272. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1273. }
  1274. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1275. {
  1276. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1277. }
  1278. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1279. {
  1280. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1281. }
  1282. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1283. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1284. unsigned long data)
  1285. {
  1286. u64 *sptep;
  1287. struct rmap_iterator uninitialized_var(iter);
  1288. int young = 0;
  1289. BUG_ON(!shadow_accessed_mask);
  1290. for_each_rmap_spte(rmapp, &iter, sptep)
  1291. if (*sptep & shadow_accessed_mask) {
  1292. young = 1;
  1293. clear_bit((ffs(shadow_accessed_mask) - 1),
  1294. (unsigned long *)sptep);
  1295. }
  1296. trace_kvm_age_page(gfn, level, slot, young);
  1297. return young;
  1298. }
  1299. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1300. struct kvm_memory_slot *slot, gfn_t gfn,
  1301. int level, unsigned long data)
  1302. {
  1303. u64 *sptep;
  1304. struct rmap_iterator iter;
  1305. int young = 0;
  1306. /*
  1307. * If there's no access bit in the secondary pte set by the
  1308. * hardware it's up to gup-fast/gup to set the access bit in
  1309. * the primary pte or in the page structure.
  1310. */
  1311. if (!shadow_accessed_mask)
  1312. goto out;
  1313. for_each_rmap_spte(rmapp, &iter, sptep)
  1314. if (*sptep & shadow_accessed_mask) {
  1315. young = 1;
  1316. break;
  1317. }
  1318. out:
  1319. return young;
  1320. }
  1321. #define RMAP_RECYCLE_THRESHOLD 1000
  1322. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1323. {
  1324. unsigned long *rmapp;
  1325. struct kvm_mmu_page *sp;
  1326. sp = page_header(__pa(spte));
  1327. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
  1328. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
  1329. kvm_flush_remote_tlbs(vcpu->kvm);
  1330. }
  1331. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  1332. {
  1333. /*
  1334. * In case of absence of EPT Access and Dirty Bits supports,
  1335. * emulate the accessed bit for EPT, by checking if this page has
  1336. * an EPT mapping, and clearing it if it does. On the next access,
  1337. * a new EPT mapping will be established.
  1338. * This has some overhead, but not as much as the cost of swapping
  1339. * out actively used pages or breaking up actively used hugepages.
  1340. */
  1341. if (!shadow_accessed_mask) {
  1342. /*
  1343. * We are holding the kvm->mmu_lock, and we are blowing up
  1344. * shadow PTEs. MMU notifier consumers need to be kept at bay.
  1345. * This is correct as long as we don't decouple the mmu_lock
  1346. * protected regions (like invalidate_range_start|end does).
  1347. */
  1348. kvm->mmu_notifier_seq++;
  1349. return kvm_handle_hva_range(kvm, start, end, 0,
  1350. kvm_unmap_rmapp);
  1351. }
  1352. return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
  1353. }
  1354. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1355. {
  1356. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1357. }
  1358. #ifdef MMU_DEBUG
  1359. static int is_empty_shadow_page(u64 *spt)
  1360. {
  1361. u64 *pos;
  1362. u64 *end;
  1363. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1364. if (is_shadow_present_pte(*pos)) {
  1365. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1366. pos, *pos);
  1367. return 0;
  1368. }
  1369. return 1;
  1370. }
  1371. #endif
  1372. /*
  1373. * This value is the sum of all of the kvm instances's
  1374. * kvm->arch.n_used_mmu_pages values. We need a global,
  1375. * aggregate version in order to make the slab shrinker
  1376. * faster
  1377. */
  1378. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1379. {
  1380. kvm->arch.n_used_mmu_pages += nr;
  1381. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1382. }
  1383. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1384. {
  1385. MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
  1386. hlist_del(&sp->hash_link);
  1387. list_del(&sp->link);
  1388. free_page((unsigned long)sp->spt);
  1389. if (!sp->role.direct)
  1390. free_page((unsigned long)sp->gfns);
  1391. kmem_cache_free(mmu_page_header_cache, sp);
  1392. }
  1393. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1394. {
  1395. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1396. }
  1397. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1398. struct kvm_mmu_page *sp, u64 *parent_pte)
  1399. {
  1400. if (!parent_pte)
  1401. return;
  1402. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1403. }
  1404. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1405. u64 *parent_pte)
  1406. {
  1407. pte_list_remove(parent_pte, &sp->parent_ptes);
  1408. }
  1409. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1410. u64 *parent_pte)
  1411. {
  1412. mmu_page_remove_parent_pte(sp, parent_pte);
  1413. mmu_spte_clear_no_track(parent_pte);
  1414. }
  1415. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1416. u64 *parent_pte, int direct)
  1417. {
  1418. struct kvm_mmu_page *sp;
  1419. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1420. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1421. if (!direct)
  1422. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1423. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1424. /*
  1425. * The active_mmu_pages list is the FIFO list, do not move the
  1426. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1427. * this feature. See the comments in kvm_zap_obsolete_pages().
  1428. */
  1429. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1430. sp->parent_ptes = 0;
  1431. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1432. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1433. return sp;
  1434. }
  1435. static void mark_unsync(u64 *spte);
  1436. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1437. {
  1438. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1439. }
  1440. static void mark_unsync(u64 *spte)
  1441. {
  1442. struct kvm_mmu_page *sp;
  1443. unsigned int index;
  1444. sp = page_header(__pa(spte));
  1445. index = spte - sp->spt;
  1446. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1447. return;
  1448. if (sp->unsync_children++)
  1449. return;
  1450. kvm_mmu_mark_parents_unsync(sp);
  1451. }
  1452. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1453. struct kvm_mmu_page *sp)
  1454. {
  1455. return 1;
  1456. }
  1457. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1458. {
  1459. }
  1460. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1461. struct kvm_mmu_page *sp, u64 *spte,
  1462. const void *pte)
  1463. {
  1464. WARN_ON(1);
  1465. }
  1466. #define KVM_PAGE_ARRAY_NR 16
  1467. struct kvm_mmu_pages {
  1468. struct mmu_page_and_offset {
  1469. struct kvm_mmu_page *sp;
  1470. unsigned int idx;
  1471. } page[KVM_PAGE_ARRAY_NR];
  1472. unsigned int nr;
  1473. };
  1474. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1475. int idx)
  1476. {
  1477. int i;
  1478. if (sp->unsync)
  1479. for (i=0; i < pvec->nr; i++)
  1480. if (pvec->page[i].sp == sp)
  1481. return 0;
  1482. pvec->page[pvec->nr].sp = sp;
  1483. pvec->page[pvec->nr].idx = idx;
  1484. pvec->nr++;
  1485. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1486. }
  1487. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1488. struct kvm_mmu_pages *pvec)
  1489. {
  1490. int i, ret, nr_unsync_leaf = 0;
  1491. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1492. struct kvm_mmu_page *child;
  1493. u64 ent = sp->spt[i];
  1494. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1495. goto clear_child_bitmap;
  1496. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1497. if (child->unsync_children) {
  1498. if (mmu_pages_add(pvec, child, i))
  1499. return -ENOSPC;
  1500. ret = __mmu_unsync_walk(child, pvec);
  1501. if (!ret)
  1502. goto clear_child_bitmap;
  1503. else if (ret > 0)
  1504. nr_unsync_leaf += ret;
  1505. else
  1506. return ret;
  1507. } else if (child->unsync) {
  1508. nr_unsync_leaf++;
  1509. if (mmu_pages_add(pvec, child, i))
  1510. return -ENOSPC;
  1511. } else
  1512. goto clear_child_bitmap;
  1513. continue;
  1514. clear_child_bitmap:
  1515. __clear_bit(i, sp->unsync_child_bitmap);
  1516. sp->unsync_children--;
  1517. WARN_ON((int)sp->unsync_children < 0);
  1518. }
  1519. return nr_unsync_leaf;
  1520. }
  1521. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1522. struct kvm_mmu_pages *pvec)
  1523. {
  1524. if (!sp->unsync_children)
  1525. return 0;
  1526. mmu_pages_add(pvec, sp, 0);
  1527. return __mmu_unsync_walk(sp, pvec);
  1528. }
  1529. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1530. {
  1531. WARN_ON(!sp->unsync);
  1532. trace_kvm_mmu_sync_page(sp);
  1533. sp->unsync = 0;
  1534. --kvm->stat.mmu_unsync;
  1535. }
  1536. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1537. struct list_head *invalid_list);
  1538. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1539. struct list_head *invalid_list);
  1540. /*
  1541. * NOTE: we should pay more attention on the zapped-obsolete page
  1542. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1543. * since it has been deleted from active_mmu_pages but still can be found
  1544. * at hast list.
  1545. *
  1546. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1547. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1548. * all the obsolete pages.
  1549. */
  1550. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1551. hlist_for_each_entry(_sp, \
  1552. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1553. if ((_sp)->gfn != (_gfn)) {} else
  1554. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1555. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1556. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1557. /* @sp->gfn should be write-protected at the call site */
  1558. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1559. struct list_head *invalid_list, bool clear_unsync)
  1560. {
  1561. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1562. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1563. return 1;
  1564. }
  1565. if (clear_unsync)
  1566. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1567. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1568. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1569. return 1;
  1570. }
  1571. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1572. return 0;
  1573. }
  1574. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1575. struct kvm_mmu_page *sp)
  1576. {
  1577. LIST_HEAD(invalid_list);
  1578. int ret;
  1579. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1580. if (ret)
  1581. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1582. return ret;
  1583. }
  1584. #ifdef CONFIG_KVM_MMU_AUDIT
  1585. #include "mmu_audit.c"
  1586. #else
  1587. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1588. static void mmu_audit_disable(void) { }
  1589. #endif
  1590. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1591. struct list_head *invalid_list)
  1592. {
  1593. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1594. }
  1595. /* @gfn should be write-protected at the call site */
  1596. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1597. {
  1598. struct kvm_mmu_page *s;
  1599. LIST_HEAD(invalid_list);
  1600. bool flush = false;
  1601. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1602. if (!s->unsync)
  1603. continue;
  1604. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1605. kvm_unlink_unsync_page(vcpu->kvm, s);
  1606. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1607. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1608. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1609. continue;
  1610. }
  1611. flush = true;
  1612. }
  1613. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1614. if (flush)
  1615. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1616. }
  1617. struct mmu_page_path {
  1618. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1619. unsigned int idx[PT64_ROOT_LEVEL-1];
  1620. };
  1621. #define for_each_sp(pvec, sp, parents, i) \
  1622. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1623. sp = pvec.page[i].sp; \
  1624. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1625. i = mmu_pages_next(&pvec, &parents, i))
  1626. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1627. struct mmu_page_path *parents,
  1628. int i)
  1629. {
  1630. int n;
  1631. for (n = i+1; n < pvec->nr; n++) {
  1632. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1633. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1634. parents->idx[0] = pvec->page[n].idx;
  1635. return n;
  1636. }
  1637. parents->parent[sp->role.level-2] = sp;
  1638. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1639. }
  1640. return n;
  1641. }
  1642. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1643. {
  1644. struct kvm_mmu_page *sp;
  1645. unsigned int level = 0;
  1646. do {
  1647. unsigned int idx = parents->idx[level];
  1648. sp = parents->parent[level];
  1649. if (!sp)
  1650. return;
  1651. --sp->unsync_children;
  1652. WARN_ON((int)sp->unsync_children < 0);
  1653. __clear_bit(idx, sp->unsync_child_bitmap);
  1654. level++;
  1655. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1656. }
  1657. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1658. struct mmu_page_path *parents,
  1659. struct kvm_mmu_pages *pvec)
  1660. {
  1661. parents->parent[parent->role.level-1] = NULL;
  1662. pvec->nr = 0;
  1663. }
  1664. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1665. struct kvm_mmu_page *parent)
  1666. {
  1667. int i;
  1668. struct kvm_mmu_page *sp;
  1669. struct mmu_page_path parents;
  1670. struct kvm_mmu_pages pages;
  1671. LIST_HEAD(invalid_list);
  1672. kvm_mmu_pages_init(parent, &parents, &pages);
  1673. while (mmu_unsync_walk(parent, &pages)) {
  1674. bool protected = false;
  1675. for_each_sp(pages, sp, parents, i)
  1676. protected |= rmap_write_protect(vcpu, sp->gfn);
  1677. if (protected)
  1678. kvm_flush_remote_tlbs(vcpu->kvm);
  1679. for_each_sp(pages, sp, parents, i) {
  1680. kvm_sync_page(vcpu, sp, &invalid_list);
  1681. mmu_pages_clear_parents(&parents);
  1682. }
  1683. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1684. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1685. kvm_mmu_pages_init(parent, &parents, &pages);
  1686. }
  1687. }
  1688. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1689. {
  1690. int i;
  1691. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1692. sp->spt[i] = 0ull;
  1693. }
  1694. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1695. {
  1696. sp->write_flooding_count = 0;
  1697. }
  1698. static void clear_sp_write_flooding_count(u64 *spte)
  1699. {
  1700. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1701. __clear_sp_write_flooding_count(sp);
  1702. }
  1703. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1704. {
  1705. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1706. }
  1707. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1708. gfn_t gfn,
  1709. gva_t gaddr,
  1710. unsigned level,
  1711. int direct,
  1712. unsigned access,
  1713. u64 *parent_pte)
  1714. {
  1715. union kvm_mmu_page_role role;
  1716. unsigned quadrant;
  1717. struct kvm_mmu_page *sp;
  1718. bool need_sync = false;
  1719. role = vcpu->arch.mmu.base_role;
  1720. role.level = level;
  1721. role.direct = direct;
  1722. if (role.direct)
  1723. role.cr4_pae = 0;
  1724. role.access = access;
  1725. if (!vcpu->arch.mmu.direct_map
  1726. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1727. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1728. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1729. role.quadrant = quadrant;
  1730. }
  1731. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1732. if (is_obsolete_sp(vcpu->kvm, sp))
  1733. continue;
  1734. if (!need_sync && sp->unsync)
  1735. need_sync = true;
  1736. if (sp->role.word != role.word)
  1737. continue;
  1738. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1739. break;
  1740. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1741. if (sp->unsync_children) {
  1742. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1743. kvm_mmu_mark_parents_unsync(sp);
  1744. } else if (sp->unsync)
  1745. kvm_mmu_mark_parents_unsync(sp);
  1746. __clear_sp_write_flooding_count(sp);
  1747. trace_kvm_mmu_get_page(sp, false);
  1748. return sp;
  1749. }
  1750. ++vcpu->kvm->stat.mmu_cache_miss;
  1751. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1752. if (!sp)
  1753. return sp;
  1754. sp->gfn = gfn;
  1755. sp->role = role;
  1756. hlist_add_head(&sp->hash_link,
  1757. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1758. if (!direct) {
  1759. if (rmap_write_protect(vcpu, gfn))
  1760. kvm_flush_remote_tlbs(vcpu->kvm);
  1761. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1762. kvm_sync_pages(vcpu, gfn);
  1763. account_shadowed(vcpu->kvm, sp);
  1764. }
  1765. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1766. init_shadow_page_table(sp);
  1767. trace_kvm_mmu_get_page(sp, true);
  1768. return sp;
  1769. }
  1770. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1771. struct kvm_vcpu *vcpu, u64 addr)
  1772. {
  1773. iterator->addr = addr;
  1774. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1775. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1776. if (iterator->level == PT64_ROOT_LEVEL &&
  1777. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1778. !vcpu->arch.mmu.direct_map)
  1779. --iterator->level;
  1780. if (iterator->level == PT32E_ROOT_LEVEL) {
  1781. iterator->shadow_addr
  1782. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1783. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1784. --iterator->level;
  1785. if (!iterator->shadow_addr)
  1786. iterator->level = 0;
  1787. }
  1788. }
  1789. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1790. {
  1791. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1792. return false;
  1793. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1794. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1795. return true;
  1796. }
  1797. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1798. u64 spte)
  1799. {
  1800. if (is_last_spte(spte, iterator->level)) {
  1801. iterator->level = 0;
  1802. return;
  1803. }
  1804. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1805. --iterator->level;
  1806. }
  1807. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1808. {
  1809. return __shadow_walk_next(iterator, *iterator->sptep);
  1810. }
  1811. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1812. {
  1813. u64 spte;
  1814. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1815. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1816. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1817. shadow_user_mask | shadow_x_mask;
  1818. if (accessed)
  1819. spte |= shadow_accessed_mask;
  1820. mmu_spte_set(sptep, spte);
  1821. }
  1822. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1823. unsigned direct_access)
  1824. {
  1825. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1826. struct kvm_mmu_page *child;
  1827. /*
  1828. * For the direct sp, if the guest pte's dirty bit
  1829. * changed form clean to dirty, it will corrupt the
  1830. * sp's access: allow writable in the read-only sp,
  1831. * so we should update the spte at this point to get
  1832. * a new sp with the correct access.
  1833. */
  1834. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1835. if (child->role.access == direct_access)
  1836. return;
  1837. drop_parent_pte(child, sptep);
  1838. kvm_flush_remote_tlbs(vcpu->kvm);
  1839. }
  1840. }
  1841. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1842. u64 *spte)
  1843. {
  1844. u64 pte;
  1845. struct kvm_mmu_page *child;
  1846. pte = *spte;
  1847. if (is_shadow_present_pte(pte)) {
  1848. if (is_last_spte(pte, sp->role.level)) {
  1849. drop_spte(kvm, spte);
  1850. if (is_large_pte(pte))
  1851. --kvm->stat.lpages;
  1852. } else {
  1853. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1854. drop_parent_pte(child, spte);
  1855. }
  1856. return true;
  1857. }
  1858. if (is_mmio_spte(pte))
  1859. mmu_spte_clear_no_track(spte);
  1860. return false;
  1861. }
  1862. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1863. struct kvm_mmu_page *sp)
  1864. {
  1865. unsigned i;
  1866. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1867. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1868. }
  1869. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1870. {
  1871. mmu_page_remove_parent_pte(sp, parent_pte);
  1872. }
  1873. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1874. {
  1875. u64 *sptep;
  1876. struct rmap_iterator iter;
  1877. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1878. drop_parent_pte(sp, sptep);
  1879. }
  1880. static int mmu_zap_unsync_children(struct kvm *kvm,
  1881. struct kvm_mmu_page *parent,
  1882. struct list_head *invalid_list)
  1883. {
  1884. int i, zapped = 0;
  1885. struct mmu_page_path parents;
  1886. struct kvm_mmu_pages pages;
  1887. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1888. return 0;
  1889. kvm_mmu_pages_init(parent, &parents, &pages);
  1890. while (mmu_unsync_walk(parent, &pages)) {
  1891. struct kvm_mmu_page *sp;
  1892. for_each_sp(pages, sp, parents, i) {
  1893. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1894. mmu_pages_clear_parents(&parents);
  1895. zapped++;
  1896. }
  1897. kvm_mmu_pages_init(parent, &parents, &pages);
  1898. }
  1899. return zapped;
  1900. }
  1901. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1902. struct list_head *invalid_list)
  1903. {
  1904. int ret;
  1905. trace_kvm_mmu_prepare_zap_page(sp);
  1906. ++kvm->stat.mmu_shadow_zapped;
  1907. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1908. kvm_mmu_page_unlink_children(kvm, sp);
  1909. kvm_mmu_unlink_parents(kvm, sp);
  1910. if (!sp->role.invalid && !sp->role.direct)
  1911. unaccount_shadowed(kvm, sp);
  1912. if (sp->unsync)
  1913. kvm_unlink_unsync_page(kvm, sp);
  1914. if (!sp->root_count) {
  1915. /* Count self */
  1916. ret++;
  1917. list_move(&sp->link, invalid_list);
  1918. kvm_mod_used_mmu_pages(kvm, -1);
  1919. } else {
  1920. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1921. /*
  1922. * The obsolete pages can not be used on any vcpus.
  1923. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1924. */
  1925. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1926. kvm_reload_remote_mmus(kvm);
  1927. }
  1928. sp->role.invalid = 1;
  1929. return ret;
  1930. }
  1931. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1932. struct list_head *invalid_list)
  1933. {
  1934. struct kvm_mmu_page *sp, *nsp;
  1935. if (list_empty(invalid_list))
  1936. return;
  1937. /*
  1938. * wmb: make sure everyone sees our modifications to the page tables
  1939. * rmb: make sure we see changes to vcpu->mode
  1940. */
  1941. smp_mb();
  1942. /*
  1943. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1944. * page table walks.
  1945. */
  1946. kvm_flush_remote_tlbs(kvm);
  1947. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1948. WARN_ON(!sp->role.invalid || sp->root_count);
  1949. kvm_mmu_free_page(sp);
  1950. }
  1951. }
  1952. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1953. struct list_head *invalid_list)
  1954. {
  1955. struct kvm_mmu_page *sp;
  1956. if (list_empty(&kvm->arch.active_mmu_pages))
  1957. return false;
  1958. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1959. struct kvm_mmu_page, link);
  1960. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1961. return true;
  1962. }
  1963. /*
  1964. * Changing the number of mmu pages allocated to the vm
  1965. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1966. */
  1967. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1968. {
  1969. LIST_HEAD(invalid_list);
  1970. spin_lock(&kvm->mmu_lock);
  1971. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1972. /* Need to free some mmu pages to achieve the goal. */
  1973. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1974. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1975. break;
  1976. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1977. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1978. }
  1979. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1980. spin_unlock(&kvm->mmu_lock);
  1981. }
  1982. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1983. {
  1984. struct kvm_mmu_page *sp;
  1985. LIST_HEAD(invalid_list);
  1986. int r;
  1987. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1988. r = 0;
  1989. spin_lock(&kvm->mmu_lock);
  1990. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1991. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1992. sp->role.word);
  1993. r = 1;
  1994. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1995. }
  1996. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1997. spin_unlock(&kvm->mmu_lock);
  1998. return r;
  1999. }
  2000. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  2001. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  2002. {
  2003. trace_kvm_mmu_unsync_page(sp);
  2004. ++vcpu->kvm->stat.mmu_unsync;
  2005. sp->unsync = 1;
  2006. kvm_mmu_mark_parents_unsync(sp);
  2007. }
  2008. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  2009. {
  2010. struct kvm_mmu_page *s;
  2011. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2012. if (s->unsync)
  2013. continue;
  2014. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  2015. __kvm_unsync_page(vcpu, s);
  2016. }
  2017. }
  2018. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  2019. bool can_unsync)
  2020. {
  2021. struct kvm_mmu_page *s;
  2022. bool need_unsync = false;
  2023. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2024. if (!can_unsync)
  2025. return 1;
  2026. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  2027. return 1;
  2028. if (!s->unsync)
  2029. need_unsync = true;
  2030. }
  2031. if (need_unsync)
  2032. kvm_unsync_pages(vcpu, gfn);
  2033. return 0;
  2034. }
  2035. static bool kvm_is_mmio_pfn(pfn_t pfn)
  2036. {
  2037. if (pfn_valid(pfn))
  2038. return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
  2039. return true;
  2040. }
  2041. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2042. unsigned pte_access, int level,
  2043. gfn_t gfn, pfn_t pfn, bool speculative,
  2044. bool can_unsync, bool host_writable)
  2045. {
  2046. u64 spte;
  2047. int ret = 0;
  2048. if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
  2049. return 0;
  2050. spte = PT_PRESENT_MASK;
  2051. if (!speculative)
  2052. spte |= shadow_accessed_mask;
  2053. if (pte_access & ACC_EXEC_MASK)
  2054. spte |= shadow_x_mask;
  2055. else
  2056. spte |= shadow_nx_mask;
  2057. if (pte_access & ACC_USER_MASK)
  2058. spte |= shadow_user_mask;
  2059. if (level > PT_PAGE_TABLE_LEVEL)
  2060. spte |= PT_PAGE_SIZE_MASK;
  2061. if (tdp_enabled)
  2062. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2063. kvm_is_mmio_pfn(pfn));
  2064. if (host_writable)
  2065. spte |= SPTE_HOST_WRITEABLE;
  2066. else
  2067. pte_access &= ~ACC_WRITE_MASK;
  2068. spte |= (u64)pfn << PAGE_SHIFT;
  2069. if (pte_access & ACC_WRITE_MASK) {
  2070. /*
  2071. * Other vcpu creates new sp in the window between
  2072. * mapping_level() and acquiring mmu-lock. We can
  2073. * allow guest to retry the access, the mapping can
  2074. * be fixed if guest refault.
  2075. */
  2076. if (level > PT_PAGE_TABLE_LEVEL &&
  2077. has_wrprotected_page(vcpu, gfn, level))
  2078. goto done;
  2079. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2080. /*
  2081. * Optimization: for pte sync, if spte was writable the hash
  2082. * lookup is unnecessary (and expensive). Write protection
  2083. * is responsibility of mmu_get_page / kvm_sync_page.
  2084. * Same reasoning can be applied to dirty page accounting.
  2085. */
  2086. if (!can_unsync && is_writable_pte(*sptep))
  2087. goto set_pte;
  2088. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2089. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2090. __func__, gfn);
  2091. ret = 1;
  2092. pte_access &= ~ACC_WRITE_MASK;
  2093. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2094. }
  2095. }
  2096. if (pte_access & ACC_WRITE_MASK) {
  2097. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2098. spte |= shadow_dirty_mask;
  2099. }
  2100. set_pte:
  2101. if (mmu_spte_update(sptep, spte))
  2102. kvm_flush_remote_tlbs(vcpu->kvm);
  2103. done:
  2104. return ret;
  2105. }
  2106. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2107. unsigned pte_access, int write_fault, int *emulate,
  2108. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2109. bool host_writable)
  2110. {
  2111. int was_rmapped = 0;
  2112. int rmap_count;
  2113. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2114. *sptep, write_fault, gfn);
  2115. if (is_rmap_spte(*sptep)) {
  2116. /*
  2117. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2118. * the parent of the now unreachable PTE.
  2119. */
  2120. if (level > PT_PAGE_TABLE_LEVEL &&
  2121. !is_large_pte(*sptep)) {
  2122. struct kvm_mmu_page *child;
  2123. u64 pte = *sptep;
  2124. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2125. drop_parent_pte(child, sptep);
  2126. kvm_flush_remote_tlbs(vcpu->kvm);
  2127. } else if (pfn != spte_to_pfn(*sptep)) {
  2128. pgprintk("hfn old %llx new %llx\n",
  2129. spte_to_pfn(*sptep), pfn);
  2130. drop_spte(vcpu->kvm, sptep);
  2131. kvm_flush_remote_tlbs(vcpu->kvm);
  2132. } else
  2133. was_rmapped = 1;
  2134. }
  2135. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2136. true, host_writable)) {
  2137. if (write_fault)
  2138. *emulate = 1;
  2139. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2140. }
  2141. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2142. *emulate = 1;
  2143. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2144. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2145. is_large_pte(*sptep)? "2MB" : "4kB",
  2146. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2147. *sptep, sptep);
  2148. if (!was_rmapped && is_large_pte(*sptep))
  2149. ++vcpu->kvm->stat.lpages;
  2150. if (is_shadow_present_pte(*sptep)) {
  2151. if (!was_rmapped) {
  2152. rmap_count = rmap_add(vcpu, sptep, gfn);
  2153. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2154. rmap_recycle(vcpu, sptep, gfn);
  2155. }
  2156. }
  2157. kvm_release_pfn_clean(pfn);
  2158. }
  2159. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2160. bool no_dirty_log)
  2161. {
  2162. struct kvm_memory_slot *slot;
  2163. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2164. if (!slot)
  2165. return KVM_PFN_ERR_FAULT;
  2166. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2167. }
  2168. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2169. struct kvm_mmu_page *sp,
  2170. u64 *start, u64 *end)
  2171. {
  2172. struct page *pages[PTE_PREFETCH_NUM];
  2173. struct kvm_memory_slot *slot;
  2174. unsigned access = sp->role.access;
  2175. int i, ret;
  2176. gfn_t gfn;
  2177. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2178. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
  2179. if (!slot)
  2180. return -1;
  2181. ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
  2182. if (ret <= 0)
  2183. return -1;
  2184. for (i = 0; i < ret; i++, gfn++, start++)
  2185. mmu_set_spte(vcpu, start, access, 0, NULL,
  2186. sp->role.level, gfn, page_to_pfn(pages[i]),
  2187. true, true);
  2188. return 0;
  2189. }
  2190. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2191. struct kvm_mmu_page *sp, u64 *sptep)
  2192. {
  2193. u64 *spte, *start = NULL;
  2194. int i;
  2195. WARN_ON(!sp->role.direct);
  2196. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2197. spte = sp->spt + i;
  2198. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2199. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2200. if (!start)
  2201. continue;
  2202. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2203. break;
  2204. start = NULL;
  2205. } else if (!start)
  2206. start = spte;
  2207. }
  2208. }
  2209. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2210. {
  2211. struct kvm_mmu_page *sp;
  2212. /*
  2213. * Since it's no accessed bit on EPT, it's no way to
  2214. * distinguish between actually accessed translations
  2215. * and prefetched, so disable pte prefetch if EPT is
  2216. * enabled.
  2217. */
  2218. if (!shadow_accessed_mask)
  2219. return;
  2220. sp = page_header(__pa(sptep));
  2221. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2222. return;
  2223. __direct_pte_prefetch(vcpu, sp, sptep);
  2224. }
  2225. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2226. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2227. bool prefault)
  2228. {
  2229. struct kvm_shadow_walk_iterator iterator;
  2230. struct kvm_mmu_page *sp;
  2231. int emulate = 0;
  2232. gfn_t pseudo_gfn;
  2233. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2234. return 0;
  2235. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2236. if (iterator.level == level) {
  2237. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2238. write, &emulate, level, gfn, pfn,
  2239. prefault, map_writable);
  2240. direct_pte_prefetch(vcpu, iterator.sptep);
  2241. ++vcpu->stat.pf_fixed;
  2242. break;
  2243. }
  2244. drop_large_spte(vcpu, iterator.sptep);
  2245. if (!is_shadow_present_pte(*iterator.sptep)) {
  2246. u64 base_addr = iterator.addr;
  2247. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2248. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2249. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2250. iterator.level - 1,
  2251. 1, ACC_ALL, iterator.sptep);
  2252. link_shadow_page(iterator.sptep, sp, true);
  2253. }
  2254. }
  2255. return emulate;
  2256. }
  2257. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2258. {
  2259. siginfo_t info;
  2260. info.si_signo = SIGBUS;
  2261. info.si_errno = 0;
  2262. info.si_code = BUS_MCEERR_AR;
  2263. info.si_addr = (void __user *)address;
  2264. info.si_addr_lsb = PAGE_SHIFT;
  2265. send_sig_info(SIGBUS, &info, tsk);
  2266. }
  2267. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2268. {
  2269. /*
  2270. * Do not cache the mmio info caused by writing the readonly gfn
  2271. * into the spte otherwise read access on readonly gfn also can
  2272. * caused mmio page fault and treat it as mmio access.
  2273. * Return 1 to tell kvm to emulate it.
  2274. */
  2275. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2276. return 1;
  2277. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2278. kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
  2279. return 0;
  2280. }
  2281. return -EFAULT;
  2282. }
  2283. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2284. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2285. {
  2286. pfn_t pfn = *pfnp;
  2287. gfn_t gfn = *gfnp;
  2288. int level = *levelp;
  2289. /*
  2290. * Check if it's a transparent hugepage. If this would be an
  2291. * hugetlbfs page, level wouldn't be set to
  2292. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2293. * here.
  2294. */
  2295. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
  2296. level == PT_PAGE_TABLE_LEVEL &&
  2297. PageTransCompound(pfn_to_page(pfn)) &&
  2298. !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
  2299. unsigned long mask;
  2300. /*
  2301. * mmu_notifier_retry was successful and we hold the
  2302. * mmu_lock here, so the pmd can't become splitting
  2303. * from under us, and in turn
  2304. * __split_huge_page_refcount() can't run from under
  2305. * us and we can safely transfer the refcount from
  2306. * PG_tail to PG_head as we switch the pfn to tail to
  2307. * head.
  2308. */
  2309. *levelp = level = PT_DIRECTORY_LEVEL;
  2310. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2311. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2312. if (pfn & mask) {
  2313. gfn &= ~mask;
  2314. *gfnp = gfn;
  2315. kvm_release_pfn_clean(pfn);
  2316. pfn &= ~mask;
  2317. kvm_get_pfn(pfn);
  2318. *pfnp = pfn;
  2319. }
  2320. }
  2321. }
  2322. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2323. pfn_t pfn, unsigned access, int *ret_val)
  2324. {
  2325. bool ret = true;
  2326. /* The pfn is invalid, report the error! */
  2327. if (unlikely(is_error_pfn(pfn))) {
  2328. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2329. goto exit;
  2330. }
  2331. if (unlikely(is_noslot_pfn(pfn)))
  2332. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2333. ret = false;
  2334. exit:
  2335. return ret;
  2336. }
  2337. static bool page_fault_can_be_fast(u32 error_code)
  2338. {
  2339. /*
  2340. * Do not fix the mmio spte with invalid generation number which
  2341. * need to be updated by slow page fault path.
  2342. */
  2343. if (unlikely(error_code & PFERR_RSVD_MASK))
  2344. return false;
  2345. /*
  2346. * #PF can be fast only if the shadow page table is present and it
  2347. * is caused by write-protect, that means we just need change the
  2348. * W bit of the spte which can be done out of mmu-lock.
  2349. */
  2350. if (!(error_code & PFERR_PRESENT_MASK) ||
  2351. !(error_code & PFERR_WRITE_MASK))
  2352. return false;
  2353. return true;
  2354. }
  2355. static bool
  2356. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2357. u64 *sptep, u64 spte)
  2358. {
  2359. gfn_t gfn;
  2360. WARN_ON(!sp->role.direct);
  2361. /*
  2362. * The gfn of direct spte is stable since it is calculated
  2363. * by sp->gfn.
  2364. */
  2365. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2366. /*
  2367. * Theoretically we could also set dirty bit (and flush TLB) here in
  2368. * order to eliminate unnecessary PML logging. See comments in
  2369. * set_spte. But fast_page_fault is very unlikely to happen with PML
  2370. * enabled, so we do not do this. This might result in the same GPA
  2371. * to be logged in PML buffer again when the write really happens, and
  2372. * eventually to be called by mark_page_dirty twice. But it's also no
  2373. * harm. This also avoids the TLB flush needed after setting dirty bit
  2374. * so non-PML cases won't be impacted.
  2375. *
  2376. * Compare with set_spte where instead shadow_dirty_mask is set.
  2377. */
  2378. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2379. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2380. return true;
  2381. }
  2382. /*
  2383. * Return value:
  2384. * - true: let the vcpu to access on the same address again.
  2385. * - false: let the real page fault path to fix it.
  2386. */
  2387. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2388. u32 error_code)
  2389. {
  2390. struct kvm_shadow_walk_iterator iterator;
  2391. struct kvm_mmu_page *sp;
  2392. bool ret = false;
  2393. u64 spte = 0ull;
  2394. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2395. return false;
  2396. if (!page_fault_can_be_fast(error_code))
  2397. return false;
  2398. walk_shadow_page_lockless_begin(vcpu);
  2399. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2400. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2401. break;
  2402. /*
  2403. * If the mapping has been changed, let the vcpu fault on the
  2404. * same address again.
  2405. */
  2406. if (!is_rmap_spte(spte)) {
  2407. ret = true;
  2408. goto exit;
  2409. }
  2410. sp = page_header(__pa(iterator.sptep));
  2411. if (!is_last_spte(spte, sp->role.level))
  2412. goto exit;
  2413. /*
  2414. * Check if it is a spurious fault caused by TLB lazily flushed.
  2415. *
  2416. * Need not check the access of upper level table entries since
  2417. * they are always ACC_ALL.
  2418. */
  2419. if (is_writable_pte(spte)) {
  2420. ret = true;
  2421. goto exit;
  2422. }
  2423. /*
  2424. * Currently, to simplify the code, only the spte write-protected
  2425. * by dirty-log can be fast fixed.
  2426. */
  2427. if (!spte_is_locklessly_modifiable(spte))
  2428. goto exit;
  2429. /*
  2430. * Do not fix write-permission on the large spte since we only dirty
  2431. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2432. * that means other pages are missed if its slot is dirty-logged.
  2433. *
  2434. * Instead, we let the slow page fault path create a normal spte to
  2435. * fix the access.
  2436. *
  2437. * See the comments in kvm_arch_commit_memory_region().
  2438. */
  2439. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2440. goto exit;
  2441. /*
  2442. * Currently, fast page fault only works for direct mapping since
  2443. * the gfn is not stable for indirect shadow page.
  2444. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2445. */
  2446. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2447. exit:
  2448. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2449. spte, ret);
  2450. walk_shadow_page_lockless_end(vcpu);
  2451. return ret;
  2452. }
  2453. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2454. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2455. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2456. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2457. gfn_t gfn, bool prefault)
  2458. {
  2459. int r;
  2460. int level;
  2461. int force_pt_level;
  2462. pfn_t pfn;
  2463. unsigned long mmu_seq;
  2464. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2465. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2466. if (likely(!force_pt_level)) {
  2467. level = mapping_level(vcpu, gfn);
  2468. /*
  2469. * This path builds a PAE pagetable - so we can map
  2470. * 2mb pages at maximum. Therefore check if the level
  2471. * is larger than that.
  2472. */
  2473. if (level > PT_DIRECTORY_LEVEL)
  2474. level = PT_DIRECTORY_LEVEL;
  2475. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2476. } else
  2477. level = PT_PAGE_TABLE_LEVEL;
  2478. if (fast_page_fault(vcpu, v, level, error_code))
  2479. return 0;
  2480. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2481. smp_rmb();
  2482. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2483. return 0;
  2484. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2485. return r;
  2486. spin_lock(&vcpu->kvm->mmu_lock);
  2487. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2488. goto out_unlock;
  2489. make_mmu_pages_available(vcpu);
  2490. if (likely(!force_pt_level))
  2491. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2492. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2493. prefault);
  2494. spin_unlock(&vcpu->kvm->mmu_lock);
  2495. return r;
  2496. out_unlock:
  2497. spin_unlock(&vcpu->kvm->mmu_lock);
  2498. kvm_release_pfn_clean(pfn);
  2499. return 0;
  2500. }
  2501. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2502. {
  2503. int i;
  2504. struct kvm_mmu_page *sp;
  2505. LIST_HEAD(invalid_list);
  2506. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2507. return;
  2508. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2509. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2510. vcpu->arch.mmu.direct_map)) {
  2511. hpa_t root = vcpu->arch.mmu.root_hpa;
  2512. spin_lock(&vcpu->kvm->mmu_lock);
  2513. sp = page_header(root);
  2514. --sp->root_count;
  2515. if (!sp->root_count && sp->role.invalid) {
  2516. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2517. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2518. }
  2519. spin_unlock(&vcpu->kvm->mmu_lock);
  2520. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2521. return;
  2522. }
  2523. spin_lock(&vcpu->kvm->mmu_lock);
  2524. for (i = 0; i < 4; ++i) {
  2525. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2526. if (root) {
  2527. root &= PT64_BASE_ADDR_MASK;
  2528. sp = page_header(root);
  2529. --sp->root_count;
  2530. if (!sp->root_count && sp->role.invalid)
  2531. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2532. &invalid_list);
  2533. }
  2534. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2535. }
  2536. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2537. spin_unlock(&vcpu->kvm->mmu_lock);
  2538. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2539. }
  2540. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2541. {
  2542. int ret = 0;
  2543. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2544. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2545. ret = 1;
  2546. }
  2547. return ret;
  2548. }
  2549. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2550. {
  2551. struct kvm_mmu_page *sp;
  2552. unsigned i;
  2553. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2554. spin_lock(&vcpu->kvm->mmu_lock);
  2555. make_mmu_pages_available(vcpu);
  2556. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2557. 1, ACC_ALL, NULL);
  2558. ++sp->root_count;
  2559. spin_unlock(&vcpu->kvm->mmu_lock);
  2560. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2561. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2562. for (i = 0; i < 4; ++i) {
  2563. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2564. MMU_WARN_ON(VALID_PAGE(root));
  2565. spin_lock(&vcpu->kvm->mmu_lock);
  2566. make_mmu_pages_available(vcpu);
  2567. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2568. i << 30,
  2569. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2570. NULL);
  2571. root = __pa(sp->spt);
  2572. ++sp->root_count;
  2573. spin_unlock(&vcpu->kvm->mmu_lock);
  2574. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2575. }
  2576. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2577. } else
  2578. BUG();
  2579. return 0;
  2580. }
  2581. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2582. {
  2583. struct kvm_mmu_page *sp;
  2584. u64 pdptr, pm_mask;
  2585. gfn_t root_gfn;
  2586. int i;
  2587. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2588. if (mmu_check_root(vcpu, root_gfn))
  2589. return 1;
  2590. /*
  2591. * Do we shadow a long mode page table? If so we need to
  2592. * write-protect the guests page table root.
  2593. */
  2594. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2595. hpa_t root = vcpu->arch.mmu.root_hpa;
  2596. MMU_WARN_ON(VALID_PAGE(root));
  2597. spin_lock(&vcpu->kvm->mmu_lock);
  2598. make_mmu_pages_available(vcpu);
  2599. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2600. 0, ACC_ALL, NULL);
  2601. root = __pa(sp->spt);
  2602. ++sp->root_count;
  2603. spin_unlock(&vcpu->kvm->mmu_lock);
  2604. vcpu->arch.mmu.root_hpa = root;
  2605. return 0;
  2606. }
  2607. /*
  2608. * We shadow a 32 bit page table. This may be a legacy 2-level
  2609. * or a PAE 3-level page table. In either case we need to be aware that
  2610. * the shadow page table may be a PAE or a long mode page table.
  2611. */
  2612. pm_mask = PT_PRESENT_MASK;
  2613. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2614. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2615. for (i = 0; i < 4; ++i) {
  2616. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2617. MMU_WARN_ON(VALID_PAGE(root));
  2618. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2619. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2620. if (!is_present_gpte(pdptr)) {
  2621. vcpu->arch.mmu.pae_root[i] = 0;
  2622. continue;
  2623. }
  2624. root_gfn = pdptr >> PAGE_SHIFT;
  2625. if (mmu_check_root(vcpu, root_gfn))
  2626. return 1;
  2627. }
  2628. spin_lock(&vcpu->kvm->mmu_lock);
  2629. make_mmu_pages_available(vcpu);
  2630. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2631. PT32_ROOT_LEVEL, 0,
  2632. ACC_ALL, NULL);
  2633. root = __pa(sp->spt);
  2634. ++sp->root_count;
  2635. spin_unlock(&vcpu->kvm->mmu_lock);
  2636. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2637. }
  2638. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2639. /*
  2640. * If we shadow a 32 bit page table with a long mode page
  2641. * table we enter this path.
  2642. */
  2643. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2644. if (vcpu->arch.mmu.lm_root == NULL) {
  2645. /*
  2646. * The additional page necessary for this is only
  2647. * allocated on demand.
  2648. */
  2649. u64 *lm_root;
  2650. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2651. if (lm_root == NULL)
  2652. return 1;
  2653. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2654. vcpu->arch.mmu.lm_root = lm_root;
  2655. }
  2656. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2657. }
  2658. return 0;
  2659. }
  2660. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2661. {
  2662. if (vcpu->arch.mmu.direct_map)
  2663. return mmu_alloc_direct_roots(vcpu);
  2664. else
  2665. return mmu_alloc_shadow_roots(vcpu);
  2666. }
  2667. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2668. {
  2669. int i;
  2670. struct kvm_mmu_page *sp;
  2671. if (vcpu->arch.mmu.direct_map)
  2672. return;
  2673. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2674. return;
  2675. vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
  2676. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2677. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2678. hpa_t root = vcpu->arch.mmu.root_hpa;
  2679. sp = page_header(root);
  2680. mmu_sync_children(vcpu, sp);
  2681. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2682. return;
  2683. }
  2684. for (i = 0; i < 4; ++i) {
  2685. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2686. if (root && VALID_PAGE(root)) {
  2687. root &= PT64_BASE_ADDR_MASK;
  2688. sp = page_header(root);
  2689. mmu_sync_children(vcpu, sp);
  2690. }
  2691. }
  2692. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2693. }
  2694. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2695. {
  2696. spin_lock(&vcpu->kvm->mmu_lock);
  2697. mmu_sync_roots(vcpu);
  2698. spin_unlock(&vcpu->kvm->mmu_lock);
  2699. }
  2700. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2701. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2702. u32 access, struct x86_exception *exception)
  2703. {
  2704. if (exception)
  2705. exception->error_code = 0;
  2706. return vaddr;
  2707. }
  2708. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2709. u32 access,
  2710. struct x86_exception *exception)
  2711. {
  2712. if (exception)
  2713. exception->error_code = 0;
  2714. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
  2715. }
  2716. static bool
  2717. __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
  2718. {
  2719. int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
  2720. return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
  2721. ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
  2722. }
  2723. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2724. {
  2725. return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
  2726. }
  2727. static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
  2728. {
  2729. return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
  2730. }
  2731. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2732. {
  2733. if (direct)
  2734. return vcpu_match_mmio_gpa(vcpu, addr);
  2735. return vcpu_match_mmio_gva(vcpu, addr);
  2736. }
  2737. /* return true if reserved bit is detected on spte. */
  2738. static bool
  2739. walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
  2740. {
  2741. struct kvm_shadow_walk_iterator iterator;
  2742. u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
  2743. int root, leaf;
  2744. bool reserved = false;
  2745. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2746. goto exit;
  2747. walk_shadow_page_lockless_begin(vcpu);
  2748. for (shadow_walk_init(&iterator, vcpu, addr),
  2749. leaf = root = iterator.level;
  2750. shadow_walk_okay(&iterator);
  2751. __shadow_walk_next(&iterator, spte)) {
  2752. spte = mmu_spte_get_lockless(iterator.sptep);
  2753. sptes[leaf - 1] = spte;
  2754. leaf--;
  2755. if (!is_shadow_present_pte(spte))
  2756. break;
  2757. reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
  2758. leaf);
  2759. }
  2760. walk_shadow_page_lockless_end(vcpu);
  2761. if (reserved) {
  2762. pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
  2763. __func__, addr);
  2764. while (root > leaf) {
  2765. pr_err("------ spte 0x%llx level %d.\n",
  2766. sptes[root - 1], root);
  2767. root--;
  2768. }
  2769. }
  2770. exit:
  2771. *sptep = spte;
  2772. return reserved;
  2773. }
  2774. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2775. {
  2776. u64 spte;
  2777. bool reserved;
  2778. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2779. return RET_MMIO_PF_EMULATE;
  2780. reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
  2781. if (unlikely(reserved))
  2782. return RET_MMIO_PF_BUG;
  2783. if (is_mmio_spte(spte)) {
  2784. gfn_t gfn = get_mmio_spte_gfn(spte);
  2785. unsigned access = get_mmio_spte_access(spte);
  2786. if (!check_mmio_spte(vcpu, spte))
  2787. return RET_MMIO_PF_INVALID;
  2788. if (direct)
  2789. addr = 0;
  2790. trace_handle_mmio_page_fault(addr, gfn, access);
  2791. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2792. return RET_MMIO_PF_EMULATE;
  2793. }
  2794. /*
  2795. * If the page table is zapped by other cpus, let CPU fault again on
  2796. * the address.
  2797. */
  2798. return RET_MMIO_PF_RETRY;
  2799. }
  2800. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2801. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2802. u32 error_code, bool direct)
  2803. {
  2804. int ret;
  2805. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2806. WARN_ON(ret == RET_MMIO_PF_BUG);
  2807. return ret;
  2808. }
  2809. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2810. u32 error_code, bool prefault)
  2811. {
  2812. gfn_t gfn;
  2813. int r;
  2814. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2815. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2816. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2817. if (likely(r != RET_MMIO_PF_INVALID))
  2818. return r;
  2819. }
  2820. r = mmu_topup_memory_caches(vcpu);
  2821. if (r)
  2822. return r;
  2823. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2824. gfn = gva >> PAGE_SHIFT;
  2825. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2826. error_code, gfn, prefault);
  2827. }
  2828. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2829. {
  2830. struct kvm_arch_async_pf arch;
  2831. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2832. arch.gfn = gfn;
  2833. arch.direct_map = vcpu->arch.mmu.direct_map;
  2834. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2835. return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
  2836. }
  2837. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2838. {
  2839. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2840. kvm_event_needs_reinjection(vcpu)))
  2841. return false;
  2842. return kvm_x86_ops->interrupt_allowed(vcpu);
  2843. }
  2844. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2845. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2846. {
  2847. struct kvm_memory_slot *slot;
  2848. bool async;
  2849. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  2850. async = false;
  2851. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
  2852. if (!async)
  2853. return false; /* *pfn has correct page already */
  2854. if (!prefault && can_do_async_pf(vcpu)) {
  2855. trace_kvm_try_async_get_page(gva, gfn);
  2856. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2857. trace_kvm_async_pf_doublefault(gva, gfn);
  2858. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2859. return true;
  2860. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2861. return true;
  2862. }
  2863. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
  2864. return false;
  2865. }
  2866. static bool
  2867. check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
  2868. {
  2869. int page_num = KVM_PAGES_PER_HPAGE(level);
  2870. gfn &= ~(page_num - 1);
  2871. return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
  2872. }
  2873. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2874. bool prefault)
  2875. {
  2876. pfn_t pfn;
  2877. int r;
  2878. int level;
  2879. int force_pt_level;
  2880. gfn_t gfn = gpa >> PAGE_SHIFT;
  2881. unsigned long mmu_seq;
  2882. int write = error_code & PFERR_WRITE_MASK;
  2883. bool map_writable;
  2884. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2885. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2886. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2887. if (likely(r != RET_MMIO_PF_INVALID))
  2888. return r;
  2889. }
  2890. r = mmu_topup_memory_caches(vcpu);
  2891. if (r)
  2892. return r;
  2893. if (mapping_level_dirty_bitmap(vcpu, gfn) ||
  2894. !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL))
  2895. force_pt_level = 1;
  2896. else
  2897. force_pt_level = 0;
  2898. if (likely(!force_pt_level)) {
  2899. level = mapping_level(vcpu, gfn);
  2900. if (level > PT_DIRECTORY_LEVEL &&
  2901. !check_hugepage_cache_consistency(vcpu, gfn, level))
  2902. level = PT_DIRECTORY_LEVEL;
  2903. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2904. } else
  2905. level = PT_PAGE_TABLE_LEVEL;
  2906. if (fast_page_fault(vcpu, gpa, level, error_code))
  2907. return 0;
  2908. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2909. smp_rmb();
  2910. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2911. return 0;
  2912. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2913. return r;
  2914. spin_lock(&vcpu->kvm->mmu_lock);
  2915. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2916. goto out_unlock;
  2917. make_mmu_pages_available(vcpu);
  2918. if (likely(!force_pt_level))
  2919. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2920. r = __direct_map(vcpu, gpa, write, map_writable,
  2921. level, gfn, pfn, prefault);
  2922. spin_unlock(&vcpu->kvm->mmu_lock);
  2923. return r;
  2924. out_unlock:
  2925. spin_unlock(&vcpu->kvm->mmu_lock);
  2926. kvm_release_pfn_clean(pfn);
  2927. return 0;
  2928. }
  2929. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2930. struct kvm_mmu *context)
  2931. {
  2932. context->page_fault = nonpaging_page_fault;
  2933. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2934. context->sync_page = nonpaging_sync_page;
  2935. context->invlpg = nonpaging_invlpg;
  2936. context->update_pte = nonpaging_update_pte;
  2937. context->root_level = 0;
  2938. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2939. context->root_hpa = INVALID_PAGE;
  2940. context->direct_map = true;
  2941. context->nx = false;
  2942. }
  2943. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2944. {
  2945. mmu_free_roots(vcpu);
  2946. }
  2947. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2948. {
  2949. return kvm_read_cr3(vcpu);
  2950. }
  2951. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2952. struct x86_exception *fault)
  2953. {
  2954. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2955. }
  2956. static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  2957. unsigned access, int *nr_present)
  2958. {
  2959. if (unlikely(is_mmio_spte(*sptep))) {
  2960. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2961. mmu_spte_clear_no_track(sptep);
  2962. return true;
  2963. }
  2964. (*nr_present)++;
  2965. mark_mmio_spte(vcpu, sptep, gfn, access);
  2966. return true;
  2967. }
  2968. return false;
  2969. }
  2970. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2971. {
  2972. unsigned index;
  2973. index = level - 1;
  2974. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2975. return mmu->last_pte_bitmap & (1 << index);
  2976. }
  2977. #define PTTYPE_EPT 18 /* arbitrary */
  2978. #define PTTYPE PTTYPE_EPT
  2979. #include "paging_tmpl.h"
  2980. #undef PTTYPE
  2981. #define PTTYPE 64
  2982. #include "paging_tmpl.h"
  2983. #undef PTTYPE
  2984. #define PTTYPE 32
  2985. #include "paging_tmpl.h"
  2986. #undef PTTYPE
  2987. static void
  2988. __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2989. struct rsvd_bits_validate *rsvd_check,
  2990. int maxphyaddr, int level, bool nx, bool gbpages,
  2991. bool pse)
  2992. {
  2993. u64 exb_bit_rsvd = 0;
  2994. u64 gbpages_bit_rsvd = 0;
  2995. u64 nonleaf_bit8_rsvd = 0;
  2996. rsvd_check->bad_mt_xwr = 0;
  2997. if (!nx)
  2998. exb_bit_rsvd = rsvd_bits(63, 63);
  2999. if (!gbpages)
  3000. gbpages_bit_rsvd = rsvd_bits(7, 7);
  3001. /*
  3002. * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
  3003. * leaf entries) on AMD CPUs only.
  3004. */
  3005. if (guest_cpuid_is_amd(vcpu))
  3006. nonleaf_bit8_rsvd = rsvd_bits(8, 8);
  3007. switch (level) {
  3008. case PT32_ROOT_LEVEL:
  3009. /* no rsvd bits for 2 level 4K page table entries */
  3010. rsvd_check->rsvd_bits_mask[0][1] = 0;
  3011. rsvd_check->rsvd_bits_mask[0][0] = 0;
  3012. rsvd_check->rsvd_bits_mask[1][0] =
  3013. rsvd_check->rsvd_bits_mask[0][0];
  3014. if (!pse) {
  3015. rsvd_check->rsvd_bits_mask[1][1] = 0;
  3016. break;
  3017. }
  3018. if (is_cpuid_PSE36())
  3019. /* 36bits PSE 4MB page */
  3020. rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  3021. else
  3022. /* 32 bits PSE 4MB page */
  3023. rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  3024. break;
  3025. case PT32E_ROOT_LEVEL:
  3026. rsvd_check->rsvd_bits_mask[0][2] =
  3027. rsvd_bits(maxphyaddr, 63) |
  3028. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  3029. rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3030. rsvd_bits(maxphyaddr, 62); /* PDE */
  3031. rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3032. rsvd_bits(maxphyaddr, 62); /* PTE */
  3033. rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3034. rsvd_bits(maxphyaddr, 62) |
  3035. rsvd_bits(13, 20); /* large page */
  3036. rsvd_check->rsvd_bits_mask[1][0] =
  3037. rsvd_check->rsvd_bits_mask[0][0];
  3038. break;
  3039. case PT64_ROOT_LEVEL:
  3040. rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  3041. nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
  3042. rsvd_bits(maxphyaddr, 51);
  3043. rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  3044. nonleaf_bit8_rsvd | gbpages_bit_rsvd |
  3045. rsvd_bits(maxphyaddr, 51);
  3046. rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3047. rsvd_bits(maxphyaddr, 51);
  3048. rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3049. rsvd_bits(maxphyaddr, 51);
  3050. rsvd_check->rsvd_bits_mask[1][3] =
  3051. rsvd_check->rsvd_bits_mask[0][3];
  3052. rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  3053. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  3054. rsvd_bits(13, 29);
  3055. rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3056. rsvd_bits(maxphyaddr, 51) |
  3057. rsvd_bits(13, 20); /* large page */
  3058. rsvd_check->rsvd_bits_mask[1][0] =
  3059. rsvd_check->rsvd_bits_mask[0][0];
  3060. break;
  3061. }
  3062. }
  3063. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  3064. struct kvm_mmu *context)
  3065. {
  3066. __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
  3067. cpuid_maxphyaddr(vcpu), context->root_level,
  3068. context->nx, guest_cpuid_has_gbpages(vcpu),
  3069. is_pse(vcpu));
  3070. }
  3071. static void
  3072. __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
  3073. int maxphyaddr, bool execonly)
  3074. {
  3075. int pte;
  3076. rsvd_check->rsvd_bits_mask[0][3] =
  3077. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  3078. rsvd_check->rsvd_bits_mask[0][2] =
  3079. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3080. rsvd_check->rsvd_bits_mask[0][1] =
  3081. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3082. rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  3083. /* large page */
  3084. rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
  3085. rsvd_check->rsvd_bits_mask[1][2] =
  3086. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  3087. rsvd_check->rsvd_bits_mask[1][1] =
  3088. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  3089. rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
  3090. for (pte = 0; pte < 64; pte++) {
  3091. int rwx_bits = pte & 7;
  3092. int mt = pte >> 3;
  3093. if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
  3094. rwx_bits == 0x2 || rwx_bits == 0x6 ||
  3095. (rwx_bits == 0x4 && !execonly))
  3096. rsvd_check->bad_mt_xwr |= (1ull << pte);
  3097. }
  3098. }
  3099. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  3100. struct kvm_mmu *context, bool execonly)
  3101. {
  3102. __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
  3103. cpuid_maxphyaddr(vcpu), execonly);
  3104. }
  3105. /*
  3106. * the page table on host is the shadow page table for the page
  3107. * table in guest or amd nested guest, its mmu features completely
  3108. * follow the features in guest.
  3109. */
  3110. void
  3111. reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3112. {
  3113. __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
  3114. boot_cpu_data.x86_phys_bits,
  3115. context->shadow_root_level, context->nx,
  3116. guest_cpuid_has_gbpages(vcpu), is_pse(vcpu));
  3117. }
  3118. EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
  3119. /*
  3120. * the direct page table on host, use as much mmu features as
  3121. * possible, however, kvm currently does not do execution-protection.
  3122. */
  3123. static void
  3124. reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
  3125. struct kvm_mmu *context)
  3126. {
  3127. if (guest_cpuid_is_amd(vcpu))
  3128. __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
  3129. boot_cpu_data.x86_phys_bits,
  3130. context->shadow_root_level, false,
  3131. cpu_has_gbpages, true);
  3132. else
  3133. __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
  3134. boot_cpu_data.x86_phys_bits,
  3135. false);
  3136. }
  3137. /*
  3138. * as the comments in reset_shadow_zero_bits_mask() except it
  3139. * is the shadow page table for intel nested guest.
  3140. */
  3141. static void
  3142. reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
  3143. struct kvm_mmu *context, bool execonly)
  3144. {
  3145. __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
  3146. boot_cpu_data.x86_phys_bits, execonly);
  3147. }
  3148. static void update_permission_bitmask(struct kvm_vcpu *vcpu,
  3149. struct kvm_mmu *mmu, bool ept)
  3150. {
  3151. unsigned bit, byte, pfec;
  3152. u8 map;
  3153. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  3154. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3155. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3156. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  3157. pfec = byte << 1;
  3158. map = 0;
  3159. wf = pfec & PFERR_WRITE_MASK;
  3160. uf = pfec & PFERR_USER_MASK;
  3161. ff = pfec & PFERR_FETCH_MASK;
  3162. /*
  3163. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3164. * subject to SMAP restrictions, and cleared otherwise. The
  3165. * bit is only meaningful if the SMAP bit is set in CR4.
  3166. */
  3167. smapf = !(pfec & PFERR_RSVD_MASK);
  3168. for (bit = 0; bit < 8; ++bit) {
  3169. x = bit & ACC_EXEC_MASK;
  3170. w = bit & ACC_WRITE_MASK;
  3171. u = bit & ACC_USER_MASK;
  3172. if (!ept) {
  3173. /* Not really needed: !nx will cause pte.nx to fault */
  3174. x |= !mmu->nx;
  3175. /* Allow supervisor writes if !cr0.wp */
  3176. w |= !is_write_protection(vcpu) && !uf;
  3177. /* Disallow supervisor fetches of user code if cr4.smep */
  3178. x &= !(cr4_smep && u && !uf);
  3179. /*
  3180. * SMAP:kernel-mode data accesses from user-mode
  3181. * mappings should fault. A fault is considered
  3182. * as a SMAP violation if all of the following
  3183. * conditions are ture:
  3184. * - X86_CR4_SMAP is set in CR4
  3185. * - An user page is accessed
  3186. * - Page fault in kernel mode
  3187. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3188. *
  3189. * Here, we cover the first three conditions.
  3190. * The fourth is computed dynamically in
  3191. * permission_fault() and is in smapf.
  3192. *
  3193. * Also, SMAP does not affect instruction
  3194. * fetches, add the !ff check here to make it
  3195. * clearer.
  3196. */
  3197. smap = cr4_smap && u && !uf && !ff;
  3198. } else
  3199. /* Not really needed: no U/S accesses on ept */
  3200. u = 1;
  3201. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3202. (smapf && smap);
  3203. map |= fault << bit;
  3204. }
  3205. mmu->permissions[byte] = map;
  3206. }
  3207. }
  3208. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3209. {
  3210. u8 map;
  3211. unsigned level, root_level = mmu->root_level;
  3212. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3213. if (root_level == PT32E_ROOT_LEVEL)
  3214. --root_level;
  3215. /* PT_PAGE_TABLE_LEVEL always terminates */
  3216. map = 1 | (1 << ps_set_index);
  3217. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3218. if (level <= PT_PDPE_LEVEL
  3219. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3220. map |= 1 << (ps_set_index | (level - 1));
  3221. }
  3222. mmu->last_pte_bitmap = map;
  3223. }
  3224. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3225. struct kvm_mmu *context,
  3226. int level)
  3227. {
  3228. context->nx = is_nx(vcpu);
  3229. context->root_level = level;
  3230. reset_rsvds_bits_mask(vcpu, context);
  3231. update_permission_bitmask(vcpu, context, false);
  3232. update_last_pte_bitmap(vcpu, context);
  3233. MMU_WARN_ON(!is_pae(vcpu));
  3234. context->page_fault = paging64_page_fault;
  3235. context->gva_to_gpa = paging64_gva_to_gpa;
  3236. context->sync_page = paging64_sync_page;
  3237. context->invlpg = paging64_invlpg;
  3238. context->update_pte = paging64_update_pte;
  3239. context->shadow_root_level = level;
  3240. context->root_hpa = INVALID_PAGE;
  3241. context->direct_map = false;
  3242. }
  3243. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3244. struct kvm_mmu *context)
  3245. {
  3246. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3247. }
  3248. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3249. struct kvm_mmu *context)
  3250. {
  3251. context->nx = false;
  3252. context->root_level = PT32_ROOT_LEVEL;
  3253. reset_rsvds_bits_mask(vcpu, context);
  3254. update_permission_bitmask(vcpu, context, false);
  3255. update_last_pte_bitmap(vcpu, context);
  3256. context->page_fault = paging32_page_fault;
  3257. context->gva_to_gpa = paging32_gva_to_gpa;
  3258. context->sync_page = paging32_sync_page;
  3259. context->invlpg = paging32_invlpg;
  3260. context->update_pte = paging32_update_pte;
  3261. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3262. context->root_hpa = INVALID_PAGE;
  3263. context->direct_map = false;
  3264. }
  3265. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3266. struct kvm_mmu *context)
  3267. {
  3268. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3269. }
  3270. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3271. {
  3272. struct kvm_mmu *context = &vcpu->arch.mmu;
  3273. context->base_role.word = 0;
  3274. context->base_role.smm = is_smm(vcpu);
  3275. context->page_fault = tdp_page_fault;
  3276. context->sync_page = nonpaging_sync_page;
  3277. context->invlpg = nonpaging_invlpg;
  3278. context->update_pte = nonpaging_update_pte;
  3279. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3280. context->root_hpa = INVALID_PAGE;
  3281. context->direct_map = true;
  3282. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3283. context->get_cr3 = get_cr3;
  3284. context->get_pdptr = kvm_pdptr_read;
  3285. context->inject_page_fault = kvm_inject_page_fault;
  3286. if (!is_paging(vcpu)) {
  3287. context->nx = false;
  3288. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3289. context->root_level = 0;
  3290. } else if (is_long_mode(vcpu)) {
  3291. context->nx = is_nx(vcpu);
  3292. context->root_level = PT64_ROOT_LEVEL;
  3293. reset_rsvds_bits_mask(vcpu, context);
  3294. context->gva_to_gpa = paging64_gva_to_gpa;
  3295. } else if (is_pae(vcpu)) {
  3296. context->nx = is_nx(vcpu);
  3297. context->root_level = PT32E_ROOT_LEVEL;
  3298. reset_rsvds_bits_mask(vcpu, context);
  3299. context->gva_to_gpa = paging64_gva_to_gpa;
  3300. } else {
  3301. context->nx = false;
  3302. context->root_level = PT32_ROOT_LEVEL;
  3303. reset_rsvds_bits_mask(vcpu, context);
  3304. context->gva_to_gpa = paging32_gva_to_gpa;
  3305. }
  3306. update_permission_bitmask(vcpu, context, false);
  3307. update_last_pte_bitmap(vcpu, context);
  3308. reset_tdp_shadow_zero_bits_mask(vcpu, context);
  3309. }
  3310. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
  3311. {
  3312. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3313. bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3314. struct kvm_mmu *context = &vcpu->arch.mmu;
  3315. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3316. if (!is_paging(vcpu))
  3317. nonpaging_init_context(vcpu, context);
  3318. else if (is_long_mode(vcpu))
  3319. paging64_init_context(vcpu, context);
  3320. else if (is_pae(vcpu))
  3321. paging32E_init_context(vcpu, context);
  3322. else
  3323. paging32_init_context(vcpu, context);
  3324. context->base_role.nxe = is_nx(vcpu);
  3325. context->base_role.cr4_pae = !!is_pae(vcpu);
  3326. context->base_role.cr0_wp = is_write_protection(vcpu);
  3327. context->base_role.smep_andnot_wp
  3328. = smep && !is_write_protection(vcpu);
  3329. context->base_role.smap_andnot_wp
  3330. = smap && !is_write_protection(vcpu);
  3331. context->base_role.smm = is_smm(vcpu);
  3332. reset_shadow_zero_bits_mask(vcpu, context);
  3333. }
  3334. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3335. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
  3336. {
  3337. struct kvm_mmu *context = &vcpu->arch.mmu;
  3338. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3339. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3340. context->nx = true;
  3341. context->page_fault = ept_page_fault;
  3342. context->gva_to_gpa = ept_gva_to_gpa;
  3343. context->sync_page = ept_sync_page;
  3344. context->invlpg = ept_invlpg;
  3345. context->update_pte = ept_update_pte;
  3346. context->root_level = context->shadow_root_level;
  3347. context->root_hpa = INVALID_PAGE;
  3348. context->direct_map = false;
  3349. update_permission_bitmask(vcpu, context, true);
  3350. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3351. reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
  3352. }
  3353. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3354. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3355. {
  3356. struct kvm_mmu *context = &vcpu->arch.mmu;
  3357. kvm_init_shadow_mmu(vcpu);
  3358. context->set_cr3 = kvm_x86_ops->set_cr3;
  3359. context->get_cr3 = get_cr3;
  3360. context->get_pdptr = kvm_pdptr_read;
  3361. context->inject_page_fault = kvm_inject_page_fault;
  3362. }
  3363. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3364. {
  3365. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3366. g_context->get_cr3 = get_cr3;
  3367. g_context->get_pdptr = kvm_pdptr_read;
  3368. g_context->inject_page_fault = kvm_inject_page_fault;
  3369. /*
  3370. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3371. * translation of l2_gpa to l1_gpa addresses is done using the
  3372. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3373. * functions between mmu and nested_mmu are swapped.
  3374. */
  3375. if (!is_paging(vcpu)) {
  3376. g_context->nx = false;
  3377. g_context->root_level = 0;
  3378. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3379. } else if (is_long_mode(vcpu)) {
  3380. g_context->nx = is_nx(vcpu);
  3381. g_context->root_level = PT64_ROOT_LEVEL;
  3382. reset_rsvds_bits_mask(vcpu, g_context);
  3383. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3384. } else if (is_pae(vcpu)) {
  3385. g_context->nx = is_nx(vcpu);
  3386. g_context->root_level = PT32E_ROOT_LEVEL;
  3387. reset_rsvds_bits_mask(vcpu, g_context);
  3388. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3389. } else {
  3390. g_context->nx = false;
  3391. g_context->root_level = PT32_ROOT_LEVEL;
  3392. reset_rsvds_bits_mask(vcpu, g_context);
  3393. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3394. }
  3395. update_permission_bitmask(vcpu, g_context, false);
  3396. update_last_pte_bitmap(vcpu, g_context);
  3397. }
  3398. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3399. {
  3400. if (mmu_is_nested(vcpu))
  3401. init_kvm_nested_mmu(vcpu);
  3402. else if (tdp_enabled)
  3403. init_kvm_tdp_mmu(vcpu);
  3404. else
  3405. init_kvm_softmmu(vcpu);
  3406. }
  3407. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3408. {
  3409. kvm_mmu_unload(vcpu);
  3410. init_kvm_mmu(vcpu);
  3411. }
  3412. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3413. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3414. {
  3415. int r;
  3416. r = mmu_topup_memory_caches(vcpu);
  3417. if (r)
  3418. goto out;
  3419. r = mmu_alloc_roots(vcpu);
  3420. kvm_mmu_sync_roots(vcpu);
  3421. if (r)
  3422. goto out;
  3423. /* set_cr3() should ensure TLB has been flushed */
  3424. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3425. out:
  3426. return r;
  3427. }
  3428. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3429. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3430. {
  3431. mmu_free_roots(vcpu);
  3432. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3433. }
  3434. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3435. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3436. struct kvm_mmu_page *sp, u64 *spte,
  3437. const void *new)
  3438. {
  3439. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3440. ++vcpu->kvm->stat.mmu_pde_zapped;
  3441. return;
  3442. }
  3443. ++vcpu->kvm->stat.mmu_pte_updated;
  3444. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3445. }
  3446. static bool need_remote_flush(u64 old, u64 new)
  3447. {
  3448. if (!is_shadow_present_pte(old))
  3449. return false;
  3450. if (!is_shadow_present_pte(new))
  3451. return true;
  3452. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3453. return true;
  3454. old ^= shadow_nx_mask;
  3455. new ^= shadow_nx_mask;
  3456. return (old & ~new & PT64_PERM_MASK) != 0;
  3457. }
  3458. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3459. bool remote_flush, bool local_flush)
  3460. {
  3461. if (zap_page)
  3462. return;
  3463. if (remote_flush)
  3464. kvm_flush_remote_tlbs(vcpu->kvm);
  3465. else if (local_flush)
  3466. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3467. }
  3468. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3469. const u8 *new, int *bytes)
  3470. {
  3471. u64 gentry;
  3472. int r;
  3473. /*
  3474. * Assume that the pte write on a page table of the same type
  3475. * as the current vcpu paging mode since we update the sptes only
  3476. * when they have the same mode.
  3477. */
  3478. if (is_pae(vcpu) && *bytes == 4) {
  3479. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3480. *gpa &= ~(gpa_t)7;
  3481. *bytes = 8;
  3482. r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
  3483. if (r)
  3484. gentry = 0;
  3485. new = (const u8 *)&gentry;
  3486. }
  3487. switch (*bytes) {
  3488. case 4:
  3489. gentry = *(const u32 *)new;
  3490. break;
  3491. case 8:
  3492. gentry = *(const u64 *)new;
  3493. break;
  3494. default:
  3495. gentry = 0;
  3496. break;
  3497. }
  3498. return gentry;
  3499. }
  3500. /*
  3501. * If we're seeing too many writes to a page, it may no longer be a page table,
  3502. * or we may be forking, in which case it is better to unmap the page.
  3503. */
  3504. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3505. {
  3506. /*
  3507. * Skip write-flooding detected for the sp whose level is 1, because
  3508. * it can become unsync, then the guest page is not write-protected.
  3509. */
  3510. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3511. return false;
  3512. return ++sp->write_flooding_count >= 3;
  3513. }
  3514. /*
  3515. * Misaligned accesses are too much trouble to fix up; also, they usually
  3516. * indicate a page is not used as a page table.
  3517. */
  3518. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3519. int bytes)
  3520. {
  3521. unsigned offset, pte_size, misaligned;
  3522. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3523. gpa, bytes, sp->role.word);
  3524. offset = offset_in_page(gpa);
  3525. pte_size = sp->role.cr4_pae ? 8 : 4;
  3526. /*
  3527. * Sometimes, the OS only writes the last one bytes to update status
  3528. * bits, for example, in linux, andb instruction is used in clear_bit().
  3529. */
  3530. if (!(offset & (pte_size - 1)) && bytes == 1)
  3531. return false;
  3532. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3533. misaligned |= bytes < 4;
  3534. return misaligned;
  3535. }
  3536. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3537. {
  3538. unsigned page_offset, quadrant;
  3539. u64 *spte;
  3540. int level;
  3541. page_offset = offset_in_page(gpa);
  3542. level = sp->role.level;
  3543. *nspte = 1;
  3544. if (!sp->role.cr4_pae) {
  3545. page_offset <<= 1; /* 32->64 */
  3546. /*
  3547. * A 32-bit pde maps 4MB while the shadow pdes map
  3548. * only 2MB. So we need to double the offset again
  3549. * and zap two pdes instead of one.
  3550. */
  3551. if (level == PT32_ROOT_LEVEL) {
  3552. page_offset &= ~7; /* kill rounding error */
  3553. page_offset <<= 1;
  3554. *nspte = 2;
  3555. }
  3556. quadrant = page_offset >> PAGE_SHIFT;
  3557. page_offset &= ~PAGE_MASK;
  3558. if (quadrant != sp->role.quadrant)
  3559. return NULL;
  3560. }
  3561. spte = &sp->spt[page_offset / sizeof(*spte)];
  3562. return spte;
  3563. }
  3564. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3565. const u8 *new, int bytes)
  3566. {
  3567. gfn_t gfn = gpa >> PAGE_SHIFT;
  3568. struct kvm_mmu_page *sp;
  3569. LIST_HEAD(invalid_list);
  3570. u64 entry, gentry, *spte;
  3571. int npte;
  3572. bool remote_flush, local_flush, zap_page;
  3573. union kvm_mmu_page_role mask = { };
  3574. mask.cr0_wp = 1;
  3575. mask.cr4_pae = 1;
  3576. mask.nxe = 1;
  3577. mask.smep_andnot_wp = 1;
  3578. mask.smap_andnot_wp = 1;
  3579. mask.smm = 1;
  3580. /*
  3581. * If we don't have indirect shadow pages, it means no page is
  3582. * write-protected, so we can exit simply.
  3583. */
  3584. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3585. return;
  3586. zap_page = remote_flush = local_flush = false;
  3587. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3588. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3589. /*
  3590. * No need to care whether allocation memory is successful
  3591. * or not since pte prefetch is skiped if it does not have
  3592. * enough objects in the cache.
  3593. */
  3594. mmu_topup_memory_caches(vcpu);
  3595. spin_lock(&vcpu->kvm->mmu_lock);
  3596. ++vcpu->kvm->stat.mmu_pte_write;
  3597. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3598. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3599. if (detect_write_misaligned(sp, gpa, bytes) ||
  3600. detect_write_flooding(sp)) {
  3601. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3602. &invalid_list);
  3603. ++vcpu->kvm->stat.mmu_flooded;
  3604. continue;
  3605. }
  3606. spte = get_written_sptes(sp, gpa, &npte);
  3607. if (!spte)
  3608. continue;
  3609. local_flush = true;
  3610. while (npte--) {
  3611. entry = *spte;
  3612. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3613. if (gentry &&
  3614. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3615. & mask.word) && rmap_can_add(vcpu))
  3616. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3617. if (need_remote_flush(entry, *spte))
  3618. remote_flush = true;
  3619. ++spte;
  3620. }
  3621. }
  3622. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3623. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3624. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3625. spin_unlock(&vcpu->kvm->mmu_lock);
  3626. }
  3627. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3628. {
  3629. gpa_t gpa;
  3630. int r;
  3631. if (vcpu->arch.mmu.direct_map)
  3632. return 0;
  3633. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3634. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3635. return r;
  3636. }
  3637. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3638. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3639. {
  3640. LIST_HEAD(invalid_list);
  3641. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3642. return;
  3643. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3644. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3645. break;
  3646. ++vcpu->kvm->stat.mmu_recycled;
  3647. }
  3648. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3649. }
  3650. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3651. {
  3652. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3653. return vcpu_match_mmio_gpa(vcpu, addr);
  3654. return vcpu_match_mmio_gva(vcpu, addr);
  3655. }
  3656. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3657. void *insn, int insn_len)
  3658. {
  3659. int r, emulation_type = EMULTYPE_RETRY;
  3660. enum emulation_result er;
  3661. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3662. if (r < 0)
  3663. goto out;
  3664. if (!r) {
  3665. r = 1;
  3666. goto out;
  3667. }
  3668. if (is_mmio_page_fault(vcpu, cr2))
  3669. emulation_type = 0;
  3670. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3671. switch (er) {
  3672. case EMULATE_DONE:
  3673. return 1;
  3674. case EMULATE_USER_EXIT:
  3675. ++vcpu->stat.mmio_exits;
  3676. /* fall through */
  3677. case EMULATE_FAIL:
  3678. return 0;
  3679. default:
  3680. BUG();
  3681. }
  3682. out:
  3683. return r;
  3684. }
  3685. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3686. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3687. {
  3688. vcpu->arch.mmu.invlpg(vcpu, gva);
  3689. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3690. ++vcpu->stat.invlpg;
  3691. }
  3692. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3693. void kvm_enable_tdp(void)
  3694. {
  3695. tdp_enabled = true;
  3696. }
  3697. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3698. void kvm_disable_tdp(void)
  3699. {
  3700. tdp_enabled = false;
  3701. }
  3702. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3703. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3704. {
  3705. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3706. if (vcpu->arch.mmu.lm_root != NULL)
  3707. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3708. }
  3709. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3710. {
  3711. struct page *page;
  3712. int i;
  3713. /*
  3714. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3715. * Therefore we need to allocate shadow page tables in the first
  3716. * 4GB of memory, which happens to fit the DMA32 zone.
  3717. */
  3718. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3719. if (!page)
  3720. return -ENOMEM;
  3721. vcpu->arch.mmu.pae_root = page_address(page);
  3722. for (i = 0; i < 4; ++i)
  3723. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3724. return 0;
  3725. }
  3726. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3727. {
  3728. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3729. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3730. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3731. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3732. return alloc_mmu_pages(vcpu);
  3733. }
  3734. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3735. {
  3736. MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3737. init_kvm_mmu(vcpu);
  3738. }
  3739. /* The return value indicates if tlb flush on all vcpus is needed. */
  3740. typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
  3741. /* The caller should hold mmu-lock before calling this function. */
  3742. static bool
  3743. slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3744. slot_level_handler fn, int start_level, int end_level,
  3745. gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
  3746. {
  3747. struct slot_rmap_walk_iterator iterator;
  3748. bool flush = false;
  3749. for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
  3750. end_gfn, &iterator) {
  3751. if (iterator.rmap)
  3752. flush |= fn(kvm, iterator.rmap);
  3753. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3754. if (flush && lock_flush_tlb) {
  3755. kvm_flush_remote_tlbs(kvm);
  3756. flush = false;
  3757. }
  3758. cond_resched_lock(&kvm->mmu_lock);
  3759. }
  3760. }
  3761. if (flush && lock_flush_tlb) {
  3762. kvm_flush_remote_tlbs(kvm);
  3763. flush = false;
  3764. }
  3765. return flush;
  3766. }
  3767. static bool
  3768. slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3769. slot_level_handler fn, int start_level, int end_level,
  3770. bool lock_flush_tlb)
  3771. {
  3772. return slot_handle_level_range(kvm, memslot, fn, start_level,
  3773. end_level, memslot->base_gfn,
  3774. memslot->base_gfn + memslot->npages - 1,
  3775. lock_flush_tlb);
  3776. }
  3777. static bool
  3778. slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3779. slot_level_handler fn, bool lock_flush_tlb)
  3780. {
  3781. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3782. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3783. }
  3784. static bool
  3785. slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3786. slot_level_handler fn, bool lock_flush_tlb)
  3787. {
  3788. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
  3789. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3790. }
  3791. static bool
  3792. slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3793. slot_level_handler fn, bool lock_flush_tlb)
  3794. {
  3795. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3796. PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
  3797. }
  3798. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
  3799. {
  3800. struct kvm_memslots *slots;
  3801. struct kvm_memory_slot *memslot;
  3802. int i;
  3803. spin_lock(&kvm->mmu_lock);
  3804. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  3805. slots = __kvm_memslots(kvm, i);
  3806. kvm_for_each_memslot(memslot, slots) {
  3807. gfn_t start, end;
  3808. start = max(gfn_start, memslot->base_gfn);
  3809. end = min(gfn_end, memslot->base_gfn + memslot->npages);
  3810. if (start >= end)
  3811. continue;
  3812. slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
  3813. PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
  3814. start, end - 1, true);
  3815. }
  3816. }
  3817. spin_unlock(&kvm->mmu_lock);
  3818. }
  3819. static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
  3820. {
  3821. return __rmap_write_protect(kvm, rmapp, false);
  3822. }
  3823. void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
  3824. struct kvm_memory_slot *memslot)
  3825. {
  3826. bool flush;
  3827. spin_lock(&kvm->mmu_lock);
  3828. flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
  3829. false);
  3830. spin_unlock(&kvm->mmu_lock);
  3831. /*
  3832. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3833. * which do tlb flush out of mmu-lock should be serialized by
  3834. * kvm->slots_lock otherwise tlb flush would be missed.
  3835. */
  3836. lockdep_assert_held(&kvm->slots_lock);
  3837. /*
  3838. * We can flush all the TLBs out of the mmu lock without TLB
  3839. * corruption since we just change the spte from writable to
  3840. * readonly so that we only need to care the case of changing
  3841. * spte from present to present (changing the spte from present
  3842. * to nonpresent will flush all the TLBs immediately), in other
  3843. * words, the only case we care is mmu_spte_update() where we
  3844. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3845. * instead of PT_WRITABLE_MASK, that means it does not depend
  3846. * on PT_WRITABLE_MASK anymore.
  3847. */
  3848. if (flush)
  3849. kvm_flush_remote_tlbs(kvm);
  3850. }
  3851. static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
  3852. unsigned long *rmapp)
  3853. {
  3854. u64 *sptep;
  3855. struct rmap_iterator iter;
  3856. int need_tlb_flush = 0;
  3857. pfn_t pfn;
  3858. struct kvm_mmu_page *sp;
  3859. restart:
  3860. for_each_rmap_spte(rmapp, &iter, sptep) {
  3861. sp = page_header(__pa(sptep));
  3862. pfn = spte_to_pfn(*sptep);
  3863. /*
  3864. * We cannot do huge page mapping for indirect shadow pages,
  3865. * which are found on the last rmap (level = 1) when not using
  3866. * tdp; such shadow pages are synced with the page table in
  3867. * the guest, and the guest page table is using 4K page size
  3868. * mapping if the indirect sp has level = 1.
  3869. */
  3870. if (sp->role.direct &&
  3871. !kvm_is_reserved_pfn(pfn) &&
  3872. PageTransCompound(pfn_to_page(pfn))) {
  3873. drop_spte(kvm, sptep);
  3874. need_tlb_flush = 1;
  3875. goto restart;
  3876. }
  3877. }
  3878. return need_tlb_flush;
  3879. }
  3880. void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
  3881. const struct kvm_memory_slot *memslot)
  3882. {
  3883. /* FIXME: const-ify all uses of struct kvm_memory_slot. */
  3884. spin_lock(&kvm->mmu_lock);
  3885. slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
  3886. kvm_mmu_zap_collapsible_spte, true);
  3887. spin_unlock(&kvm->mmu_lock);
  3888. }
  3889. void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
  3890. struct kvm_memory_slot *memslot)
  3891. {
  3892. bool flush;
  3893. spin_lock(&kvm->mmu_lock);
  3894. flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
  3895. spin_unlock(&kvm->mmu_lock);
  3896. lockdep_assert_held(&kvm->slots_lock);
  3897. /*
  3898. * It's also safe to flush TLBs out of mmu lock here as currently this
  3899. * function is only used for dirty logging, in which case flushing TLB
  3900. * out of mmu lock also guarantees no dirty pages will be lost in
  3901. * dirty_bitmap.
  3902. */
  3903. if (flush)
  3904. kvm_flush_remote_tlbs(kvm);
  3905. }
  3906. EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
  3907. void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
  3908. struct kvm_memory_slot *memslot)
  3909. {
  3910. bool flush;
  3911. spin_lock(&kvm->mmu_lock);
  3912. flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
  3913. false);
  3914. spin_unlock(&kvm->mmu_lock);
  3915. /* see kvm_mmu_slot_remove_write_access */
  3916. lockdep_assert_held(&kvm->slots_lock);
  3917. if (flush)
  3918. kvm_flush_remote_tlbs(kvm);
  3919. }
  3920. EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
  3921. void kvm_mmu_slot_set_dirty(struct kvm *kvm,
  3922. struct kvm_memory_slot *memslot)
  3923. {
  3924. bool flush;
  3925. spin_lock(&kvm->mmu_lock);
  3926. flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
  3927. spin_unlock(&kvm->mmu_lock);
  3928. lockdep_assert_held(&kvm->slots_lock);
  3929. /* see kvm_mmu_slot_leaf_clear_dirty */
  3930. if (flush)
  3931. kvm_flush_remote_tlbs(kvm);
  3932. }
  3933. EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
  3934. #define BATCH_ZAP_PAGES 10
  3935. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3936. {
  3937. struct kvm_mmu_page *sp, *node;
  3938. int batch = 0;
  3939. restart:
  3940. list_for_each_entry_safe_reverse(sp, node,
  3941. &kvm->arch.active_mmu_pages, link) {
  3942. int ret;
  3943. /*
  3944. * No obsolete page exists before new created page since
  3945. * active_mmu_pages is the FIFO list.
  3946. */
  3947. if (!is_obsolete_sp(kvm, sp))
  3948. break;
  3949. /*
  3950. * Since we are reversely walking the list and the invalid
  3951. * list will be moved to the head, skip the invalid page
  3952. * can help us to avoid the infinity list walking.
  3953. */
  3954. if (sp->role.invalid)
  3955. continue;
  3956. /*
  3957. * Need not flush tlb since we only zap the sp with invalid
  3958. * generation number.
  3959. */
  3960. if (batch >= BATCH_ZAP_PAGES &&
  3961. cond_resched_lock(&kvm->mmu_lock)) {
  3962. batch = 0;
  3963. goto restart;
  3964. }
  3965. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3966. &kvm->arch.zapped_obsolete_pages);
  3967. batch += ret;
  3968. if (ret)
  3969. goto restart;
  3970. }
  3971. /*
  3972. * Should flush tlb before free page tables since lockless-walking
  3973. * may use the pages.
  3974. */
  3975. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3976. }
  3977. /*
  3978. * Fast invalidate all shadow pages and use lock-break technique
  3979. * to zap obsolete pages.
  3980. *
  3981. * It's required when memslot is being deleted or VM is being
  3982. * destroyed, in these cases, we should ensure that KVM MMU does
  3983. * not use any resource of the being-deleted slot or all slots
  3984. * after calling the function.
  3985. */
  3986. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3987. {
  3988. spin_lock(&kvm->mmu_lock);
  3989. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3990. kvm->arch.mmu_valid_gen++;
  3991. /*
  3992. * Notify all vcpus to reload its shadow page table
  3993. * and flush TLB. Then all vcpus will switch to new
  3994. * shadow page table with the new mmu_valid_gen.
  3995. *
  3996. * Note: we should do this under the protection of
  3997. * mmu-lock, otherwise, vcpu would purge shadow page
  3998. * but miss tlb flush.
  3999. */
  4000. kvm_reload_remote_mmus(kvm);
  4001. kvm_zap_obsolete_pages(kvm);
  4002. spin_unlock(&kvm->mmu_lock);
  4003. }
  4004. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  4005. {
  4006. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  4007. }
  4008. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
  4009. {
  4010. /*
  4011. * The very rare case: if the generation-number is round,
  4012. * zap all shadow pages.
  4013. */
  4014. if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
  4015. printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
  4016. kvm_mmu_invalidate_zap_all_pages(kvm);
  4017. }
  4018. }
  4019. static unsigned long
  4020. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  4021. {
  4022. struct kvm *kvm;
  4023. int nr_to_scan = sc->nr_to_scan;
  4024. unsigned long freed = 0;
  4025. spin_lock(&kvm_lock);
  4026. list_for_each_entry(kvm, &vm_list, vm_list) {
  4027. int idx;
  4028. LIST_HEAD(invalid_list);
  4029. /*
  4030. * Never scan more than sc->nr_to_scan VM instances.
  4031. * Will not hit this condition practically since we do not try
  4032. * to shrink more than one VM and it is very unlikely to see
  4033. * !n_used_mmu_pages so many times.
  4034. */
  4035. if (!nr_to_scan--)
  4036. break;
  4037. /*
  4038. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  4039. * here. We may skip a VM instance errorneosly, but we do not
  4040. * want to shrink a VM that only started to populate its MMU
  4041. * anyway.
  4042. */
  4043. if (!kvm->arch.n_used_mmu_pages &&
  4044. !kvm_has_zapped_obsolete_pages(kvm))
  4045. continue;
  4046. idx = srcu_read_lock(&kvm->srcu);
  4047. spin_lock(&kvm->mmu_lock);
  4048. if (kvm_has_zapped_obsolete_pages(kvm)) {
  4049. kvm_mmu_commit_zap_page(kvm,
  4050. &kvm->arch.zapped_obsolete_pages);
  4051. goto unlock;
  4052. }
  4053. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  4054. freed++;
  4055. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  4056. unlock:
  4057. spin_unlock(&kvm->mmu_lock);
  4058. srcu_read_unlock(&kvm->srcu, idx);
  4059. /*
  4060. * unfair on small ones
  4061. * per-vm shrinkers cry out
  4062. * sadness comes quickly
  4063. */
  4064. list_move_tail(&kvm->vm_list, &vm_list);
  4065. break;
  4066. }
  4067. spin_unlock(&kvm_lock);
  4068. return freed;
  4069. }
  4070. static unsigned long
  4071. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  4072. {
  4073. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  4074. }
  4075. static struct shrinker mmu_shrinker = {
  4076. .count_objects = mmu_shrink_count,
  4077. .scan_objects = mmu_shrink_scan,
  4078. .seeks = DEFAULT_SEEKS * 10,
  4079. };
  4080. static void mmu_destroy_caches(void)
  4081. {
  4082. if (pte_list_desc_cache)
  4083. kmem_cache_destroy(pte_list_desc_cache);
  4084. if (mmu_page_header_cache)
  4085. kmem_cache_destroy(mmu_page_header_cache);
  4086. }
  4087. int kvm_mmu_module_init(void)
  4088. {
  4089. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  4090. sizeof(struct pte_list_desc),
  4091. 0, 0, NULL);
  4092. if (!pte_list_desc_cache)
  4093. goto nomem;
  4094. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  4095. sizeof(struct kvm_mmu_page),
  4096. 0, 0, NULL);
  4097. if (!mmu_page_header_cache)
  4098. goto nomem;
  4099. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
  4100. goto nomem;
  4101. register_shrinker(&mmu_shrinker);
  4102. return 0;
  4103. nomem:
  4104. mmu_destroy_caches();
  4105. return -ENOMEM;
  4106. }
  4107. /*
  4108. * Caculate mmu pages needed for kvm.
  4109. */
  4110. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  4111. {
  4112. unsigned int nr_mmu_pages;
  4113. unsigned int nr_pages = 0;
  4114. struct kvm_memslots *slots;
  4115. struct kvm_memory_slot *memslot;
  4116. int i;
  4117. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  4118. slots = __kvm_memslots(kvm, i);
  4119. kvm_for_each_memslot(memslot, slots)
  4120. nr_pages += memslot->npages;
  4121. }
  4122. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  4123. nr_mmu_pages = max(nr_mmu_pages,
  4124. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  4125. return nr_mmu_pages;
  4126. }
  4127. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  4128. {
  4129. kvm_mmu_unload(vcpu);
  4130. free_mmu_pages(vcpu);
  4131. mmu_free_memory_caches(vcpu);
  4132. }
  4133. void kvm_mmu_module_exit(void)
  4134. {
  4135. mmu_destroy_caches();
  4136. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  4137. unregister_shrinker(&mmu_shrinker);
  4138. mmu_audit_disable();
  4139. }