book3s_hv.c 83 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/export.h>
  27. #include <linux/fs.h>
  28. #include <linux/anon_inodes.h>
  29. #include <linux/cpumask.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/page-flags.h>
  32. #include <linux/srcu.h>
  33. #include <linux/miscdevice.h>
  34. #include <linux/debugfs.h>
  35. #include <asm/reg.h>
  36. #include <asm/cputable.h>
  37. #include <asm/cache.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/tlbflush.h>
  40. #include <asm/uaccess.h>
  41. #include <asm/io.h>
  42. #include <asm/kvm_ppc.h>
  43. #include <asm/kvm_book3s.h>
  44. #include <asm/mmu_context.h>
  45. #include <asm/lppaca.h>
  46. #include <asm/processor.h>
  47. #include <asm/cputhreads.h>
  48. #include <asm/page.h>
  49. #include <asm/hvcall.h>
  50. #include <asm/switch_to.h>
  51. #include <asm/smp.h>
  52. #include <asm/dbell.h>
  53. #include <linux/gfp.h>
  54. #include <linux/vmalloc.h>
  55. #include <linux/highmem.h>
  56. #include <linux/hugetlb.h>
  57. #include <linux/module.h>
  58. #include "book3s.h"
  59. #define CREATE_TRACE_POINTS
  60. #include "trace_hv.h"
  61. /* #define EXIT_DEBUG */
  62. /* #define EXIT_DEBUG_SIMPLE */
  63. /* #define EXIT_DEBUG_INT */
  64. /* Used to indicate that a guest page fault needs to be handled */
  65. #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
  66. /* Used as a "null" value for timebase values */
  67. #define TB_NIL (~(u64)0)
  68. static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  69. #if defined(CONFIG_PPC_64K_PAGES)
  70. #define MPP_BUFFER_ORDER 0
  71. #elif defined(CONFIG_PPC_4K_PAGES)
  72. #define MPP_BUFFER_ORDER 3
  73. #endif
  74. static int dynamic_mt_modes = 6;
  75. module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
  76. MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
  77. static int target_smt_mode;
  78. module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
  79. MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
  80. static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  81. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  82. static bool kvmppc_ipi_thread(int cpu)
  83. {
  84. /* On POWER8 for IPIs to threads in the same core, use msgsnd */
  85. if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
  86. preempt_disable();
  87. if (cpu_first_thread_sibling(cpu) ==
  88. cpu_first_thread_sibling(smp_processor_id())) {
  89. unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
  90. msg |= cpu_thread_in_core(cpu);
  91. smp_mb();
  92. __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
  93. preempt_enable();
  94. return true;
  95. }
  96. preempt_enable();
  97. }
  98. #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
  99. if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
  100. xics_wake_cpu(cpu);
  101. return true;
  102. }
  103. #endif
  104. return false;
  105. }
  106. static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
  107. {
  108. int cpu;
  109. wait_queue_head_t *wqp;
  110. wqp = kvm_arch_vcpu_wq(vcpu);
  111. if (waitqueue_active(wqp)) {
  112. wake_up_interruptible(wqp);
  113. ++vcpu->stat.halt_wakeup;
  114. }
  115. if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
  116. return;
  117. /* CPU points to the first thread of the core */
  118. cpu = vcpu->cpu;
  119. if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
  120. smp_send_reschedule(cpu);
  121. }
  122. /*
  123. * We use the vcpu_load/put functions to measure stolen time.
  124. * Stolen time is counted as time when either the vcpu is able to
  125. * run as part of a virtual core, but the task running the vcore
  126. * is preempted or sleeping, or when the vcpu needs something done
  127. * in the kernel by the task running the vcpu, but that task is
  128. * preempted or sleeping. Those two things have to be counted
  129. * separately, since one of the vcpu tasks will take on the job
  130. * of running the core, and the other vcpu tasks in the vcore will
  131. * sleep waiting for it to do that, but that sleep shouldn't count
  132. * as stolen time.
  133. *
  134. * Hence we accumulate stolen time when the vcpu can run as part of
  135. * a vcore using vc->stolen_tb, and the stolen time when the vcpu
  136. * needs its task to do other things in the kernel (for example,
  137. * service a page fault) in busy_stolen. We don't accumulate
  138. * stolen time for a vcore when it is inactive, or for a vcpu
  139. * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
  140. * a misnomer; it means that the vcpu task is not executing in
  141. * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
  142. * the kernel. We don't have any way of dividing up that time
  143. * between time that the vcpu is genuinely stopped, time that
  144. * the task is actively working on behalf of the vcpu, and time
  145. * that the task is preempted, so we don't count any of it as
  146. * stolen.
  147. *
  148. * Updates to busy_stolen are protected by arch.tbacct_lock;
  149. * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
  150. * lock. The stolen times are measured in units of timebase ticks.
  151. * (Note that the != TB_NIL checks below are purely defensive;
  152. * they should never fail.)
  153. */
  154. static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
  155. {
  156. unsigned long flags;
  157. spin_lock_irqsave(&vc->stoltb_lock, flags);
  158. vc->preempt_tb = mftb();
  159. spin_unlock_irqrestore(&vc->stoltb_lock, flags);
  160. }
  161. static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
  162. {
  163. unsigned long flags;
  164. spin_lock_irqsave(&vc->stoltb_lock, flags);
  165. if (vc->preempt_tb != TB_NIL) {
  166. vc->stolen_tb += mftb() - vc->preempt_tb;
  167. vc->preempt_tb = TB_NIL;
  168. }
  169. spin_unlock_irqrestore(&vc->stoltb_lock, flags);
  170. }
  171. static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
  172. {
  173. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  174. unsigned long flags;
  175. /*
  176. * We can test vc->runner without taking the vcore lock,
  177. * because only this task ever sets vc->runner to this
  178. * vcpu, and once it is set to this vcpu, only this task
  179. * ever sets it to NULL.
  180. */
  181. if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
  182. kvmppc_core_end_stolen(vc);
  183. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  184. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
  185. vcpu->arch.busy_preempt != TB_NIL) {
  186. vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
  187. vcpu->arch.busy_preempt = TB_NIL;
  188. }
  189. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  190. }
  191. static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
  192. {
  193. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  194. unsigned long flags;
  195. if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
  196. kvmppc_core_start_stolen(vc);
  197. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  198. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
  199. vcpu->arch.busy_preempt = mftb();
  200. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  201. }
  202. static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
  203. {
  204. vcpu->arch.shregs.msr = msr;
  205. kvmppc_end_cede(vcpu);
  206. }
  207. static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
  208. {
  209. vcpu->arch.pvr = pvr;
  210. }
  211. static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
  212. {
  213. unsigned long pcr = 0;
  214. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  215. if (arch_compat) {
  216. switch (arch_compat) {
  217. case PVR_ARCH_205:
  218. /*
  219. * If an arch bit is set in PCR, all the defined
  220. * higher-order arch bits also have to be set.
  221. */
  222. pcr = PCR_ARCH_206 | PCR_ARCH_205;
  223. break;
  224. case PVR_ARCH_206:
  225. case PVR_ARCH_206p:
  226. pcr = PCR_ARCH_206;
  227. break;
  228. case PVR_ARCH_207:
  229. break;
  230. default:
  231. return -EINVAL;
  232. }
  233. if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
  234. /* POWER7 can't emulate POWER8 */
  235. if (!(pcr & PCR_ARCH_206))
  236. return -EINVAL;
  237. pcr &= ~PCR_ARCH_206;
  238. }
  239. }
  240. spin_lock(&vc->lock);
  241. vc->arch_compat = arch_compat;
  242. vc->pcr = pcr;
  243. spin_unlock(&vc->lock);
  244. return 0;
  245. }
  246. static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  247. {
  248. int r;
  249. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  250. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  251. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  252. for (r = 0; r < 16; ++r)
  253. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  254. r, kvmppc_get_gpr(vcpu, r),
  255. r+16, kvmppc_get_gpr(vcpu, r+16));
  256. pr_err("ctr = %.16lx lr = %.16lx\n",
  257. vcpu->arch.ctr, vcpu->arch.lr);
  258. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  259. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  260. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  261. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  262. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  263. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  264. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  265. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  266. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  267. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  268. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  269. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  270. for (r = 0; r < vcpu->arch.slb_max; ++r)
  271. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  272. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  273. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  274. vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
  275. vcpu->arch.last_inst);
  276. }
  277. static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  278. {
  279. int r;
  280. struct kvm_vcpu *v, *ret = NULL;
  281. mutex_lock(&kvm->lock);
  282. kvm_for_each_vcpu(r, v, kvm) {
  283. if (v->vcpu_id == id) {
  284. ret = v;
  285. break;
  286. }
  287. }
  288. mutex_unlock(&kvm->lock);
  289. return ret;
  290. }
  291. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  292. {
  293. vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
  294. vpa->yield_count = cpu_to_be32(1);
  295. }
  296. static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
  297. unsigned long addr, unsigned long len)
  298. {
  299. /* check address is cacheline aligned */
  300. if (addr & (L1_CACHE_BYTES - 1))
  301. return -EINVAL;
  302. spin_lock(&vcpu->arch.vpa_update_lock);
  303. if (v->next_gpa != addr || v->len != len) {
  304. v->next_gpa = addr;
  305. v->len = addr ? len : 0;
  306. v->update_pending = 1;
  307. }
  308. spin_unlock(&vcpu->arch.vpa_update_lock);
  309. return 0;
  310. }
  311. /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
  312. struct reg_vpa {
  313. u32 dummy;
  314. union {
  315. __be16 hword;
  316. __be32 word;
  317. } length;
  318. };
  319. static int vpa_is_registered(struct kvmppc_vpa *vpap)
  320. {
  321. if (vpap->update_pending)
  322. return vpap->next_gpa != 0;
  323. return vpap->pinned_addr != NULL;
  324. }
  325. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  326. unsigned long flags,
  327. unsigned long vcpuid, unsigned long vpa)
  328. {
  329. struct kvm *kvm = vcpu->kvm;
  330. unsigned long len, nb;
  331. void *va;
  332. struct kvm_vcpu *tvcpu;
  333. int err;
  334. int subfunc;
  335. struct kvmppc_vpa *vpap;
  336. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  337. if (!tvcpu)
  338. return H_PARAMETER;
  339. subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
  340. if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
  341. subfunc == H_VPA_REG_SLB) {
  342. /* Registering new area - address must be cache-line aligned */
  343. if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
  344. return H_PARAMETER;
  345. /* convert logical addr to kernel addr and read length */
  346. va = kvmppc_pin_guest_page(kvm, vpa, &nb);
  347. if (va == NULL)
  348. return H_PARAMETER;
  349. if (subfunc == H_VPA_REG_VPA)
  350. len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
  351. else
  352. len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
  353. kvmppc_unpin_guest_page(kvm, va, vpa, false);
  354. /* Check length */
  355. if (len > nb || len < sizeof(struct reg_vpa))
  356. return H_PARAMETER;
  357. } else {
  358. vpa = 0;
  359. len = 0;
  360. }
  361. err = H_PARAMETER;
  362. vpap = NULL;
  363. spin_lock(&tvcpu->arch.vpa_update_lock);
  364. switch (subfunc) {
  365. case H_VPA_REG_VPA: /* register VPA */
  366. if (len < sizeof(struct lppaca))
  367. break;
  368. vpap = &tvcpu->arch.vpa;
  369. err = 0;
  370. break;
  371. case H_VPA_REG_DTL: /* register DTL */
  372. if (len < sizeof(struct dtl_entry))
  373. break;
  374. len -= len % sizeof(struct dtl_entry);
  375. /* Check that they have previously registered a VPA */
  376. err = H_RESOURCE;
  377. if (!vpa_is_registered(&tvcpu->arch.vpa))
  378. break;
  379. vpap = &tvcpu->arch.dtl;
  380. err = 0;
  381. break;
  382. case H_VPA_REG_SLB: /* register SLB shadow buffer */
  383. /* Check that they have previously registered a VPA */
  384. err = H_RESOURCE;
  385. if (!vpa_is_registered(&tvcpu->arch.vpa))
  386. break;
  387. vpap = &tvcpu->arch.slb_shadow;
  388. err = 0;
  389. break;
  390. case H_VPA_DEREG_VPA: /* deregister VPA */
  391. /* Check they don't still have a DTL or SLB buf registered */
  392. err = H_RESOURCE;
  393. if (vpa_is_registered(&tvcpu->arch.dtl) ||
  394. vpa_is_registered(&tvcpu->arch.slb_shadow))
  395. break;
  396. vpap = &tvcpu->arch.vpa;
  397. err = 0;
  398. break;
  399. case H_VPA_DEREG_DTL: /* deregister DTL */
  400. vpap = &tvcpu->arch.dtl;
  401. err = 0;
  402. break;
  403. case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
  404. vpap = &tvcpu->arch.slb_shadow;
  405. err = 0;
  406. break;
  407. }
  408. if (vpap) {
  409. vpap->next_gpa = vpa;
  410. vpap->len = len;
  411. vpap->update_pending = 1;
  412. }
  413. spin_unlock(&tvcpu->arch.vpa_update_lock);
  414. return err;
  415. }
  416. static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
  417. {
  418. struct kvm *kvm = vcpu->kvm;
  419. void *va;
  420. unsigned long nb;
  421. unsigned long gpa;
  422. /*
  423. * We need to pin the page pointed to by vpap->next_gpa,
  424. * but we can't call kvmppc_pin_guest_page under the lock
  425. * as it does get_user_pages() and down_read(). So we
  426. * have to drop the lock, pin the page, then get the lock
  427. * again and check that a new area didn't get registered
  428. * in the meantime.
  429. */
  430. for (;;) {
  431. gpa = vpap->next_gpa;
  432. spin_unlock(&vcpu->arch.vpa_update_lock);
  433. va = NULL;
  434. nb = 0;
  435. if (gpa)
  436. va = kvmppc_pin_guest_page(kvm, gpa, &nb);
  437. spin_lock(&vcpu->arch.vpa_update_lock);
  438. if (gpa == vpap->next_gpa)
  439. break;
  440. /* sigh... unpin that one and try again */
  441. if (va)
  442. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  443. }
  444. vpap->update_pending = 0;
  445. if (va && nb < vpap->len) {
  446. /*
  447. * If it's now too short, it must be that userspace
  448. * has changed the mappings underlying guest memory,
  449. * so unregister the region.
  450. */
  451. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  452. va = NULL;
  453. }
  454. if (vpap->pinned_addr)
  455. kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
  456. vpap->dirty);
  457. vpap->gpa = gpa;
  458. vpap->pinned_addr = va;
  459. vpap->dirty = false;
  460. if (va)
  461. vpap->pinned_end = va + vpap->len;
  462. }
  463. static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
  464. {
  465. if (!(vcpu->arch.vpa.update_pending ||
  466. vcpu->arch.slb_shadow.update_pending ||
  467. vcpu->arch.dtl.update_pending))
  468. return;
  469. spin_lock(&vcpu->arch.vpa_update_lock);
  470. if (vcpu->arch.vpa.update_pending) {
  471. kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
  472. if (vcpu->arch.vpa.pinned_addr)
  473. init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
  474. }
  475. if (vcpu->arch.dtl.update_pending) {
  476. kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
  477. vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
  478. vcpu->arch.dtl_index = 0;
  479. }
  480. if (vcpu->arch.slb_shadow.update_pending)
  481. kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
  482. spin_unlock(&vcpu->arch.vpa_update_lock);
  483. }
  484. /*
  485. * Return the accumulated stolen time for the vcore up until `now'.
  486. * The caller should hold the vcore lock.
  487. */
  488. static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
  489. {
  490. u64 p;
  491. unsigned long flags;
  492. spin_lock_irqsave(&vc->stoltb_lock, flags);
  493. p = vc->stolen_tb;
  494. if (vc->vcore_state != VCORE_INACTIVE &&
  495. vc->preempt_tb != TB_NIL)
  496. p += now - vc->preempt_tb;
  497. spin_unlock_irqrestore(&vc->stoltb_lock, flags);
  498. return p;
  499. }
  500. static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
  501. struct kvmppc_vcore *vc)
  502. {
  503. struct dtl_entry *dt;
  504. struct lppaca *vpa;
  505. unsigned long stolen;
  506. unsigned long core_stolen;
  507. u64 now;
  508. dt = vcpu->arch.dtl_ptr;
  509. vpa = vcpu->arch.vpa.pinned_addr;
  510. now = mftb();
  511. core_stolen = vcore_stolen_time(vc, now);
  512. stolen = core_stolen - vcpu->arch.stolen_logged;
  513. vcpu->arch.stolen_logged = core_stolen;
  514. spin_lock_irq(&vcpu->arch.tbacct_lock);
  515. stolen += vcpu->arch.busy_stolen;
  516. vcpu->arch.busy_stolen = 0;
  517. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  518. if (!dt || !vpa)
  519. return;
  520. memset(dt, 0, sizeof(struct dtl_entry));
  521. dt->dispatch_reason = 7;
  522. dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
  523. dt->timebase = cpu_to_be64(now + vc->tb_offset);
  524. dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
  525. dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
  526. dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
  527. ++dt;
  528. if (dt == vcpu->arch.dtl.pinned_end)
  529. dt = vcpu->arch.dtl.pinned_addr;
  530. vcpu->arch.dtl_ptr = dt;
  531. /* order writing *dt vs. writing vpa->dtl_idx */
  532. smp_wmb();
  533. vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
  534. vcpu->arch.dtl.dirty = true;
  535. }
  536. static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
  537. {
  538. if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
  539. return true;
  540. if ((!vcpu->arch.vcore->arch_compat) &&
  541. cpu_has_feature(CPU_FTR_ARCH_207S))
  542. return true;
  543. return false;
  544. }
  545. static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
  546. unsigned long resource, unsigned long value1,
  547. unsigned long value2)
  548. {
  549. switch (resource) {
  550. case H_SET_MODE_RESOURCE_SET_CIABR:
  551. if (!kvmppc_power8_compatible(vcpu))
  552. return H_P2;
  553. if (value2)
  554. return H_P4;
  555. if (mflags)
  556. return H_UNSUPPORTED_FLAG_START;
  557. /* Guests can't breakpoint the hypervisor */
  558. if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
  559. return H_P3;
  560. vcpu->arch.ciabr = value1;
  561. return H_SUCCESS;
  562. case H_SET_MODE_RESOURCE_SET_DAWR:
  563. if (!kvmppc_power8_compatible(vcpu))
  564. return H_P2;
  565. if (mflags)
  566. return H_UNSUPPORTED_FLAG_START;
  567. if (value2 & DABRX_HYP)
  568. return H_P4;
  569. vcpu->arch.dawr = value1;
  570. vcpu->arch.dawrx = value2;
  571. return H_SUCCESS;
  572. default:
  573. return H_TOO_HARD;
  574. }
  575. }
  576. static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
  577. {
  578. struct kvmppc_vcore *vcore = target->arch.vcore;
  579. /*
  580. * We expect to have been called by the real mode handler
  581. * (kvmppc_rm_h_confer()) which would have directly returned
  582. * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
  583. * have useful work to do and should not confer) so we don't
  584. * recheck that here.
  585. */
  586. spin_lock(&vcore->lock);
  587. if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
  588. vcore->vcore_state != VCORE_INACTIVE &&
  589. vcore->runner)
  590. target = vcore->runner;
  591. spin_unlock(&vcore->lock);
  592. return kvm_vcpu_yield_to(target);
  593. }
  594. static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
  595. {
  596. int yield_count = 0;
  597. struct lppaca *lppaca;
  598. spin_lock(&vcpu->arch.vpa_update_lock);
  599. lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
  600. if (lppaca)
  601. yield_count = be32_to_cpu(lppaca->yield_count);
  602. spin_unlock(&vcpu->arch.vpa_update_lock);
  603. return yield_count;
  604. }
  605. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  606. {
  607. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  608. unsigned long target, ret = H_SUCCESS;
  609. int yield_count;
  610. struct kvm_vcpu *tvcpu;
  611. int idx, rc;
  612. if (req <= MAX_HCALL_OPCODE &&
  613. !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
  614. return RESUME_HOST;
  615. switch (req) {
  616. case H_CEDE:
  617. break;
  618. case H_PROD:
  619. target = kvmppc_get_gpr(vcpu, 4);
  620. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  621. if (!tvcpu) {
  622. ret = H_PARAMETER;
  623. break;
  624. }
  625. tvcpu->arch.prodded = 1;
  626. smp_mb();
  627. if (vcpu->arch.ceded) {
  628. if (waitqueue_active(&vcpu->wq)) {
  629. wake_up_interruptible(&vcpu->wq);
  630. vcpu->stat.halt_wakeup++;
  631. }
  632. }
  633. break;
  634. case H_CONFER:
  635. target = kvmppc_get_gpr(vcpu, 4);
  636. if (target == -1)
  637. break;
  638. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  639. if (!tvcpu) {
  640. ret = H_PARAMETER;
  641. break;
  642. }
  643. yield_count = kvmppc_get_gpr(vcpu, 5);
  644. if (kvmppc_get_yield_count(tvcpu) != yield_count)
  645. break;
  646. kvm_arch_vcpu_yield_to(tvcpu);
  647. break;
  648. case H_REGISTER_VPA:
  649. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  650. kvmppc_get_gpr(vcpu, 5),
  651. kvmppc_get_gpr(vcpu, 6));
  652. break;
  653. case H_RTAS:
  654. if (list_empty(&vcpu->kvm->arch.rtas_tokens))
  655. return RESUME_HOST;
  656. idx = srcu_read_lock(&vcpu->kvm->srcu);
  657. rc = kvmppc_rtas_hcall(vcpu);
  658. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  659. if (rc == -ENOENT)
  660. return RESUME_HOST;
  661. else if (rc == 0)
  662. break;
  663. /* Send the error out to userspace via KVM_RUN */
  664. return rc;
  665. case H_LOGICAL_CI_LOAD:
  666. ret = kvmppc_h_logical_ci_load(vcpu);
  667. if (ret == H_TOO_HARD)
  668. return RESUME_HOST;
  669. break;
  670. case H_LOGICAL_CI_STORE:
  671. ret = kvmppc_h_logical_ci_store(vcpu);
  672. if (ret == H_TOO_HARD)
  673. return RESUME_HOST;
  674. break;
  675. case H_SET_MODE:
  676. ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
  677. kvmppc_get_gpr(vcpu, 5),
  678. kvmppc_get_gpr(vcpu, 6),
  679. kvmppc_get_gpr(vcpu, 7));
  680. if (ret == H_TOO_HARD)
  681. return RESUME_HOST;
  682. break;
  683. case H_XIRR:
  684. case H_CPPR:
  685. case H_EOI:
  686. case H_IPI:
  687. case H_IPOLL:
  688. case H_XIRR_X:
  689. if (kvmppc_xics_enabled(vcpu)) {
  690. ret = kvmppc_xics_hcall(vcpu, req);
  691. break;
  692. } /* fallthrough */
  693. default:
  694. return RESUME_HOST;
  695. }
  696. kvmppc_set_gpr(vcpu, 3, ret);
  697. vcpu->arch.hcall_needed = 0;
  698. return RESUME_GUEST;
  699. }
  700. static int kvmppc_hcall_impl_hv(unsigned long cmd)
  701. {
  702. switch (cmd) {
  703. case H_CEDE:
  704. case H_PROD:
  705. case H_CONFER:
  706. case H_REGISTER_VPA:
  707. case H_SET_MODE:
  708. case H_LOGICAL_CI_LOAD:
  709. case H_LOGICAL_CI_STORE:
  710. #ifdef CONFIG_KVM_XICS
  711. case H_XIRR:
  712. case H_CPPR:
  713. case H_EOI:
  714. case H_IPI:
  715. case H_IPOLL:
  716. case H_XIRR_X:
  717. #endif
  718. return 1;
  719. }
  720. /* See if it's in the real-mode table */
  721. return kvmppc_hcall_impl_hv_realmode(cmd);
  722. }
  723. static int kvmppc_emulate_debug_inst(struct kvm_run *run,
  724. struct kvm_vcpu *vcpu)
  725. {
  726. u32 last_inst;
  727. if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
  728. EMULATE_DONE) {
  729. /*
  730. * Fetch failed, so return to guest and
  731. * try executing it again.
  732. */
  733. return RESUME_GUEST;
  734. }
  735. if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
  736. run->exit_reason = KVM_EXIT_DEBUG;
  737. run->debug.arch.address = kvmppc_get_pc(vcpu);
  738. return RESUME_HOST;
  739. } else {
  740. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  741. return RESUME_GUEST;
  742. }
  743. }
  744. static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  745. struct task_struct *tsk)
  746. {
  747. int r = RESUME_HOST;
  748. vcpu->stat.sum_exits++;
  749. run->exit_reason = KVM_EXIT_UNKNOWN;
  750. run->ready_for_interrupt_injection = 1;
  751. switch (vcpu->arch.trap) {
  752. /* We're good on these - the host merely wanted to get our attention */
  753. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  754. vcpu->stat.dec_exits++;
  755. r = RESUME_GUEST;
  756. break;
  757. case BOOK3S_INTERRUPT_EXTERNAL:
  758. case BOOK3S_INTERRUPT_H_DOORBELL:
  759. vcpu->stat.ext_intr_exits++;
  760. r = RESUME_GUEST;
  761. break;
  762. /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
  763. case BOOK3S_INTERRUPT_HMI:
  764. case BOOK3S_INTERRUPT_PERFMON:
  765. r = RESUME_GUEST;
  766. break;
  767. case BOOK3S_INTERRUPT_MACHINE_CHECK:
  768. /*
  769. * Deliver a machine check interrupt to the guest.
  770. * We have to do this, even if the host has handled the
  771. * machine check, because machine checks use SRR0/1 and
  772. * the interrupt might have trashed guest state in them.
  773. */
  774. kvmppc_book3s_queue_irqprio(vcpu,
  775. BOOK3S_INTERRUPT_MACHINE_CHECK);
  776. r = RESUME_GUEST;
  777. break;
  778. case BOOK3S_INTERRUPT_PROGRAM:
  779. {
  780. ulong flags;
  781. /*
  782. * Normally program interrupts are delivered directly
  783. * to the guest by the hardware, but we can get here
  784. * as a result of a hypervisor emulation interrupt
  785. * (e40) getting turned into a 700 by BML RTAS.
  786. */
  787. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  788. kvmppc_core_queue_program(vcpu, flags);
  789. r = RESUME_GUEST;
  790. break;
  791. }
  792. case BOOK3S_INTERRUPT_SYSCALL:
  793. {
  794. /* hcall - punt to userspace */
  795. int i;
  796. /* hypercall with MSR_PR has already been handled in rmode,
  797. * and never reaches here.
  798. */
  799. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  800. for (i = 0; i < 9; ++i)
  801. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  802. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  803. vcpu->arch.hcall_needed = 1;
  804. r = RESUME_HOST;
  805. break;
  806. }
  807. /*
  808. * We get these next two if the guest accesses a page which it thinks
  809. * it has mapped but which is not actually present, either because
  810. * it is for an emulated I/O device or because the corresonding
  811. * host page has been paged out. Any other HDSI/HISI interrupts
  812. * have been handled already.
  813. */
  814. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  815. r = RESUME_PAGE_FAULT;
  816. break;
  817. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  818. vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
  819. vcpu->arch.fault_dsisr = 0;
  820. r = RESUME_PAGE_FAULT;
  821. break;
  822. /*
  823. * This occurs if the guest executes an illegal instruction.
  824. * If the guest debug is disabled, generate a program interrupt
  825. * to the guest. If guest debug is enabled, we need to check
  826. * whether the instruction is a software breakpoint instruction.
  827. * Accordingly return to Guest or Host.
  828. */
  829. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  830. if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
  831. vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
  832. swab32(vcpu->arch.emul_inst) :
  833. vcpu->arch.emul_inst;
  834. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
  835. r = kvmppc_emulate_debug_inst(run, vcpu);
  836. } else {
  837. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  838. r = RESUME_GUEST;
  839. }
  840. break;
  841. /*
  842. * This occurs if the guest (kernel or userspace), does something that
  843. * is prohibited by HFSCR. We just generate a program interrupt to
  844. * the guest.
  845. */
  846. case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
  847. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  848. r = RESUME_GUEST;
  849. break;
  850. default:
  851. kvmppc_dump_regs(vcpu);
  852. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  853. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  854. vcpu->arch.shregs.msr);
  855. run->hw.hardware_exit_reason = vcpu->arch.trap;
  856. r = RESUME_HOST;
  857. break;
  858. }
  859. return r;
  860. }
  861. static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
  862. struct kvm_sregs *sregs)
  863. {
  864. int i;
  865. memset(sregs, 0, sizeof(struct kvm_sregs));
  866. sregs->pvr = vcpu->arch.pvr;
  867. for (i = 0; i < vcpu->arch.slb_max; i++) {
  868. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  869. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  870. }
  871. return 0;
  872. }
  873. static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
  874. struct kvm_sregs *sregs)
  875. {
  876. int i, j;
  877. /* Only accept the same PVR as the host's, since we can't spoof it */
  878. if (sregs->pvr != vcpu->arch.pvr)
  879. return -EINVAL;
  880. j = 0;
  881. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  882. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  883. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  884. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  885. ++j;
  886. }
  887. }
  888. vcpu->arch.slb_max = j;
  889. return 0;
  890. }
  891. static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
  892. bool preserve_top32)
  893. {
  894. struct kvm *kvm = vcpu->kvm;
  895. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  896. u64 mask;
  897. mutex_lock(&kvm->lock);
  898. spin_lock(&vc->lock);
  899. /*
  900. * If ILE (interrupt little-endian) has changed, update the
  901. * MSR_LE bit in the intr_msr for each vcpu in this vcore.
  902. */
  903. if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
  904. struct kvm_vcpu *vcpu;
  905. int i;
  906. kvm_for_each_vcpu(i, vcpu, kvm) {
  907. if (vcpu->arch.vcore != vc)
  908. continue;
  909. if (new_lpcr & LPCR_ILE)
  910. vcpu->arch.intr_msr |= MSR_LE;
  911. else
  912. vcpu->arch.intr_msr &= ~MSR_LE;
  913. }
  914. }
  915. /*
  916. * Userspace can only modify DPFD (default prefetch depth),
  917. * ILE (interrupt little-endian) and TC (translation control).
  918. * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
  919. */
  920. mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
  921. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  922. mask |= LPCR_AIL;
  923. /* Broken 32-bit version of LPCR must not clear top bits */
  924. if (preserve_top32)
  925. mask &= 0xFFFFFFFF;
  926. vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
  927. spin_unlock(&vc->lock);
  928. mutex_unlock(&kvm->lock);
  929. }
  930. static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  931. union kvmppc_one_reg *val)
  932. {
  933. int r = 0;
  934. long int i;
  935. switch (id) {
  936. case KVM_REG_PPC_DEBUG_INST:
  937. *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
  938. break;
  939. case KVM_REG_PPC_HIOR:
  940. *val = get_reg_val(id, 0);
  941. break;
  942. case KVM_REG_PPC_DABR:
  943. *val = get_reg_val(id, vcpu->arch.dabr);
  944. break;
  945. case KVM_REG_PPC_DABRX:
  946. *val = get_reg_val(id, vcpu->arch.dabrx);
  947. break;
  948. case KVM_REG_PPC_DSCR:
  949. *val = get_reg_val(id, vcpu->arch.dscr);
  950. break;
  951. case KVM_REG_PPC_PURR:
  952. *val = get_reg_val(id, vcpu->arch.purr);
  953. break;
  954. case KVM_REG_PPC_SPURR:
  955. *val = get_reg_val(id, vcpu->arch.spurr);
  956. break;
  957. case KVM_REG_PPC_AMR:
  958. *val = get_reg_val(id, vcpu->arch.amr);
  959. break;
  960. case KVM_REG_PPC_UAMOR:
  961. *val = get_reg_val(id, vcpu->arch.uamor);
  962. break;
  963. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  964. i = id - KVM_REG_PPC_MMCR0;
  965. *val = get_reg_val(id, vcpu->arch.mmcr[i]);
  966. break;
  967. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  968. i = id - KVM_REG_PPC_PMC1;
  969. *val = get_reg_val(id, vcpu->arch.pmc[i]);
  970. break;
  971. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  972. i = id - KVM_REG_PPC_SPMC1;
  973. *val = get_reg_val(id, vcpu->arch.spmc[i]);
  974. break;
  975. case KVM_REG_PPC_SIAR:
  976. *val = get_reg_val(id, vcpu->arch.siar);
  977. break;
  978. case KVM_REG_PPC_SDAR:
  979. *val = get_reg_val(id, vcpu->arch.sdar);
  980. break;
  981. case KVM_REG_PPC_SIER:
  982. *val = get_reg_val(id, vcpu->arch.sier);
  983. break;
  984. case KVM_REG_PPC_IAMR:
  985. *val = get_reg_val(id, vcpu->arch.iamr);
  986. break;
  987. case KVM_REG_PPC_PSPB:
  988. *val = get_reg_val(id, vcpu->arch.pspb);
  989. break;
  990. case KVM_REG_PPC_DPDES:
  991. *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
  992. break;
  993. case KVM_REG_PPC_DAWR:
  994. *val = get_reg_val(id, vcpu->arch.dawr);
  995. break;
  996. case KVM_REG_PPC_DAWRX:
  997. *val = get_reg_val(id, vcpu->arch.dawrx);
  998. break;
  999. case KVM_REG_PPC_CIABR:
  1000. *val = get_reg_val(id, vcpu->arch.ciabr);
  1001. break;
  1002. case KVM_REG_PPC_CSIGR:
  1003. *val = get_reg_val(id, vcpu->arch.csigr);
  1004. break;
  1005. case KVM_REG_PPC_TACR:
  1006. *val = get_reg_val(id, vcpu->arch.tacr);
  1007. break;
  1008. case KVM_REG_PPC_TCSCR:
  1009. *val = get_reg_val(id, vcpu->arch.tcscr);
  1010. break;
  1011. case KVM_REG_PPC_PID:
  1012. *val = get_reg_val(id, vcpu->arch.pid);
  1013. break;
  1014. case KVM_REG_PPC_ACOP:
  1015. *val = get_reg_val(id, vcpu->arch.acop);
  1016. break;
  1017. case KVM_REG_PPC_WORT:
  1018. *val = get_reg_val(id, vcpu->arch.wort);
  1019. break;
  1020. case KVM_REG_PPC_VPA_ADDR:
  1021. spin_lock(&vcpu->arch.vpa_update_lock);
  1022. *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
  1023. spin_unlock(&vcpu->arch.vpa_update_lock);
  1024. break;
  1025. case KVM_REG_PPC_VPA_SLB:
  1026. spin_lock(&vcpu->arch.vpa_update_lock);
  1027. val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
  1028. val->vpaval.length = vcpu->arch.slb_shadow.len;
  1029. spin_unlock(&vcpu->arch.vpa_update_lock);
  1030. break;
  1031. case KVM_REG_PPC_VPA_DTL:
  1032. spin_lock(&vcpu->arch.vpa_update_lock);
  1033. val->vpaval.addr = vcpu->arch.dtl.next_gpa;
  1034. val->vpaval.length = vcpu->arch.dtl.len;
  1035. spin_unlock(&vcpu->arch.vpa_update_lock);
  1036. break;
  1037. case KVM_REG_PPC_TB_OFFSET:
  1038. *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
  1039. break;
  1040. case KVM_REG_PPC_LPCR:
  1041. case KVM_REG_PPC_LPCR_64:
  1042. *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
  1043. break;
  1044. case KVM_REG_PPC_PPR:
  1045. *val = get_reg_val(id, vcpu->arch.ppr);
  1046. break;
  1047. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1048. case KVM_REG_PPC_TFHAR:
  1049. *val = get_reg_val(id, vcpu->arch.tfhar);
  1050. break;
  1051. case KVM_REG_PPC_TFIAR:
  1052. *val = get_reg_val(id, vcpu->arch.tfiar);
  1053. break;
  1054. case KVM_REG_PPC_TEXASR:
  1055. *val = get_reg_val(id, vcpu->arch.texasr);
  1056. break;
  1057. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  1058. i = id - KVM_REG_PPC_TM_GPR0;
  1059. *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
  1060. break;
  1061. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  1062. {
  1063. int j;
  1064. i = id - KVM_REG_PPC_TM_VSR0;
  1065. if (i < 32)
  1066. for (j = 0; j < TS_FPRWIDTH; j++)
  1067. val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
  1068. else {
  1069. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1070. val->vval = vcpu->arch.vr_tm.vr[i-32];
  1071. else
  1072. r = -ENXIO;
  1073. }
  1074. break;
  1075. }
  1076. case KVM_REG_PPC_TM_CR:
  1077. *val = get_reg_val(id, vcpu->arch.cr_tm);
  1078. break;
  1079. case KVM_REG_PPC_TM_LR:
  1080. *val = get_reg_val(id, vcpu->arch.lr_tm);
  1081. break;
  1082. case KVM_REG_PPC_TM_CTR:
  1083. *val = get_reg_val(id, vcpu->arch.ctr_tm);
  1084. break;
  1085. case KVM_REG_PPC_TM_FPSCR:
  1086. *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
  1087. break;
  1088. case KVM_REG_PPC_TM_AMR:
  1089. *val = get_reg_val(id, vcpu->arch.amr_tm);
  1090. break;
  1091. case KVM_REG_PPC_TM_PPR:
  1092. *val = get_reg_val(id, vcpu->arch.ppr_tm);
  1093. break;
  1094. case KVM_REG_PPC_TM_VRSAVE:
  1095. *val = get_reg_val(id, vcpu->arch.vrsave_tm);
  1096. break;
  1097. case KVM_REG_PPC_TM_VSCR:
  1098. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1099. *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
  1100. else
  1101. r = -ENXIO;
  1102. break;
  1103. case KVM_REG_PPC_TM_DSCR:
  1104. *val = get_reg_val(id, vcpu->arch.dscr_tm);
  1105. break;
  1106. case KVM_REG_PPC_TM_TAR:
  1107. *val = get_reg_val(id, vcpu->arch.tar_tm);
  1108. break;
  1109. #endif
  1110. case KVM_REG_PPC_ARCH_COMPAT:
  1111. *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
  1112. break;
  1113. default:
  1114. r = -EINVAL;
  1115. break;
  1116. }
  1117. return r;
  1118. }
  1119. static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  1120. union kvmppc_one_reg *val)
  1121. {
  1122. int r = 0;
  1123. long int i;
  1124. unsigned long addr, len;
  1125. switch (id) {
  1126. case KVM_REG_PPC_HIOR:
  1127. /* Only allow this to be set to zero */
  1128. if (set_reg_val(id, *val))
  1129. r = -EINVAL;
  1130. break;
  1131. case KVM_REG_PPC_DABR:
  1132. vcpu->arch.dabr = set_reg_val(id, *val);
  1133. break;
  1134. case KVM_REG_PPC_DABRX:
  1135. vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
  1136. break;
  1137. case KVM_REG_PPC_DSCR:
  1138. vcpu->arch.dscr = set_reg_val(id, *val);
  1139. break;
  1140. case KVM_REG_PPC_PURR:
  1141. vcpu->arch.purr = set_reg_val(id, *val);
  1142. break;
  1143. case KVM_REG_PPC_SPURR:
  1144. vcpu->arch.spurr = set_reg_val(id, *val);
  1145. break;
  1146. case KVM_REG_PPC_AMR:
  1147. vcpu->arch.amr = set_reg_val(id, *val);
  1148. break;
  1149. case KVM_REG_PPC_UAMOR:
  1150. vcpu->arch.uamor = set_reg_val(id, *val);
  1151. break;
  1152. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  1153. i = id - KVM_REG_PPC_MMCR0;
  1154. vcpu->arch.mmcr[i] = set_reg_val(id, *val);
  1155. break;
  1156. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  1157. i = id - KVM_REG_PPC_PMC1;
  1158. vcpu->arch.pmc[i] = set_reg_val(id, *val);
  1159. break;
  1160. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  1161. i = id - KVM_REG_PPC_SPMC1;
  1162. vcpu->arch.spmc[i] = set_reg_val(id, *val);
  1163. break;
  1164. case KVM_REG_PPC_SIAR:
  1165. vcpu->arch.siar = set_reg_val(id, *val);
  1166. break;
  1167. case KVM_REG_PPC_SDAR:
  1168. vcpu->arch.sdar = set_reg_val(id, *val);
  1169. break;
  1170. case KVM_REG_PPC_SIER:
  1171. vcpu->arch.sier = set_reg_val(id, *val);
  1172. break;
  1173. case KVM_REG_PPC_IAMR:
  1174. vcpu->arch.iamr = set_reg_val(id, *val);
  1175. break;
  1176. case KVM_REG_PPC_PSPB:
  1177. vcpu->arch.pspb = set_reg_val(id, *val);
  1178. break;
  1179. case KVM_REG_PPC_DPDES:
  1180. vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
  1181. break;
  1182. case KVM_REG_PPC_DAWR:
  1183. vcpu->arch.dawr = set_reg_val(id, *val);
  1184. break;
  1185. case KVM_REG_PPC_DAWRX:
  1186. vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
  1187. break;
  1188. case KVM_REG_PPC_CIABR:
  1189. vcpu->arch.ciabr = set_reg_val(id, *val);
  1190. /* Don't allow setting breakpoints in hypervisor code */
  1191. if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
  1192. vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
  1193. break;
  1194. case KVM_REG_PPC_CSIGR:
  1195. vcpu->arch.csigr = set_reg_val(id, *val);
  1196. break;
  1197. case KVM_REG_PPC_TACR:
  1198. vcpu->arch.tacr = set_reg_val(id, *val);
  1199. break;
  1200. case KVM_REG_PPC_TCSCR:
  1201. vcpu->arch.tcscr = set_reg_val(id, *val);
  1202. break;
  1203. case KVM_REG_PPC_PID:
  1204. vcpu->arch.pid = set_reg_val(id, *val);
  1205. break;
  1206. case KVM_REG_PPC_ACOP:
  1207. vcpu->arch.acop = set_reg_val(id, *val);
  1208. break;
  1209. case KVM_REG_PPC_WORT:
  1210. vcpu->arch.wort = set_reg_val(id, *val);
  1211. break;
  1212. case KVM_REG_PPC_VPA_ADDR:
  1213. addr = set_reg_val(id, *val);
  1214. r = -EINVAL;
  1215. if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
  1216. vcpu->arch.dtl.next_gpa))
  1217. break;
  1218. r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
  1219. break;
  1220. case KVM_REG_PPC_VPA_SLB:
  1221. addr = val->vpaval.addr;
  1222. len = val->vpaval.length;
  1223. r = -EINVAL;
  1224. if (addr && !vcpu->arch.vpa.next_gpa)
  1225. break;
  1226. r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
  1227. break;
  1228. case KVM_REG_PPC_VPA_DTL:
  1229. addr = val->vpaval.addr;
  1230. len = val->vpaval.length;
  1231. r = -EINVAL;
  1232. if (addr && (len < sizeof(struct dtl_entry) ||
  1233. !vcpu->arch.vpa.next_gpa))
  1234. break;
  1235. len -= len % sizeof(struct dtl_entry);
  1236. r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
  1237. break;
  1238. case KVM_REG_PPC_TB_OFFSET:
  1239. /* round up to multiple of 2^24 */
  1240. vcpu->arch.vcore->tb_offset =
  1241. ALIGN(set_reg_val(id, *val), 1UL << 24);
  1242. break;
  1243. case KVM_REG_PPC_LPCR:
  1244. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
  1245. break;
  1246. case KVM_REG_PPC_LPCR_64:
  1247. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
  1248. break;
  1249. case KVM_REG_PPC_PPR:
  1250. vcpu->arch.ppr = set_reg_val(id, *val);
  1251. break;
  1252. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  1253. case KVM_REG_PPC_TFHAR:
  1254. vcpu->arch.tfhar = set_reg_val(id, *val);
  1255. break;
  1256. case KVM_REG_PPC_TFIAR:
  1257. vcpu->arch.tfiar = set_reg_val(id, *val);
  1258. break;
  1259. case KVM_REG_PPC_TEXASR:
  1260. vcpu->arch.texasr = set_reg_val(id, *val);
  1261. break;
  1262. case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
  1263. i = id - KVM_REG_PPC_TM_GPR0;
  1264. vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
  1265. break;
  1266. case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
  1267. {
  1268. int j;
  1269. i = id - KVM_REG_PPC_TM_VSR0;
  1270. if (i < 32)
  1271. for (j = 0; j < TS_FPRWIDTH; j++)
  1272. vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
  1273. else
  1274. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1275. vcpu->arch.vr_tm.vr[i-32] = val->vval;
  1276. else
  1277. r = -ENXIO;
  1278. break;
  1279. }
  1280. case KVM_REG_PPC_TM_CR:
  1281. vcpu->arch.cr_tm = set_reg_val(id, *val);
  1282. break;
  1283. case KVM_REG_PPC_TM_LR:
  1284. vcpu->arch.lr_tm = set_reg_val(id, *val);
  1285. break;
  1286. case KVM_REG_PPC_TM_CTR:
  1287. vcpu->arch.ctr_tm = set_reg_val(id, *val);
  1288. break;
  1289. case KVM_REG_PPC_TM_FPSCR:
  1290. vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
  1291. break;
  1292. case KVM_REG_PPC_TM_AMR:
  1293. vcpu->arch.amr_tm = set_reg_val(id, *val);
  1294. break;
  1295. case KVM_REG_PPC_TM_PPR:
  1296. vcpu->arch.ppr_tm = set_reg_val(id, *val);
  1297. break;
  1298. case KVM_REG_PPC_TM_VRSAVE:
  1299. vcpu->arch.vrsave_tm = set_reg_val(id, *val);
  1300. break;
  1301. case KVM_REG_PPC_TM_VSCR:
  1302. if (cpu_has_feature(CPU_FTR_ALTIVEC))
  1303. vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
  1304. else
  1305. r = - ENXIO;
  1306. break;
  1307. case KVM_REG_PPC_TM_DSCR:
  1308. vcpu->arch.dscr_tm = set_reg_val(id, *val);
  1309. break;
  1310. case KVM_REG_PPC_TM_TAR:
  1311. vcpu->arch.tar_tm = set_reg_val(id, *val);
  1312. break;
  1313. #endif
  1314. case KVM_REG_PPC_ARCH_COMPAT:
  1315. r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
  1316. break;
  1317. default:
  1318. r = -EINVAL;
  1319. break;
  1320. }
  1321. return r;
  1322. }
  1323. static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
  1324. {
  1325. struct kvmppc_vcore *vcore;
  1326. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  1327. if (vcore == NULL)
  1328. return NULL;
  1329. INIT_LIST_HEAD(&vcore->runnable_threads);
  1330. spin_lock_init(&vcore->lock);
  1331. spin_lock_init(&vcore->stoltb_lock);
  1332. init_waitqueue_head(&vcore->wq);
  1333. vcore->preempt_tb = TB_NIL;
  1334. vcore->lpcr = kvm->arch.lpcr;
  1335. vcore->first_vcpuid = core * threads_per_subcore;
  1336. vcore->kvm = kvm;
  1337. INIT_LIST_HEAD(&vcore->preempt_list);
  1338. vcore->mpp_buffer_is_valid = false;
  1339. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  1340. vcore->mpp_buffer = (void *)__get_free_pages(
  1341. GFP_KERNEL|__GFP_ZERO,
  1342. MPP_BUFFER_ORDER);
  1343. return vcore;
  1344. }
  1345. #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
  1346. static struct debugfs_timings_element {
  1347. const char *name;
  1348. size_t offset;
  1349. } timings[] = {
  1350. {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
  1351. {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
  1352. {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
  1353. {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
  1354. {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
  1355. };
  1356. #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
  1357. struct debugfs_timings_state {
  1358. struct kvm_vcpu *vcpu;
  1359. unsigned int buflen;
  1360. char buf[N_TIMINGS * 100];
  1361. };
  1362. static int debugfs_timings_open(struct inode *inode, struct file *file)
  1363. {
  1364. struct kvm_vcpu *vcpu = inode->i_private;
  1365. struct debugfs_timings_state *p;
  1366. p = kzalloc(sizeof(*p), GFP_KERNEL);
  1367. if (!p)
  1368. return -ENOMEM;
  1369. kvm_get_kvm(vcpu->kvm);
  1370. p->vcpu = vcpu;
  1371. file->private_data = p;
  1372. return nonseekable_open(inode, file);
  1373. }
  1374. static int debugfs_timings_release(struct inode *inode, struct file *file)
  1375. {
  1376. struct debugfs_timings_state *p = file->private_data;
  1377. kvm_put_kvm(p->vcpu->kvm);
  1378. kfree(p);
  1379. return 0;
  1380. }
  1381. static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
  1382. size_t len, loff_t *ppos)
  1383. {
  1384. struct debugfs_timings_state *p = file->private_data;
  1385. struct kvm_vcpu *vcpu = p->vcpu;
  1386. char *s, *buf_end;
  1387. struct kvmhv_tb_accumulator tb;
  1388. u64 count;
  1389. loff_t pos;
  1390. ssize_t n;
  1391. int i, loops;
  1392. bool ok;
  1393. if (!p->buflen) {
  1394. s = p->buf;
  1395. buf_end = s + sizeof(p->buf);
  1396. for (i = 0; i < N_TIMINGS; ++i) {
  1397. struct kvmhv_tb_accumulator *acc;
  1398. acc = (struct kvmhv_tb_accumulator *)
  1399. ((unsigned long)vcpu + timings[i].offset);
  1400. ok = false;
  1401. for (loops = 0; loops < 1000; ++loops) {
  1402. count = acc->seqcount;
  1403. if (!(count & 1)) {
  1404. smp_rmb();
  1405. tb = *acc;
  1406. smp_rmb();
  1407. if (count == acc->seqcount) {
  1408. ok = true;
  1409. break;
  1410. }
  1411. }
  1412. udelay(1);
  1413. }
  1414. if (!ok)
  1415. snprintf(s, buf_end - s, "%s: stuck\n",
  1416. timings[i].name);
  1417. else
  1418. snprintf(s, buf_end - s,
  1419. "%s: %llu %llu %llu %llu\n",
  1420. timings[i].name, count / 2,
  1421. tb_to_ns(tb.tb_total),
  1422. tb_to_ns(tb.tb_min),
  1423. tb_to_ns(tb.tb_max));
  1424. s += strlen(s);
  1425. }
  1426. p->buflen = s - p->buf;
  1427. }
  1428. pos = *ppos;
  1429. if (pos >= p->buflen)
  1430. return 0;
  1431. if (len > p->buflen - pos)
  1432. len = p->buflen - pos;
  1433. n = copy_to_user(buf, p->buf + pos, len);
  1434. if (n) {
  1435. if (n == len)
  1436. return -EFAULT;
  1437. len -= n;
  1438. }
  1439. *ppos = pos + len;
  1440. return len;
  1441. }
  1442. static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
  1443. size_t len, loff_t *ppos)
  1444. {
  1445. return -EACCES;
  1446. }
  1447. static const struct file_operations debugfs_timings_ops = {
  1448. .owner = THIS_MODULE,
  1449. .open = debugfs_timings_open,
  1450. .release = debugfs_timings_release,
  1451. .read = debugfs_timings_read,
  1452. .write = debugfs_timings_write,
  1453. .llseek = generic_file_llseek,
  1454. };
  1455. /* Create a debugfs directory for the vcpu */
  1456. static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
  1457. {
  1458. char buf[16];
  1459. struct kvm *kvm = vcpu->kvm;
  1460. snprintf(buf, sizeof(buf), "vcpu%u", id);
  1461. if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
  1462. return;
  1463. vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
  1464. if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
  1465. return;
  1466. vcpu->arch.debugfs_timings =
  1467. debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
  1468. vcpu, &debugfs_timings_ops);
  1469. }
  1470. #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
  1471. static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
  1472. {
  1473. }
  1474. #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
  1475. static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
  1476. unsigned int id)
  1477. {
  1478. struct kvm_vcpu *vcpu;
  1479. int err = -EINVAL;
  1480. int core;
  1481. struct kvmppc_vcore *vcore;
  1482. core = id / threads_per_subcore;
  1483. if (core >= KVM_MAX_VCORES)
  1484. goto out;
  1485. err = -ENOMEM;
  1486. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  1487. if (!vcpu)
  1488. goto out;
  1489. err = kvm_vcpu_init(vcpu, kvm, id);
  1490. if (err)
  1491. goto free_vcpu;
  1492. vcpu->arch.shared = &vcpu->arch.shregs;
  1493. #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
  1494. /*
  1495. * The shared struct is never shared on HV,
  1496. * so we can always use host endianness
  1497. */
  1498. #ifdef __BIG_ENDIAN__
  1499. vcpu->arch.shared_big_endian = true;
  1500. #else
  1501. vcpu->arch.shared_big_endian = false;
  1502. #endif
  1503. #endif
  1504. vcpu->arch.mmcr[0] = MMCR0_FC;
  1505. vcpu->arch.ctrl = CTRL_RUNLATCH;
  1506. /* default to host PVR, since we can't spoof it */
  1507. kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
  1508. spin_lock_init(&vcpu->arch.vpa_update_lock);
  1509. spin_lock_init(&vcpu->arch.tbacct_lock);
  1510. vcpu->arch.busy_preempt = TB_NIL;
  1511. vcpu->arch.intr_msr = MSR_SF | MSR_ME;
  1512. kvmppc_mmu_book3s_hv_init(vcpu);
  1513. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1514. init_waitqueue_head(&vcpu->arch.cpu_run);
  1515. mutex_lock(&kvm->lock);
  1516. vcore = kvm->arch.vcores[core];
  1517. if (!vcore) {
  1518. vcore = kvmppc_vcore_create(kvm, core);
  1519. kvm->arch.vcores[core] = vcore;
  1520. kvm->arch.online_vcores++;
  1521. }
  1522. mutex_unlock(&kvm->lock);
  1523. if (!vcore)
  1524. goto free_vcpu;
  1525. spin_lock(&vcore->lock);
  1526. ++vcore->num_threads;
  1527. spin_unlock(&vcore->lock);
  1528. vcpu->arch.vcore = vcore;
  1529. vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
  1530. vcpu->arch.thread_cpu = -1;
  1531. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  1532. kvmppc_sanity_check(vcpu);
  1533. debugfs_vcpu_init(vcpu, id);
  1534. return vcpu;
  1535. free_vcpu:
  1536. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1537. out:
  1538. return ERR_PTR(err);
  1539. }
  1540. static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
  1541. {
  1542. if (vpa->pinned_addr)
  1543. kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
  1544. vpa->dirty);
  1545. }
  1546. static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
  1547. {
  1548. spin_lock(&vcpu->arch.vpa_update_lock);
  1549. unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
  1550. unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
  1551. unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
  1552. spin_unlock(&vcpu->arch.vpa_update_lock);
  1553. kvm_vcpu_uninit(vcpu);
  1554. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1555. }
  1556. static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
  1557. {
  1558. /* Indicate we want to get back into the guest */
  1559. return 1;
  1560. }
  1561. static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
  1562. {
  1563. unsigned long dec_nsec, now;
  1564. now = get_tb();
  1565. if (now > vcpu->arch.dec_expires) {
  1566. /* decrementer has already gone negative */
  1567. kvmppc_core_queue_dec(vcpu);
  1568. kvmppc_core_prepare_to_enter(vcpu);
  1569. return;
  1570. }
  1571. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
  1572. / tb_ticks_per_sec;
  1573. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  1574. HRTIMER_MODE_REL);
  1575. vcpu->arch.timer_running = 1;
  1576. }
  1577. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  1578. {
  1579. vcpu->arch.ceded = 0;
  1580. if (vcpu->arch.timer_running) {
  1581. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1582. vcpu->arch.timer_running = 0;
  1583. }
  1584. }
  1585. extern void __kvmppc_vcore_entry(void);
  1586. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  1587. struct kvm_vcpu *vcpu)
  1588. {
  1589. u64 now;
  1590. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1591. return;
  1592. spin_lock_irq(&vcpu->arch.tbacct_lock);
  1593. now = mftb();
  1594. vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
  1595. vcpu->arch.stolen_logged;
  1596. vcpu->arch.busy_preempt = now;
  1597. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1598. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  1599. --vc->n_runnable;
  1600. list_del(&vcpu->arch.run_list);
  1601. }
  1602. static int kvmppc_grab_hwthread(int cpu)
  1603. {
  1604. struct paca_struct *tpaca;
  1605. long timeout = 10000;
  1606. tpaca = &paca[cpu];
  1607. /* Ensure the thread won't go into the kernel if it wakes */
  1608. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1609. tpaca->kvm_hstate.kvm_vcore = NULL;
  1610. tpaca->kvm_hstate.napping = 0;
  1611. smp_wmb();
  1612. tpaca->kvm_hstate.hwthread_req = 1;
  1613. /*
  1614. * If the thread is already executing in the kernel (e.g. handling
  1615. * a stray interrupt), wait for it to get back to nap mode.
  1616. * The smp_mb() is to ensure that our setting of hwthread_req
  1617. * is visible before we look at hwthread_state, so if this
  1618. * races with the code at system_reset_pSeries and the thread
  1619. * misses our setting of hwthread_req, we are sure to see its
  1620. * setting of hwthread_state, and vice versa.
  1621. */
  1622. smp_mb();
  1623. while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
  1624. if (--timeout <= 0) {
  1625. pr_err("KVM: couldn't grab cpu %d\n", cpu);
  1626. return -EBUSY;
  1627. }
  1628. udelay(1);
  1629. }
  1630. return 0;
  1631. }
  1632. static void kvmppc_release_hwthread(int cpu)
  1633. {
  1634. struct paca_struct *tpaca;
  1635. tpaca = &paca[cpu];
  1636. tpaca->kvm_hstate.hwthread_req = 0;
  1637. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1638. tpaca->kvm_hstate.kvm_vcore = NULL;
  1639. tpaca->kvm_hstate.kvm_split_mode = NULL;
  1640. }
  1641. static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
  1642. {
  1643. int cpu;
  1644. struct paca_struct *tpaca;
  1645. struct kvmppc_vcore *mvc = vc->master_vcore;
  1646. cpu = vc->pcpu;
  1647. if (vcpu) {
  1648. if (vcpu->arch.timer_running) {
  1649. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1650. vcpu->arch.timer_running = 0;
  1651. }
  1652. cpu += vcpu->arch.ptid;
  1653. vcpu->cpu = mvc->pcpu;
  1654. vcpu->arch.thread_cpu = cpu;
  1655. }
  1656. tpaca = &paca[cpu];
  1657. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  1658. tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
  1659. /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
  1660. smp_wmb();
  1661. tpaca->kvm_hstate.kvm_vcore = mvc;
  1662. if (cpu != smp_processor_id())
  1663. kvmppc_ipi_thread(cpu);
  1664. }
  1665. static void kvmppc_wait_for_nap(void)
  1666. {
  1667. int cpu = smp_processor_id();
  1668. int i, loops;
  1669. for (loops = 0; loops < 1000000; ++loops) {
  1670. /*
  1671. * Check if all threads are finished.
  1672. * We set the vcore pointer when starting a thread
  1673. * and the thread clears it when finished, so we look
  1674. * for any threads that still have a non-NULL vcore ptr.
  1675. */
  1676. for (i = 1; i < threads_per_subcore; ++i)
  1677. if (paca[cpu + i].kvm_hstate.kvm_vcore)
  1678. break;
  1679. if (i == threads_per_subcore) {
  1680. HMT_medium();
  1681. return;
  1682. }
  1683. HMT_low();
  1684. }
  1685. HMT_medium();
  1686. for (i = 1; i < threads_per_subcore; ++i)
  1687. if (paca[cpu + i].kvm_hstate.kvm_vcore)
  1688. pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
  1689. }
  1690. /*
  1691. * Check that we are on thread 0 and that any other threads in
  1692. * this core are off-line. Then grab the threads so they can't
  1693. * enter the kernel.
  1694. */
  1695. static int on_primary_thread(void)
  1696. {
  1697. int cpu = smp_processor_id();
  1698. int thr;
  1699. /* Are we on a primary subcore? */
  1700. if (cpu_thread_in_subcore(cpu))
  1701. return 0;
  1702. thr = 0;
  1703. while (++thr < threads_per_subcore)
  1704. if (cpu_online(cpu + thr))
  1705. return 0;
  1706. /* Grab all hw threads so they can't go into the kernel */
  1707. for (thr = 1; thr < threads_per_subcore; ++thr) {
  1708. if (kvmppc_grab_hwthread(cpu + thr)) {
  1709. /* Couldn't grab one; let the others go */
  1710. do {
  1711. kvmppc_release_hwthread(cpu + thr);
  1712. } while (--thr > 0);
  1713. return 0;
  1714. }
  1715. }
  1716. return 1;
  1717. }
  1718. static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
  1719. {
  1720. phys_addr_t phy_addr, mpp_addr;
  1721. phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
  1722. mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
  1723. mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
  1724. logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
  1725. vc->mpp_buffer_is_valid = true;
  1726. }
  1727. static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
  1728. {
  1729. phys_addr_t phy_addr, mpp_addr;
  1730. phy_addr = virt_to_phys(vc->mpp_buffer);
  1731. mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
  1732. /* We must abort any in-progress save operations to ensure
  1733. * the table is valid so that prefetch engine knows when to
  1734. * stop prefetching. */
  1735. logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
  1736. mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
  1737. }
  1738. /*
  1739. * A list of virtual cores for each physical CPU.
  1740. * These are vcores that could run but their runner VCPU tasks are
  1741. * (or may be) preempted.
  1742. */
  1743. struct preempted_vcore_list {
  1744. struct list_head list;
  1745. spinlock_t lock;
  1746. };
  1747. static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
  1748. static void init_vcore_lists(void)
  1749. {
  1750. int cpu;
  1751. for_each_possible_cpu(cpu) {
  1752. struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
  1753. spin_lock_init(&lp->lock);
  1754. INIT_LIST_HEAD(&lp->list);
  1755. }
  1756. }
  1757. static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
  1758. {
  1759. struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
  1760. vc->vcore_state = VCORE_PREEMPT;
  1761. vc->pcpu = smp_processor_id();
  1762. if (vc->num_threads < threads_per_subcore) {
  1763. spin_lock(&lp->lock);
  1764. list_add_tail(&vc->preempt_list, &lp->list);
  1765. spin_unlock(&lp->lock);
  1766. }
  1767. /* Start accumulating stolen time */
  1768. kvmppc_core_start_stolen(vc);
  1769. }
  1770. static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
  1771. {
  1772. struct preempted_vcore_list *lp;
  1773. kvmppc_core_end_stolen(vc);
  1774. if (!list_empty(&vc->preempt_list)) {
  1775. lp = &per_cpu(preempted_vcores, vc->pcpu);
  1776. spin_lock(&lp->lock);
  1777. list_del_init(&vc->preempt_list);
  1778. spin_unlock(&lp->lock);
  1779. }
  1780. vc->vcore_state = VCORE_INACTIVE;
  1781. }
  1782. /*
  1783. * This stores information about the virtual cores currently
  1784. * assigned to a physical core.
  1785. */
  1786. struct core_info {
  1787. int n_subcores;
  1788. int max_subcore_threads;
  1789. int total_threads;
  1790. int subcore_threads[MAX_SUBCORES];
  1791. struct kvm *subcore_vm[MAX_SUBCORES];
  1792. struct list_head vcs[MAX_SUBCORES];
  1793. };
  1794. /*
  1795. * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
  1796. * respectively in 2-way micro-threading (split-core) mode.
  1797. */
  1798. static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
  1799. static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
  1800. {
  1801. int sub;
  1802. memset(cip, 0, sizeof(*cip));
  1803. cip->n_subcores = 1;
  1804. cip->max_subcore_threads = vc->num_threads;
  1805. cip->total_threads = vc->num_threads;
  1806. cip->subcore_threads[0] = vc->num_threads;
  1807. cip->subcore_vm[0] = vc->kvm;
  1808. for (sub = 0; sub < MAX_SUBCORES; ++sub)
  1809. INIT_LIST_HEAD(&cip->vcs[sub]);
  1810. list_add_tail(&vc->preempt_list, &cip->vcs[0]);
  1811. }
  1812. static bool subcore_config_ok(int n_subcores, int n_threads)
  1813. {
  1814. /* Can only dynamically split if unsplit to begin with */
  1815. if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
  1816. return false;
  1817. if (n_subcores > MAX_SUBCORES)
  1818. return false;
  1819. if (n_subcores > 1) {
  1820. if (!(dynamic_mt_modes & 2))
  1821. n_subcores = 4;
  1822. if (n_subcores > 2 && !(dynamic_mt_modes & 4))
  1823. return false;
  1824. }
  1825. return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
  1826. }
  1827. static void init_master_vcore(struct kvmppc_vcore *vc)
  1828. {
  1829. vc->master_vcore = vc;
  1830. vc->entry_exit_map = 0;
  1831. vc->in_guest = 0;
  1832. vc->napping_threads = 0;
  1833. vc->conferring_threads = 0;
  1834. }
  1835. /*
  1836. * See if the existing subcores can be split into 3 (or fewer) subcores
  1837. * of at most two threads each, so we can fit in another vcore. This
  1838. * assumes there are at most two subcores and at most 6 threads in total.
  1839. */
  1840. static bool can_split_piggybacked_subcores(struct core_info *cip)
  1841. {
  1842. int sub, new_sub;
  1843. int large_sub = -1;
  1844. int thr;
  1845. int n_subcores = cip->n_subcores;
  1846. struct kvmppc_vcore *vc, *vcnext;
  1847. struct kvmppc_vcore *master_vc = NULL;
  1848. for (sub = 0; sub < cip->n_subcores; ++sub) {
  1849. if (cip->subcore_threads[sub] <= 2)
  1850. continue;
  1851. if (large_sub >= 0)
  1852. return false;
  1853. large_sub = sub;
  1854. vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
  1855. preempt_list);
  1856. if (vc->num_threads > 2)
  1857. return false;
  1858. n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
  1859. }
  1860. if (n_subcores > 3 || large_sub < 0)
  1861. return false;
  1862. /*
  1863. * Seems feasible, so go through and move vcores to new subcores.
  1864. * Note that when we have two or more vcores in one subcore,
  1865. * all those vcores must have only one thread each.
  1866. */
  1867. new_sub = cip->n_subcores;
  1868. thr = 0;
  1869. sub = large_sub;
  1870. list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
  1871. if (thr >= 2) {
  1872. list_del(&vc->preempt_list);
  1873. list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
  1874. /* vc->num_threads must be 1 */
  1875. if (++cip->subcore_threads[new_sub] == 1) {
  1876. cip->subcore_vm[new_sub] = vc->kvm;
  1877. init_master_vcore(vc);
  1878. master_vc = vc;
  1879. ++cip->n_subcores;
  1880. } else {
  1881. vc->master_vcore = master_vc;
  1882. ++new_sub;
  1883. }
  1884. }
  1885. thr += vc->num_threads;
  1886. }
  1887. cip->subcore_threads[large_sub] = 2;
  1888. cip->max_subcore_threads = 2;
  1889. return true;
  1890. }
  1891. static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
  1892. {
  1893. int n_threads = vc->num_threads;
  1894. int sub;
  1895. if (!cpu_has_feature(CPU_FTR_ARCH_207S))
  1896. return false;
  1897. if (n_threads < cip->max_subcore_threads)
  1898. n_threads = cip->max_subcore_threads;
  1899. if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
  1900. cip->max_subcore_threads = n_threads;
  1901. } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
  1902. vc->num_threads <= 2) {
  1903. /*
  1904. * We may be able to fit another subcore in by
  1905. * splitting an existing subcore with 3 or 4
  1906. * threads into two 2-thread subcores, or one
  1907. * with 5 or 6 threads into three subcores.
  1908. * We can only do this if those subcores have
  1909. * piggybacked virtual cores.
  1910. */
  1911. if (!can_split_piggybacked_subcores(cip))
  1912. return false;
  1913. } else {
  1914. return false;
  1915. }
  1916. sub = cip->n_subcores;
  1917. ++cip->n_subcores;
  1918. cip->total_threads += vc->num_threads;
  1919. cip->subcore_threads[sub] = vc->num_threads;
  1920. cip->subcore_vm[sub] = vc->kvm;
  1921. init_master_vcore(vc);
  1922. list_del(&vc->preempt_list);
  1923. list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
  1924. return true;
  1925. }
  1926. static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
  1927. struct core_info *cip, int sub)
  1928. {
  1929. struct kvmppc_vcore *vc;
  1930. int n_thr;
  1931. vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
  1932. preempt_list);
  1933. /* require same VM and same per-core reg values */
  1934. if (pvc->kvm != vc->kvm ||
  1935. pvc->tb_offset != vc->tb_offset ||
  1936. pvc->pcr != vc->pcr ||
  1937. pvc->lpcr != vc->lpcr)
  1938. return false;
  1939. /* P8 guest with > 1 thread per core would see wrong TIR value */
  1940. if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
  1941. (vc->num_threads > 1 || pvc->num_threads > 1))
  1942. return false;
  1943. n_thr = cip->subcore_threads[sub] + pvc->num_threads;
  1944. if (n_thr > cip->max_subcore_threads) {
  1945. if (!subcore_config_ok(cip->n_subcores, n_thr))
  1946. return false;
  1947. cip->max_subcore_threads = n_thr;
  1948. }
  1949. cip->total_threads += pvc->num_threads;
  1950. cip->subcore_threads[sub] = n_thr;
  1951. pvc->master_vcore = vc;
  1952. list_del(&pvc->preempt_list);
  1953. list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
  1954. return true;
  1955. }
  1956. /*
  1957. * Work out whether it is possible to piggyback the execution of
  1958. * vcore *pvc onto the execution of the other vcores described in *cip.
  1959. */
  1960. static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
  1961. int target_threads)
  1962. {
  1963. int sub;
  1964. if (cip->total_threads + pvc->num_threads > target_threads)
  1965. return false;
  1966. for (sub = 0; sub < cip->n_subcores; ++sub)
  1967. if (cip->subcore_threads[sub] &&
  1968. can_piggyback_subcore(pvc, cip, sub))
  1969. return true;
  1970. if (can_dynamic_split(pvc, cip))
  1971. return true;
  1972. return false;
  1973. }
  1974. static void prepare_threads(struct kvmppc_vcore *vc)
  1975. {
  1976. struct kvm_vcpu *vcpu, *vnext;
  1977. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  1978. arch.run_list) {
  1979. if (signal_pending(vcpu->arch.run_task))
  1980. vcpu->arch.ret = -EINTR;
  1981. else if (vcpu->arch.vpa.update_pending ||
  1982. vcpu->arch.slb_shadow.update_pending ||
  1983. vcpu->arch.dtl.update_pending)
  1984. vcpu->arch.ret = RESUME_GUEST;
  1985. else
  1986. continue;
  1987. kvmppc_remove_runnable(vc, vcpu);
  1988. wake_up(&vcpu->arch.cpu_run);
  1989. }
  1990. }
  1991. static void collect_piggybacks(struct core_info *cip, int target_threads)
  1992. {
  1993. struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
  1994. struct kvmppc_vcore *pvc, *vcnext;
  1995. spin_lock(&lp->lock);
  1996. list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
  1997. if (!spin_trylock(&pvc->lock))
  1998. continue;
  1999. prepare_threads(pvc);
  2000. if (!pvc->n_runnable) {
  2001. list_del_init(&pvc->preempt_list);
  2002. if (pvc->runner == NULL) {
  2003. pvc->vcore_state = VCORE_INACTIVE;
  2004. kvmppc_core_end_stolen(pvc);
  2005. }
  2006. spin_unlock(&pvc->lock);
  2007. continue;
  2008. }
  2009. if (!can_piggyback(pvc, cip, target_threads)) {
  2010. spin_unlock(&pvc->lock);
  2011. continue;
  2012. }
  2013. kvmppc_core_end_stolen(pvc);
  2014. pvc->vcore_state = VCORE_PIGGYBACK;
  2015. if (cip->total_threads >= target_threads)
  2016. break;
  2017. }
  2018. spin_unlock(&lp->lock);
  2019. }
  2020. static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
  2021. {
  2022. int still_running = 0;
  2023. u64 now;
  2024. long ret;
  2025. struct kvm_vcpu *vcpu, *vnext;
  2026. spin_lock(&vc->lock);
  2027. now = get_tb();
  2028. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  2029. arch.run_list) {
  2030. /* cancel pending dec exception if dec is positive */
  2031. if (now < vcpu->arch.dec_expires &&
  2032. kvmppc_core_pending_dec(vcpu))
  2033. kvmppc_core_dequeue_dec(vcpu);
  2034. trace_kvm_guest_exit(vcpu);
  2035. ret = RESUME_GUEST;
  2036. if (vcpu->arch.trap)
  2037. ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
  2038. vcpu->arch.run_task);
  2039. vcpu->arch.ret = ret;
  2040. vcpu->arch.trap = 0;
  2041. if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
  2042. if (vcpu->arch.pending_exceptions)
  2043. kvmppc_core_prepare_to_enter(vcpu);
  2044. if (vcpu->arch.ceded)
  2045. kvmppc_set_timer(vcpu);
  2046. else
  2047. ++still_running;
  2048. } else {
  2049. kvmppc_remove_runnable(vc, vcpu);
  2050. wake_up(&vcpu->arch.cpu_run);
  2051. }
  2052. }
  2053. list_del_init(&vc->preempt_list);
  2054. if (!is_master) {
  2055. if (still_running > 0) {
  2056. kvmppc_vcore_preempt(vc);
  2057. } else if (vc->runner) {
  2058. vc->vcore_state = VCORE_PREEMPT;
  2059. kvmppc_core_start_stolen(vc);
  2060. } else {
  2061. vc->vcore_state = VCORE_INACTIVE;
  2062. }
  2063. if (vc->n_runnable > 0 && vc->runner == NULL) {
  2064. /* make sure there's a candidate runner awake */
  2065. vcpu = list_first_entry(&vc->runnable_threads,
  2066. struct kvm_vcpu, arch.run_list);
  2067. wake_up(&vcpu->arch.cpu_run);
  2068. }
  2069. }
  2070. spin_unlock(&vc->lock);
  2071. }
  2072. /*
  2073. * Run a set of guest threads on a physical core.
  2074. * Called with vc->lock held.
  2075. */
  2076. static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
  2077. {
  2078. struct kvm_vcpu *vcpu, *vnext;
  2079. int i;
  2080. int srcu_idx;
  2081. struct core_info core_info;
  2082. struct kvmppc_vcore *pvc, *vcnext;
  2083. struct kvm_split_mode split_info, *sip;
  2084. int split, subcore_size, active;
  2085. int sub;
  2086. bool thr0_done;
  2087. unsigned long cmd_bit, stat_bit;
  2088. int pcpu, thr;
  2089. int target_threads;
  2090. /*
  2091. * Remove from the list any threads that have a signal pending
  2092. * or need a VPA update done
  2093. */
  2094. prepare_threads(vc);
  2095. /* if the runner is no longer runnable, let the caller pick a new one */
  2096. if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
  2097. return;
  2098. /*
  2099. * Initialize *vc.
  2100. */
  2101. init_master_vcore(vc);
  2102. vc->preempt_tb = TB_NIL;
  2103. /*
  2104. * Make sure we are running on primary threads, and that secondary
  2105. * threads are offline. Also check if the number of threads in this
  2106. * guest are greater than the current system threads per guest.
  2107. */
  2108. if ((threads_per_core > 1) &&
  2109. ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
  2110. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  2111. arch.run_list) {
  2112. vcpu->arch.ret = -EBUSY;
  2113. kvmppc_remove_runnable(vc, vcpu);
  2114. wake_up(&vcpu->arch.cpu_run);
  2115. }
  2116. goto out;
  2117. }
  2118. /*
  2119. * See if we could run any other vcores on the physical core
  2120. * along with this one.
  2121. */
  2122. init_core_info(&core_info, vc);
  2123. pcpu = smp_processor_id();
  2124. target_threads = threads_per_subcore;
  2125. if (target_smt_mode && target_smt_mode < target_threads)
  2126. target_threads = target_smt_mode;
  2127. if (vc->num_threads < target_threads)
  2128. collect_piggybacks(&core_info, target_threads);
  2129. /* Decide on micro-threading (split-core) mode */
  2130. subcore_size = threads_per_subcore;
  2131. cmd_bit = stat_bit = 0;
  2132. split = core_info.n_subcores;
  2133. sip = NULL;
  2134. if (split > 1) {
  2135. /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
  2136. if (split == 2 && (dynamic_mt_modes & 2)) {
  2137. cmd_bit = HID0_POWER8_1TO2LPAR;
  2138. stat_bit = HID0_POWER8_2LPARMODE;
  2139. } else {
  2140. split = 4;
  2141. cmd_bit = HID0_POWER8_1TO4LPAR;
  2142. stat_bit = HID0_POWER8_4LPARMODE;
  2143. }
  2144. subcore_size = MAX_SMT_THREADS / split;
  2145. sip = &split_info;
  2146. memset(&split_info, 0, sizeof(split_info));
  2147. split_info.rpr = mfspr(SPRN_RPR);
  2148. split_info.pmmar = mfspr(SPRN_PMMAR);
  2149. split_info.ldbar = mfspr(SPRN_LDBAR);
  2150. split_info.subcore_size = subcore_size;
  2151. for (sub = 0; sub < core_info.n_subcores; ++sub)
  2152. split_info.master_vcs[sub] =
  2153. list_first_entry(&core_info.vcs[sub],
  2154. struct kvmppc_vcore, preempt_list);
  2155. /* order writes to split_info before kvm_split_mode pointer */
  2156. smp_wmb();
  2157. }
  2158. pcpu = smp_processor_id();
  2159. for (thr = 0; thr < threads_per_subcore; ++thr)
  2160. paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
  2161. /* Initiate micro-threading (split-core) if required */
  2162. if (cmd_bit) {
  2163. unsigned long hid0 = mfspr(SPRN_HID0);
  2164. hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
  2165. mb();
  2166. mtspr(SPRN_HID0, hid0);
  2167. isync();
  2168. for (;;) {
  2169. hid0 = mfspr(SPRN_HID0);
  2170. if (hid0 & stat_bit)
  2171. break;
  2172. cpu_relax();
  2173. }
  2174. }
  2175. /* Start all the threads */
  2176. active = 0;
  2177. for (sub = 0; sub < core_info.n_subcores; ++sub) {
  2178. thr = subcore_thread_map[sub];
  2179. thr0_done = false;
  2180. active |= 1 << thr;
  2181. list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
  2182. pvc->pcpu = pcpu + thr;
  2183. list_for_each_entry(vcpu, &pvc->runnable_threads,
  2184. arch.run_list) {
  2185. kvmppc_start_thread(vcpu, pvc);
  2186. kvmppc_create_dtl_entry(vcpu, pvc);
  2187. trace_kvm_guest_enter(vcpu);
  2188. if (!vcpu->arch.ptid)
  2189. thr0_done = true;
  2190. active |= 1 << (thr + vcpu->arch.ptid);
  2191. }
  2192. /*
  2193. * We need to start the first thread of each subcore
  2194. * even if it doesn't have a vcpu.
  2195. */
  2196. if (pvc->master_vcore == pvc && !thr0_done)
  2197. kvmppc_start_thread(NULL, pvc);
  2198. thr += pvc->num_threads;
  2199. }
  2200. }
  2201. /*
  2202. * Ensure that split_info.do_nap is set after setting
  2203. * the vcore pointer in the PACA of the secondaries.
  2204. */
  2205. smp_mb();
  2206. if (cmd_bit)
  2207. split_info.do_nap = 1; /* ask secondaries to nap when done */
  2208. /*
  2209. * When doing micro-threading, poke the inactive threads as well.
  2210. * This gets them to the nap instruction after kvm_do_nap,
  2211. * which reduces the time taken to unsplit later.
  2212. */
  2213. if (split > 1)
  2214. for (thr = 1; thr < threads_per_subcore; ++thr)
  2215. if (!(active & (1 << thr)))
  2216. kvmppc_ipi_thread(pcpu + thr);
  2217. vc->vcore_state = VCORE_RUNNING;
  2218. preempt_disable();
  2219. trace_kvmppc_run_core(vc, 0);
  2220. for (sub = 0; sub < core_info.n_subcores; ++sub)
  2221. list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
  2222. spin_unlock(&pvc->lock);
  2223. kvm_guest_enter();
  2224. srcu_idx = srcu_read_lock(&vc->kvm->srcu);
  2225. if (vc->mpp_buffer_is_valid)
  2226. kvmppc_start_restoring_l2_cache(vc);
  2227. __kvmppc_vcore_entry();
  2228. if (vc->mpp_buffer)
  2229. kvmppc_start_saving_l2_cache(vc);
  2230. srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
  2231. spin_lock(&vc->lock);
  2232. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  2233. vc->vcore_state = VCORE_EXITING;
  2234. /* wait for secondary threads to finish writing their state to memory */
  2235. kvmppc_wait_for_nap();
  2236. /* Return to whole-core mode if we split the core earlier */
  2237. if (split > 1) {
  2238. unsigned long hid0 = mfspr(SPRN_HID0);
  2239. unsigned long loops = 0;
  2240. hid0 &= ~HID0_POWER8_DYNLPARDIS;
  2241. stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
  2242. mb();
  2243. mtspr(SPRN_HID0, hid0);
  2244. isync();
  2245. for (;;) {
  2246. hid0 = mfspr(SPRN_HID0);
  2247. if (!(hid0 & stat_bit))
  2248. break;
  2249. cpu_relax();
  2250. ++loops;
  2251. }
  2252. split_info.do_nap = 0;
  2253. }
  2254. /* Let secondaries go back to the offline loop */
  2255. for (i = 0; i < threads_per_subcore; ++i) {
  2256. kvmppc_release_hwthread(pcpu + i);
  2257. if (sip && sip->napped[i])
  2258. kvmppc_ipi_thread(pcpu + i);
  2259. }
  2260. spin_unlock(&vc->lock);
  2261. /* make sure updates to secondary vcpu structs are visible now */
  2262. smp_mb();
  2263. kvm_guest_exit();
  2264. for (sub = 0; sub < core_info.n_subcores; ++sub)
  2265. list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
  2266. preempt_list)
  2267. post_guest_process(pvc, pvc == vc);
  2268. spin_lock(&vc->lock);
  2269. preempt_enable();
  2270. out:
  2271. vc->vcore_state = VCORE_INACTIVE;
  2272. trace_kvmppc_run_core(vc, 1);
  2273. }
  2274. /*
  2275. * Wait for some other vcpu thread to execute us, and
  2276. * wake us up when we need to handle something in the host.
  2277. */
  2278. static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
  2279. struct kvm_vcpu *vcpu, int wait_state)
  2280. {
  2281. DEFINE_WAIT(wait);
  2282. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  2283. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  2284. spin_unlock(&vc->lock);
  2285. schedule();
  2286. spin_lock(&vc->lock);
  2287. }
  2288. finish_wait(&vcpu->arch.cpu_run, &wait);
  2289. }
  2290. /*
  2291. * All the vcpus in this vcore are idle, so wait for a decrementer
  2292. * or external interrupt to one of the vcpus. vc->lock is held.
  2293. */
  2294. static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
  2295. {
  2296. struct kvm_vcpu *vcpu;
  2297. int do_sleep = 1;
  2298. DEFINE_WAIT(wait);
  2299. prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
  2300. /*
  2301. * Check one last time for pending exceptions and ceded state after
  2302. * we put ourselves on the wait queue
  2303. */
  2304. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  2305. if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
  2306. do_sleep = 0;
  2307. break;
  2308. }
  2309. }
  2310. if (!do_sleep) {
  2311. finish_wait(&vc->wq, &wait);
  2312. return;
  2313. }
  2314. vc->vcore_state = VCORE_SLEEPING;
  2315. trace_kvmppc_vcore_blocked(vc, 0);
  2316. spin_unlock(&vc->lock);
  2317. schedule();
  2318. finish_wait(&vc->wq, &wait);
  2319. spin_lock(&vc->lock);
  2320. vc->vcore_state = VCORE_INACTIVE;
  2321. trace_kvmppc_vcore_blocked(vc, 1);
  2322. }
  2323. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2324. {
  2325. int n_ceded;
  2326. struct kvmppc_vcore *vc;
  2327. struct kvm_vcpu *v, *vn;
  2328. trace_kvmppc_run_vcpu_enter(vcpu);
  2329. kvm_run->exit_reason = 0;
  2330. vcpu->arch.ret = RESUME_GUEST;
  2331. vcpu->arch.trap = 0;
  2332. kvmppc_update_vpas(vcpu);
  2333. /*
  2334. * Synchronize with other threads in this virtual core
  2335. */
  2336. vc = vcpu->arch.vcore;
  2337. spin_lock(&vc->lock);
  2338. vcpu->arch.ceded = 0;
  2339. vcpu->arch.run_task = current;
  2340. vcpu->arch.kvm_run = kvm_run;
  2341. vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
  2342. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  2343. vcpu->arch.busy_preempt = TB_NIL;
  2344. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  2345. ++vc->n_runnable;
  2346. /*
  2347. * This happens the first time this is called for a vcpu.
  2348. * If the vcore is already running, we may be able to start
  2349. * this thread straight away and have it join in.
  2350. */
  2351. if (!signal_pending(current)) {
  2352. if (vc->vcore_state == VCORE_PIGGYBACK) {
  2353. struct kvmppc_vcore *mvc = vc->master_vcore;
  2354. if (spin_trylock(&mvc->lock)) {
  2355. if (mvc->vcore_state == VCORE_RUNNING &&
  2356. !VCORE_IS_EXITING(mvc)) {
  2357. kvmppc_create_dtl_entry(vcpu, vc);
  2358. kvmppc_start_thread(vcpu, vc);
  2359. trace_kvm_guest_enter(vcpu);
  2360. }
  2361. spin_unlock(&mvc->lock);
  2362. }
  2363. } else if (vc->vcore_state == VCORE_RUNNING &&
  2364. !VCORE_IS_EXITING(vc)) {
  2365. kvmppc_create_dtl_entry(vcpu, vc);
  2366. kvmppc_start_thread(vcpu, vc);
  2367. trace_kvm_guest_enter(vcpu);
  2368. } else if (vc->vcore_state == VCORE_SLEEPING) {
  2369. wake_up(&vc->wq);
  2370. }
  2371. }
  2372. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  2373. !signal_pending(current)) {
  2374. if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
  2375. kvmppc_vcore_end_preempt(vc);
  2376. if (vc->vcore_state != VCORE_INACTIVE) {
  2377. kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
  2378. continue;
  2379. }
  2380. list_for_each_entry_safe(v, vn, &vc->runnable_threads,
  2381. arch.run_list) {
  2382. kvmppc_core_prepare_to_enter(v);
  2383. if (signal_pending(v->arch.run_task)) {
  2384. kvmppc_remove_runnable(vc, v);
  2385. v->stat.signal_exits++;
  2386. v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  2387. v->arch.ret = -EINTR;
  2388. wake_up(&v->arch.cpu_run);
  2389. }
  2390. }
  2391. if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  2392. break;
  2393. n_ceded = 0;
  2394. list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
  2395. if (!v->arch.pending_exceptions)
  2396. n_ceded += v->arch.ceded;
  2397. else
  2398. v->arch.ceded = 0;
  2399. }
  2400. vc->runner = vcpu;
  2401. if (n_ceded == vc->n_runnable) {
  2402. kvmppc_vcore_blocked(vc);
  2403. } else if (need_resched()) {
  2404. kvmppc_vcore_preempt(vc);
  2405. /* Let something else run */
  2406. cond_resched_lock(&vc->lock);
  2407. if (vc->vcore_state == VCORE_PREEMPT)
  2408. kvmppc_vcore_end_preempt(vc);
  2409. } else {
  2410. kvmppc_run_core(vc);
  2411. }
  2412. vc->runner = NULL;
  2413. }
  2414. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  2415. (vc->vcore_state == VCORE_RUNNING ||
  2416. vc->vcore_state == VCORE_EXITING))
  2417. kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
  2418. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  2419. kvmppc_remove_runnable(vc, vcpu);
  2420. vcpu->stat.signal_exits++;
  2421. kvm_run->exit_reason = KVM_EXIT_INTR;
  2422. vcpu->arch.ret = -EINTR;
  2423. }
  2424. if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
  2425. /* Wake up some vcpu to run the core */
  2426. v = list_first_entry(&vc->runnable_threads,
  2427. struct kvm_vcpu, arch.run_list);
  2428. wake_up(&v->arch.cpu_run);
  2429. }
  2430. trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
  2431. spin_unlock(&vc->lock);
  2432. return vcpu->arch.ret;
  2433. }
  2434. static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
  2435. {
  2436. int r;
  2437. int srcu_idx;
  2438. if (!vcpu->arch.sane) {
  2439. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2440. return -EINVAL;
  2441. }
  2442. kvmppc_core_prepare_to_enter(vcpu);
  2443. /* No need to go into the guest when all we'll do is come back out */
  2444. if (signal_pending(current)) {
  2445. run->exit_reason = KVM_EXIT_INTR;
  2446. return -EINTR;
  2447. }
  2448. atomic_inc(&vcpu->kvm->arch.vcpus_running);
  2449. /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
  2450. smp_mb();
  2451. /* On the first time here, set up HTAB and VRMA */
  2452. if (!vcpu->kvm->arch.hpte_setup_done) {
  2453. r = kvmppc_hv_setup_htab_rma(vcpu);
  2454. if (r)
  2455. goto out;
  2456. }
  2457. flush_fp_to_thread(current);
  2458. flush_altivec_to_thread(current);
  2459. flush_vsx_to_thread(current);
  2460. vcpu->arch.wqp = &vcpu->arch.vcore->wq;
  2461. vcpu->arch.pgdir = current->mm->pgd;
  2462. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  2463. do {
  2464. r = kvmppc_run_vcpu(run, vcpu);
  2465. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  2466. !(vcpu->arch.shregs.msr & MSR_PR)) {
  2467. trace_kvm_hcall_enter(vcpu);
  2468. r = kvmppc_pseries_do_hcall(vcpu);
  2469. trace_kvm_hcall_exit(vcpu, r);
  2470. kvmppc_core_prepare_to_enter(vcpu);
  2471. } else if (r == RESUME_PAGE_FAULT) {
  2472. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2473. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  2474. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  2475. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  2476. }
  2477. } while (is_kvmppc_resume_guest(r));
  2478. out:
  2479. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  2480. atomic_dec(&vcpu->kvm->arch.vcpus_running);
  2481. return r;
  2482. }
  2483. static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
  2484. int linux_psize)
  2485. {
  2486. struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
  2487. if (!def->shift)
  2488. return;
  2489. (*sps)->page_shift = def->shift;
  2490. (*sps)->slb_enc = def->sllp;
  2491. (*sps)->enc[0].page_shift = def->shift;
  2492. (*sps)->enc[0].pte_enc = def->penc[linux_psize];
  2493. /*
  2494. * Add 16MB MPSS support if host supports it
  2495. */
  2496. if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
  2497. (*sps)->enc[1].page_shift = 24;
  2498. (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
  2499. }
  2500. (*sps)++;
  2501. }
  2502. static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
  2503. struct kvm_ppc_smmu_info *info)
  2504. {
  2505. struct kvm_ppc_one_seg_page_size *sps;
  2506. info->flags = KVM_PPC_PAGE_SIZES_REAL;
  2507. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  2508. info->flags |= KVM_PPC_1T_SEGMENTS;
  2509. info->slb_size = mmu_slb_size;
  2510. /* We only support these sizes for now, and no muti-size segments */
  2511. sps = &info->sps[0];
  2512. kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
  2513. kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
  2514. kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
  2515. return 0;
  2516. }
  2517. /*
  2518. * Get (and clear) the dirty memory log for a memory slot.
  2519. */
  2520. static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
  2521. struct kvm_dirty_log *log)
  2522. {
  2523. struct kvm_memslots *slots;
  2524. struct kvm_memory_slot *memslot;
  2525. int r;
  2526. unsigned long n;
  2527. mutex_lock(&kvm->slots_lock);
  2528. r = -EINVAL;
  2529. if (log->slot >= KVM_USER_MEM_SLOTS)
  2530. goto out;
  2531. slots = kvm_memslots(kvm);
  2532. memslot = id_to_memslot(slots, log->slot);
  2533. r = -ENOENT;
  2534. if (!memslot->dirty_bitmap)
  2535. goto out;
  2536. n = kvm_dirty_bitmap_bytes(memslot);
  2537. memset(memslot->dirty_bitmap, 0, n);
  2538. r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
  2539. if (r)
  2540. goto out;
  2541. r = -EFAULT;
  2542. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  2543. goto out;
  2544. r = 0;
  2545. out:
  2546. mutex_unlock(&kvm->slots_lock);
  2547. return r;
  2548. }
  2549. static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
  2550. struct kvm_memory_slot *dont)
  2551. {
  2552. if (!dont || free->arch.rmap != dont->arch.rmap) {
  2553. vfree(free->arch.rmap);
  2554. free->arch.rmap = NULL;
  2555. }
  2556. }
  2557. static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
  2558. unsigned long npages)
  2559. {
  2560. slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
  2561. if (!slot->arch.rmap)
  2562. return -ENOMEM;
  2563. return 0;
  2564. }
  2565. static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
  2566. struct kvm_memory_slot *memslot,
  2567. const struct kvm_userspace_memory_region *mem)
  2568. {
  2569. return 0;
  2570. }
  2571. static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
  2572. const struct kvm_userspace_memory_region *mem,
  2573. const struct kvm_memory_slot *old,
  2574. const struct kvm_memory_slot *new)
  2575. {
  2576. unsigned long npages = mem->memory_size >> PAGE_SHIFT;
  2577. struct kvm_memslots *slots;
  2578. struct kvm_memory_slot *memslot;
  2579. if (npages && old->npages) {
  2580. /*
  2581. * If modifying a memslot, reset all the rmap dirty bits.
  2582. * If this is a new memslot, we don't need to do anything
  2583. * since the rmap array starts out as all zeroes,
  2584. * i.e. no pages are dirty.
  2585. */
  2586. slots = kvm_memslots(kvm);
  2587. memslot = id_to_memslot(slots, mem->slot);
  2588. kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
  2589. }
  2590. }
  2591. /*
  2592. * Update LPCR values in kvm->arch and in vcores.
  2593. * Caller must hold kvm->lock.
  2594. */
  2595. void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
  2596. {
  2597. long int i;
  2598. u32 cores_done = 0;
  2599. if ((kvm->arch.lpcr & mask) == lpcr)
  2600. return;
  2601. kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
  2602. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  2603. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  2604. if (!vc)
  2605. continue;
  2606. spin_lock(&vc->lock);
  2607. vc->lpcr = (vc->lpcr & ~mask) | lpcr;
  2608. spin_unlock(&vc->lock);
  2609. if (++cores_done >= kvm->arch.online_vcores)
  2610. break;
  2611. }
  2612. }
  2613. static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
  2614. {
  2615. return;
  2616. }
  2617. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
  2618. {
  2619. int err = 0;
  2620. struct kvm *kvm = vcpu->kvm;
  2621. unsigned long hva;
  2622. struct kvm_memory_slot *memslot;
  2623. struct vm_area_struct *vma;
  2624. unsigned long lpcr = 0, senc;
  2625. unsigned long psize, porder;
  2626. int srcu_idx;
  2627. mutex_lock(&kvm->lock);
  2628. if (kvm->arch.hpte_setup_done)
  2629. goto out; /* another vcpu beat us to it */
  2630. /* Allocate hashed page table (if not done already) and reset it */
  2631. if (!kvm->arch.hpt_virt) {
  2632. err = kvmppc_alloc_hpt(kvm, NULL);
  2633. if (err) {
  2634. pr_err("KVM: Couldn't alloc HPT\n");
  2635. goto out;
  2636. }
  2637. }
  2638. /* Look up the memslot for guest physical address 0 */
  2639. srcu_idx = srcu_read_lock(&kvm->srcu);
  2640. memslot = gfn_to_memslot(kvm, 0);
  2641. /* We must have some memory at 0 by now */
  2642. err = -EINVAL;
  2643. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  2644. goto out_srcu;
  2645. /* Look up the VMA for the start of this memory slot */
  2646. hva = memslot->userspace_addr;
  2647. down_read(&current->mm->mmap_sem);
  2648. vma = find_vma(current->mm, hva);
  2649. if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
  2650. goto up_out;
  2651. psize = vma_kernel_pagesize(vma);
  2652. porder = __ilog2(psize);
  2653. up_read(&current->mm->mmap_sem);
  2654. /* We can handle 4k, 64k or 16M pages in the VRMA */
  2655. err = -EINVAL;
  2656. if (!(psize == 0x1000 || psize == 0x10000 ||
  2657. psize == 0x1000000))
  2658. goto out_srcu;
  2659. /* Update VRMASD field in the LPCR */
  2660. senc = slb_pgsize_encoding(psize);
  2661. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  2662. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2663. /* the -4 is to account for senc values starting at 0x10 */
  2664. lpcr = senc << (LPCR_VRMASD_SH - 4);
  2665. /* Create HPTEs in the hash page table for the VRMA */
  2666. kvmppc_map_vrma(vcpu, memslot, porder);
  2667. kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
  2668. /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
  2669. smp_wmb();
  2670. kvm->arch.hpte_setup_done = 1;
  2671. err = 0;
  2672. out_srcu:
  2673. srcu_read_unlock(&kvm->srcu, srcu_idx);
  2674. out:
  2675. mutex_unlock(&kvm->lock);
  2676. return err;
  2677. up_out:
  2678. up_read(&current->mm->mmap_sem);
  2679. goto out_srcu;
  2680. }
  2681. static int kvmppc_core_init_vm_hv(struct kvm *kvm)
  2682. {
  2683. unsigned long lpcr, lpid;
  2684. char buf[32];
  2685. /* Allocate the guest's logical partition ID */
  2686. lpid = kvmppc_alloc_lpid();
  2687. if ((long)lpid < 0)
  2688. return -ENOMEM;
  2689. kvm->arch.lpid = lpid;
  2690. /*
  2691. * Since we don't flush the TLB when tearing down a VM,
  2692. * and this lpid might have previously been used,
  2693. * make sure we flush on each core before running the new VM.
  2694. */
  2695. cpumask_setall(&kvm->arch.need_tlb_flush);
  2696. /* Start out with the default set of hcalls enabled */
  2697. memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
  2698. sizeof(kvm->arch.enabled_hcalls));
  2699. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  2700. /* Init LPCR for virtual RMA mode */
  2701. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  2702. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  2703. lpcr &= LPCR_PECE | LPCR_LPES;
  2704. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  2705. LPCR_VPM0 | LPCR_VPM1;
  2706. kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
  2707. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  2708. /* On POWER8 turn on online bit to enable PURR/SPURR */
  2709. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  2710. lpcr |= LPCR_ONL;
  2711. kvm->arch.lpcr = lpcr;
  2712. /*
  2713. * Track that we now have a HV mode VM active. This blocks secondary
  2714. * CPU threads from coming online.
  2715. */
  2716. kvm_hv_vm_activated();
  2717. /*
  2718. * Create a debugfs directory for the VM
  2719. */
  2720. snprintf(buf, sizeof(buf), "vm%d", current->pid);
  2721. kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
  2722. if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
  2723. kvmppc_mmu_debugfs_init(kvm);
  2724. return 0;
  2725. }
  2726. static void kvmppc_free_vcores(struct kvm *kvm)
  2727. {
  2728. long int i;
  2729. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  2730. if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
  2731. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  2732. free_pages((unsigned long)vc->mpp_buffer,
  2733. MPP_BUFFER_ORDER);
  2734. }
  2735. kfree(kvm->arch.vcores[i]);
  2736. }
  2737. kvm->arch.online_vcores = 0;
  2738. }
  2739. static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
  2740. {
  2741. debugfs_remove_recursive(kvm->arch.debugfs_dir);
  2742. kvm_hv_vm_deactivated();
  2743. kvmppc_free_vcores(kvm);
  2744. kvmppc_free_hpt(kvm);
  2745. }
  2746. /* We don't need to emulate any privileged instructions or dcbz */
  2747. static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  2748. unsigned int inst, int *advance)
  2749. {
  2750. return EMULATE_FAIL;
  2751. }
  2752. static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2753. ulong spr_val)
  2754. {
  2755. return EMULATE_FAIL;
  2756. }
  2757. static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2758. ulong *spr_val)
  2759. {
  2760. return EMULATE_FAIL;
  2761. }
  2762. static int kvmppc_core_check_processor_compat_hv(void)
  2763. {
  2764. if (!cpu_has_feature(CPU_FTR_HVMODE) ||
  2765. !cpu_has_feature(CPU_FTR_ARCH_206))
  2766. return -EIO;
  2767. return 0;
  2768. }
  2769. static long kvm_arch_vm_ioctl_hv(struct file *filp,
  2770. unsigned int ioctl, unsigned long arg)
  2771. {
  2772. struct kvm *kvm __maybe_unused = filp->private_data;
  2773. void __user *argp = (void __user *)arg;
  2774. long r;
  2775. switch (ioctl) {
  2776. case KVM_PPC_ALLOCATE_HTAB: {
  2777. u32 htab_order;
  2778. r = -EFAULT;
  2779. if (get_user(htab_order, (u32 __user *)argp))
  2780. break;
  2781. r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
  2782. if (r)
  2783. break;
  2784. r = -EFAULT;
  2785. if (put_user(htab_order, (u32 __user *)argp))
  2786. break;
  2787. r = 0;
  2788. break;
  2789. }
  2790. case KVM_PPC_GET_HTAB_FD: {
  2791. struct kvm_get_htab_fd ghf;
  2792. r = -EFAULT;
  2793. if (copy_from_user(&ghf, argp, sizeof(ghf)))
  2794. break;
  2795. r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
  2796. break;
  2797. }
  2798. default:
  2799. r = -ENOTTY;
  2800. }
  2801. return r;
  2802. }
  2803. /*
  2804. * List of hcall numbers to enable by default.
  2805. * For compatibility with old userspace, we enable by default
  2806. * all hcalls that were implemented before the hcall-enabling
  2807. * facility was added. Note this list should not include H_RTAS.
  2808. */
  2809. static unsigned int default_hcall_list[] = {
  2810. H_REMOVE,
  2811. H_ENTER,
  2812. H_READ,
  2813. H_PROTECT,
  2814. H_BULK_REMOVE,
  2815. H_GET_TCE,
  2816. H_PUT_TCE,
  2817. H_SET_DABR,
  2818. H_SET_XDABR,
  2819. H_CEDE,
  2820. H_PROD,
  2821. H_CONFER,
  2822. H_REGISTER_VPA,
  2823. #ifdef CONFIG_KVM_XICS
  2824. H_EOI,
  2825. H_CPPR,
  2826. H_IPI,
  2827. H_IPOLL,
  2828. H_XIRR,
  2829. H_XIRR_X,
  2830. #endif
  2831. 0
  2832. };
  2833. static void init_default_hcalls(void)
  2834. {
  2835. int i;
  2836. unsigned int hcall;
  2837. for (i = 0; default_hcall_list[i]; ++i) {
  2838. hcall = default_hcall_list[i];
  2839. WARN_ON(!kvmppc_hcall_impl_hv(hcall));
  2840. __set_bit(hcall / 4, default_enabled_hcalls);
  2841. }
  2842. }
  2843. static struct kvmppc_ops kvm_ops_hv = {
  2844. .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
  2845. .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
  2846. .get_one_reg = kvmppc_get_one_reg_hv,
  2847. .set_one_reg = kvmppc_set_one_reg_hv,
  2848. .vcpu_load = kvmppc_core_vcpu_load_hv,
  2849. .vcpu_put = kvmppc_core_vcpu_put_hv,
  2850. .set_msr = kvmppc_set_msr_hv,
  2851. .vcpu_run = kvmppc_vcpu_run_hv,
  2852. .vcpu_create = kvmppc_core_vcpu_create_hv,
  2853. .vcpu_free = kvmppc_core_vcpu_free_hv,
  2854. .check_requests = kvmppc_core_check_requests_hv,
  2855. .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
  2856. .flush_memslot = kvmppc_core_flush_memslot_hv,
  2857. .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
  2858. .commit_memory_region = kvmppc_core_commit_memory_region_hv,
  2859. .unmap_hva = kvm_unmap_hva_hv,
  2860. .unmap_hva_range = kvm_unmap_hva_range_hv,
  2861. .age_hva = kvm_age_hva_hv,
  2862. .test_age_hva = kvm_test_age_hva_hv,
  2863. .set_spte_hva = kvm_set_spte_hva_hv,
  2864. .mmu_destroy = kvmppc_mmu_destroy_hv,
  2865. .free_memslot = kvmppc_core_free_memslot_hv,
  2866. .create_memslot = kvmppc_core_create_memslot_hv,
  2867. .init_vm = kvmppc_core_init_vm_hv,
  2868. .destroy_vm = kvmppc_core_destroy_vm_hv,
  2869. .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
  2870. .emulate_op = kvmppc_core_emulate_op_hv,
  2871. .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
  2872. .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
  2873. .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
  2874. .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
  2875. .hcall_implemented = kvmppc_hcall_impl_hv,
  2876. };
  2877. static int kvmppc_book3s_init_hv(void)
  2878. {
  2879. int r;
  2880. /*
  2881. * FIXME!! Do we need to check on all cpus ?
  2882. */
  2883. r = kvmppc_core_check_processor_compat_hv();
  2884. if (r < 0)
  2885. return -ENODEV;
  2886. kvm_ops_hv.owner = THIS_MODULE;
  2887. kvmppc_hv_ops = &kvm_ops_hv;
  2888. init_default_hcalls();
  2889. init_vcore_lists();
  2890. r = kvmppc_mmu_hv_init();
  2891. return r;
  2892. }
  2893. static void kvmppc_book3s_exit_hv(void)
  2894. {
  2895. kvmppc_hv_ops = NULL;
  2896. }
  2897. module_init(kvmppc_book3s_init_hv);
  2898. module_exit(kvmppc_book3s_exit_hv);
  2899. MODULE_LICENSE("GPL");
  2900. MODULE_ALIAS_MISCDEV(KVM_MINOR);
  2901. MODULE_ALIAS("devname:kvm");