init.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 2000 Ralf Baechle
  7. * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  8. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  9. * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
  10. */
  11. #include <linux/bug.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/signal.h>
  15. #include <linux/sched.h>
  16. #include <linux/smp.h>
  17. #include <linux/kernel.h>
  18. #include <linux/errno.h>
  19. #include <linux/string.h>
  20. #include <linux/types.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/mman.h>
  24. #include <linux/mm.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/highmem.h>
  27. #include <linux/swap.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/pfn.h>
  30. #include <linux/hardirq.h>
  31. #include <linux/gfp.h>
  32. #include <linux/kcore.h>
  33. #include <asm/asm-offsets.h>
  34. #include <asm/bootinfo.h>
  35. #include <asm/cachectl.h>
  36. #include <asm/cpu.h>
  37. #include <asm/dma.h>
  38. #include <asm/kmap_types.h>
  39. #include <asm/maar.h>
  40. #include <asm/mmu_context.h>
  41. #include <asm/sections.h>
  42. #include <asm/pgtable.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/tlb.h>
  45. #include <asm/fixmap.h>
  46. /*
  47. * We have up to 8 empty zeroed pages so we can map one of the right colour
  48. * when needed. This is necessary only on R4000 / R4400 SC and MC versions
  49. * where we have to avoid VCED / VECI exceptions for good performance at
  50. * any price. Since page is never written to after the initialization we
  51. * don't have to care about aliases on other CPUs.
  52. */
  53. unsigned long empty_zero_page, zero_page_mask;
  54. EXPORT_SYMBOL_GPL(empty_zero_page);
  55. EXPORT_SYMBOL(zero_page_mask);
  56. /*
  57. * Not static inline because used by IP27 special magic initialization code
  58. */
  59. void setup_zero_pages(void)
  60. {
  61. unsigned int order, i;
  62. struct page *page;
  63. if (cpu_has_vce)
  64. order = 3;
  65. else
  66. order = 0;
  67. empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
  68. if (!empty_zero_page)
  69. panic("Oh boy, that early out of memory?");
  70. page = virt_to_page((void *)empty_zero_page);
  71. split_page(page, order);
  72. for (i = 0; i < (1 << order); i++, page++)
  73. mark_page_reserved(page);
  74. zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK;
  75. }
  76. static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot)
  77. {
  78. enum fixed_addresses idx;
  79. unsigned long vaddr, flags, entrylo;
  80. unsigned long old_ctx;
  81. pte_t pte;
  82. int tlbidx;
  83. BUG_ON(Page_dcache_dirty(page));
  84. preempt_disable();
  85. pagefault_disable();
  86. idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1);
  87. idx += in_interrupt() ? FIX_N_COLOURS : 0;
  88. vaddr = __fix_to_virt(FIX_CMAP_END - idx);
  89. pte = mk_pte(page, prot);
  90. #if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
  91. entrylo = pte_to_entrylo(pte.pte_high);
  92. #else
  93. entrylo = pte_to_entrylo(pte_val(pte));
  94. #endif
  95. local_irq_save(flags);
  96. old_ctx = read_c0_entryhi();
  97. write_c0_entryhi(vaddr & (PAGE_MASK << 1));
  98. write_c0_entrylo0(entrylo);
  99. write_c0_entrylo1(entrylo);
  100. #ifdef CONFIG_XPA
  101. entrylo = (pte.pte_low & _PFNX_MASK);
  102. writex_c0_entrylo0(entrylo);
  103. writex_c0_entrylo1(entrylo);
  104. #endif
  105. tlbidx = read_c0_wired();
  106. write_c0_wired(tlbidx + 1);
  107. write_c0_index(tlbidx);
  108. mtc0_tlbw_hazard();
  109. tlb_write_indexed();
  110. tlbw_use_hazard();
  111. write_c0_entryhi(old_ctx);
  112. local_irq_restore(flags);
  113. return (void*) vaddr;
  114. }
  115. void *kmap_coherent(struct page *page, unsigned long addr)
  116. {
  117. return __kmap_pgprot(page, addr, PAGE_KERNEL);
  118. }
  119. void *kmap_noncoherent(struct page *page, unsigned long addr)
  120. {
  121. return __kmap_pgprot(page, addr, PAGE_KERNEL_NC);
  122. }
  123. void kunmap_coherent(void)
  124. {
  125. unsigned int wired;
  126. unsigned long flags, old_ctx;
  127. local_irq_save(flags);
  128. old_ctx = read_c0_entryhi();
  129. wired = read_c0_wired() - 1;
  130. write_c0_wired(wired);
  131. write_c0_index(wired);
  132. write_c0_entryhi(UNIQUE_ENTRYHI(wired));
  133. write_c0_entrylo0(0);
  134. write_c0_entrylo1(0);
  135. mtc0_tlbw_hazard();
  136. tlb_write_indexed();
  137. tlbw_use_hazard();
  138. write_c0_entryhi(old_ctx);
  139. local_irq_restore(flags);
  140. pagefault_enable();
  141. preempt_enable();
  142. }
  143. void copy_user_highpage(struct page *to, struct page *from,
  144. unsigned long vaddr, struct vm_area_struct *vma)
  145. {
  146. void *vfrom, *vto;
  147. vto = kmap_atomic(to);
  148. if (cpu_has_dc_aliases &&
  149. page_mapped(from) && !Page_dcache_dirty(from)) {
  150. vfrom = kmap_coherent(from, vaddr);
  151. copy_page(vto, vfrom);
  152. kunmap_coherent();
  153. } else {
  154. vfrom = kmap_atomic(from);
  155. copy_page(vto, vfrom);
  156. kunmap_atomic(vfrom);
  157. }
  158. if ((!cpu_has_ic_fills_f_dc) ||
  159. pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
  160. flush_data_cache_page((unsigned long)vto);
  161. kunmap_atomic(vto);
  162. /* Make sure this page is cleared on other CPU's too before using it */
  163. smp_wmb();
  164. }
  165. void copy_to_user_page(struct vm_area_struct *vma,
  166. struct page *page, unsigned long vaddr, void *dst, const void *src,
  167. unsigned long len)
  168. {
  169. if (cpu_has_dc_aliases &&
  170. page_mapped(page) && !Page_dcache_dirty(page)) {
  171. void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
  172. memcpy(vto, src, len);
  173. kunmap_coherent();
  174. } else {
  175. memcpy(dst, src, len);
  176. if (cpu_has_dc_aliases)
  177. SetPageDcacheDirty(page);
  178. }
  179. if ((vma->vm_flags & VM_EXEC) && !cpu_has_ic_fills_f_dc)
  180. flush_cache_page(vma, vaddr, page_to_pfn(page));
  181. }
  182. void copy_from_user_page(struct vm_area_struct *vma,
  183. struct page *page, unsigned long vaddr, void *dst, const void *src,
  184. unsigned long len)
  185. {
  186. if (cpu_has_dc_aliases &&
  187. page_mapped(page) && !Page_dcache_dirty(page)) {
  188. void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
  189. memcpy(dst, vfrom, len);
  190. kunmap_coherent();
  191. } else {
  192. memcpy(dst, src, len);
  193. if (cpu_has_dc_aliases)
  194. SetPageDcacheDirty(page);
  195. }
  196. }
  197. EXPORT_SYMBOL_GPL(copy_from_user_page);
  198. void __init fixrange_init(unsigned long start, unsigned long end,
  199. pgd_t *pgd_base)
  200. {
  201. #ifdef CONFIG_HIGHMEM
  202. pgd_t *pgd;
  203. pud_t *pud;
  204. pmd_t *pmd;
  205. pte_t *pte;
  206. int i, j, k;
  207. unsigned long vaddr;
  208. vaddr = start;
  209. i = __pgd_offset(vaddr);
  210. j = __pud_offset(vaddr);
  211. k = __pmd_offset(vaddr);
  212. pgd = pgd_base + i;
  213. for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
  214. pud = (pud_t *)pgd;
  215. for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) {
  216. pmd = (pmd_t *)pud;
  217. for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) {
  218. if (pmd_none(*pmd)) {
  219. pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
  220. set_pmd(pmd, __pmd((unsigned long)pte));
  221. BUG_ON(pte != pte_offset_kernel(pmd, 0));
  222. }
  223. vaddr += PMD_SIZE;
  224. }
  225. k = 0;
  226. }
  227. j = 0;
  228. }
  229. #endif
  230. }
  231. #ifndef CONFIG_NEED_MULTIPLE_NODES
  232. int page_is_ram(unsigned long pagenr)
  233. {
  234. int i;
  235. for (i = 0; i < boot_mem_map.nr_map; i++) {
  236. unsigned long addr, end;
  237. switch (boot_mem_map.map[i].type) {
  238. case BOOT_MEM_RAM:
  239. case BOOT_MEM_INIT_RAM:
  240. break;
  241. default:
  242. /* not usable memory */
  243. continue;
  244. }
  245. addr = PFN_UP(boot_mem_map.map[i].addr);
  246. end = PFN_DOWN(boot_mem_map.map[i].addr +
  247. boot_mem_map.map[i].size);
  248. if (pagenr >= addr && pagenr < end)
  249. return 1;
  250. }
  251. return 0;
  252. }
  253. void __init paging_init(void)
  254. {
  255. unsigned long max_zone_pfns[MAX_NR_ZONES];
  256. unsigned long lastpfn __maybe_unused;
  257. pagetable_init();
  258. #ifdef CONFIG_HIGHMEM
  259. kmap_init();
  260. #endif
  261. #ifdef CONFIG_ZONE_DMA
  262. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  263. #endif
  264. #ifdef CONFIG_ZONE_DMA32
  265. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  266. #endif
  267. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  268. lastpfn = max_low_pfn;
  269. #ifdef CONFIG_HIGHMEM
  270. max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
  271. lastpfn = highend_pfn;
  272. if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) {
  273. printk(KERN_WARNING "This processor doesn't support highmem."
  274. " %ldk highmem ignored\n",
  275. (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10));
  276. max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn;
  277. lastpfn = max_low_pfn;
  278. }
  279. #endif
  280. free_area_init_nodes(max_zone_pfns);
  281. }
  282. #ifdef CONFIG_64BIT
  283. static struct kcore_list kcore_kseg0;
  284. #endif
  285. static inline void mem_init_free_highmem(void)
  286. {
  287. #ifdef CONFIG_HIGHMEM
  288. unsigned long tmp;
  289. for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {
  290. struct page *page = pfn_to_page(tmp);
  291. if (!page_is_ram(tmp))
  292. SetPageReserved(page);
  293. else
  294. free_highmem_page(page);
  295. }
  296. #endif
  297. }
  298. unsigned __weak platform_maar_init(unsigned num_pairs)
  299. {
  300. struct maar_config cfg[BOOT_MEM_MAP_MAX];
  301. unsigned i, num_configured, num_cfg = 0;
  302. phys_addr_t skip;
  303. for (i = 0; i < boot_mem_map.nr_map; i++) {
  304. switch (boot_mem_map.map[i].type) {
  305. case BOOT_MEM_RAM:
  306. case BOOT_MEM_INIT_RAM:
  307. break;
  308. default:
  309. continue;
  310. }
  311. skip = 0x10000 - (boot_mem_map.map[i].addr & 0xffff);
  312. cfg[num_cfg].lower = boot_mem_map.map[i].addr;
  313. cfg[num_cfg].lower += skip;
  314. cfg[num_cfg].upper = cfg[num_cfg].lower;
  315. cfg[num_cfg].upper += boot_mem_map.map[i].size - 1;
  316. cfg[num_cfg].upper -= skip;
  317. cfg[num_cfg].attrs = MIPS_MAAR_S;
  318. num_cfg++;
  319. }
  320. num_configured = maar_config(cfg, num_cfg, num_pairs);
  321. if (num_configured < num_cfg)
  322. pr_warn("Not enough MAAR pairs (%u) for all bootmem regions (%u)\n",
  323. num_pairs, num_cfg);
  324. return num_configured;
  325. }
  326. static void maar_init(void)
  327. {
  328. unsigned num_maars, used, i;
  329. if (!cpu_has_maar)
  330. return;
  331. /* Detect the number of MAARs */
  332. write_c0_maari(~0);
  333. back_to_back_c0_hazard();
  334. num_maars = read_c0_maari() + 1;
  335. /* MAARs should be in pairs */
  336. WARN_ON(num_maars % 2);
  337. /* Configure the required MAARs */
  338. used = platform_maar_init(num_maars / 2);
  339. /* Disable any further MAARs */
  340. for (i = (used * 2); i < num_maars; i++) {
  341. write_c0_maari(i);
  342. back_to_back_c0_hazard();
  343. write_c0_maar(0);
  344. back_to_back_c0_hazard();
  345. }
  346. }
  347. void __init mem_init(void)
  348. {
  349. #ifdef CONFIG_HIGHMEM
  350. #ifdef CONFIG_DISCONTIGMEM
  351. #error "CONFIG_HIGHMEM and CONFIG_DISCONTIGMEM dont work together yet"
  352. #endif
  353. max_mapnr = highend_pfn ? highend_pfn : max_low_pfn;
  354. #else
  355. max_mapnr = max_low_pfn;
  356. #endif
  357. high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
  358. maar_init();
  359. free_all_bootmem();
  360. setup_zero_pages(); /* Setup zeroed pages. */
  361. mem_init_free_highmem();
  362. mem_init_print_info(NULL);
  363. #ifdef CONFIG_64BIT
  364. if ((unsigned long) &_text > (unsigned long) CKSEG0)
  365. /* The -4 is a hack so that user tools don't have to handle
  366. the overflow. */
  367. kclist_add(&kcore_kseg0, (void *) CKSEG0,
  368. 0x80000000 - 4, KCORE_TEXT);
  369. #endif
  370. }
  371. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  372. void free_init_pages(const char *what, unsigned long begin, unsigned long end)
  373. {
  374. unsigned long pfn;
  375. for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) {
  376. struct page *page = pfn_to_page(pfn);
  377. void *addr = phys_to_virt(PFN_PHYS(pfn));
  378. memset(addr, POISON_FREE_INITMEM, PAGE_SIZE);
  379. free_reserved_page(page);
  380. }
  381. printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
  382. }
  383. #ifdef CONFIG_BLK_DEV_INITRD
  384. void free_initrd_mem(unsigned long start, unsigned long end)
  385. {
  386. free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
  387. "initrd");
  388. }
  389. #endif
  390. void (*free_init_pages_eva)(void *begin, void *end) = NULL;
  391. void __init_refok free_initmem(void)
  392. {
  393. prom_free_prom_memory();
  394. /*
  395. * Let the platform define a specific function to free the
  396. * init section since EVA may have used any possible mapping
  397. * between virtual and physical addresses.
  398. */
  399. if (free_init_pages_eva)
  400. free_init_pages_eva((void *)&__init_begin, (void *)&__init_end);
  401. else
  402. free_initmem_default(POISON_FREE_INITMEM);
  403. }
  404. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  405. unsigned long pgd_current[NR_CPUS];
  406. #endif
  407. /*
  408. * gcc 3.3 and older have trouble determining that PTRS_PER_PGD and PGD_ORDER
  409. * are constants. So we use the variants from asm-offset.h until that gcc
  410. * will officially be retired.
  411. *
  412. * Align swapper_pg_dir in to 64K, allows its address to be loaded
  413. * with a single LUI instruction in the TLB handlers. If we used
  414. * __aligned(64K), its size would get rounded up to the alignment
  415. * size, and waste space. So we place it in its own section and align
  416. * it in the linker script.
  417. */
  418. pgd_t swapper_pg_dir[_PTRS_PER_PGD] __section(.bss..swapper_pg_dir);
  419. #ifndef __PAGETABLE_PMD_FOLDED
  420. pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
  421. #endif
  422. pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss;