odp.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228
  1. /*
  2. * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <rdma/ib_umem.h>
  33. #include <rdma/ib_umem_odp.h>
  34. #include <linux/kernel.h>
  35. #include "mlx5_ib.h"
  36. #include "cmd.h"
  37. #define MAX_PREFETCH_LEN (4*1024*1024U)
  38. /* Timeout in ms to wait for an active mmu notifier to complete when handling
  39. * a pagefault. */
  40. #define MMU_NOTIFIER_TIMEOUT 1000
  41. #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
  42. #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
  43. #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
  44. #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
  45. #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
  46. #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
  47. static u64 mlx5_imr_ksm_entries;
  48. static int check_parent(struct ib_umem_odp *odp,
  49. struct mlx5_ib_mr *parent)
  50. {
  51. struct mlx5_ib_mr *mr = odp->private;
  52. return mr && mr->parent == parent && !odp->dying;
  53. }
  54. static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
  55. {
  56. struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
  57. struct ib_ucontext *ctx = odp->umem->context;
  58. struct rb_node *rb;
  59. down_read(&ctx->umem_rwsem);
  60. while (1) {
  61. rb = rb_next(&odp->interval_tree.rb);
  62. if (!rb)
  63. goto not_found;
  64. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  65. if (check_parent(odp, parent))
  66. goto end;
  67. }
  68. not_found:
  69. odp = NULL;
  70. end:
  71. up_read(&ctx->umem_rwsem);
  72. return odp;
  73. }
  74. static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx,
  75. u64 start, u64 length,
  76. struct mlx5_ib_mr *parent)
  77. {
  78. struct ib_umem_odp *odp;
  79. struct rb_node *rb;
  80. down_read(&ctx->umem_rwsem);
  81. odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length);
  82. if (!odp)
  83. goto end;
  84. while (1) {
  85. if (check_parent(odp, parent))
  86. goto end;
  87. rb = rb_next(&odp->interval_tree.rb);
  88. if (!rb)
  89. goto not_found;
  90. odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
  91. if (ib_umem_start(odp->umem) > start + length)
  92. goto not_found;
  93. }
  94. not_found:
  95. odp = NULL;
  96. end:
  97. up_read(&ctx->umem_rwsem);
  98. return odp;
  99. }
  100. void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
  101. size_t nentries, struct mlx5_ib_mr *mr, int flags)
  102. {
  103. struct ib_pd *pd = mr->ibmr.pd;
  104. struct ib_ucontext *ctx = pd->uobject->context;
  105. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  106. struct ib_umem_odp *odp;
  107. unsigned long va;
  108. int i;
  109. if (flags & MLX5_IB_UPD_XLT_ZAP) {
  110. for (i = 0; i < nentries; i++, pklm++) {
  111. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  112. pklm->key = cpu_to_be32(dev->null_mkey);
  113. pklm->va = 0;
  114. }
  115. return;
  116. }
  117. odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE,
  118. nentries * MLX5_IMR_MTT_SIZE, mr);
  119. for (i = 0; i < nentries; i++, pklm++) {
  120. pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
  121. va = (offset + i) * MLX5_IMR_MTT_SIZE;
  122. if (odp && odp->umem->address == va) {
  123. struct mlx5_ib_mr *mtt = odp->private;
  124. pklm->key = cpu_to_be32(mtt->ibmr.lkey);
  125. odp = odp_next(odp);
  126. } else {
  127. pklm->key = cpu_to_be32(dev->null_mkey);
  128. }
  129. mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
  130. i, va, be32_to_cpu(pklm->key));
  131. }
  132. }
  133. static void mr_leaf_free_action(struct work_struct *work)
  134. {
  135. struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
  136. int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT;
  137. struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
  138. mr->parent = NULL;
  139. synchronize_srcu(&mr->dev->mr_srcu);
  140. ib_umem_release(odp->umem);
  141. if (imr->live)
  142. mlx5_ib_update_xlt(imr, idx, 1, 0,
  143. MLX5_IB_UPD_XLT_INDIRECT |
  144. MLX5_IB_UPD_XLT_ATOMIC);
  145. mlx5_mr_cache_free(mr->dev, mr);
  146. if (atomic_dec_and_test(&imr->num_leaf_free))
  147. wake_up(&imr->q_leaf_free);
  148. }
  149. void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start,
  150. unsigned long end)
  151. {
  152. struct mlx5_ib_mr *mr;
  153. const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
  154. sizeof(struct mlx5_mtt)) - 1;
  155. u64 idx = 0, blk_start_idx = 0;
  156. int in_block = 0;
  157. u64 addr;
  158. if (!umem || !umem->odp_data) {
  159. pr_err("invalidation called on NULL umem or non-ODP umem\n");
  160. return;
  161. }
  162. mr = umem->odp_data->private;
  163. if (!mr || !mr->ibmr.pd)
  164. return;
  165. start = max_t(u64, ib_umem_start(umem), start);
  166. end = min_t(u64, ib_umem_end(umem), end);
  167. /*
  168. * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
  169. * while we are doing the invalidation, no page fault will attempt to
  170. * overwrite the same MTTs. Concurent invalidations might race us,
  171. * but they will write 0s as well, so no difference in the end result.
  172. */
  173. for (addr = start; addr < end; addr += BIT(umem->page_shift)) {
  174. idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
  175. /*
  176. * Strive to write the MTTs in chunks, but avoid overwriting
  177. * non-existing MTTs. The huristic here can be improved to
  178. * estimate the cost of another UMR vs. the cost of bigger
  179. * UMR.
  180. */
  181. if (umem->odp_data->dma_list[idx] &
  182. (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
  183. if (!in_block) {
  184. blk_start_idx = idx;
  185. in_block = 1;
  186. }
  187. } else {
  188. u64 umr_offset = idx & umr_block_mask;
  189. if (in_block && umr_offset == 0) {
  190. mlx5_ib_update_xlt(mr, blk_start_idx,
  191. idx - blk_start_idx, 0,
  192. MLX5_IB_UPD_XLT_ZAP |
  193. MLX5_IB_UPD_XLT_ATOMIC);
  194. in_block = 0;
  195. }
  196. }
  197. }
  198. if (in_block)
  199. mlx5_ib_update_xlt(mr, blk_start_idx,
  200. idx - blk_start_idx + 1, 0,
  201. MLX5_IB_UPD_XLT_ZAP |
  202. MLX5_IB_UPD_XLT_ATOMIC);
  203. /*
  204. * We are now sure that the device will not access the
  205. * memory. We can safely unmap it, and mark it as dirty if
  206. * needed.
  207. */
  208. ib_umem_odp_unmap_dma_pages(umem, start, end);
  209. if (unlikely(!umem->npages && mr->parent &&
  210. !umem->odp_data->dying)) {
  211. WRITE_ONCE(umem->odp_data->dying, 1);
  212. atomic_inc(&mr->parent->num_leaf_free);
  213. schedule_work(&umem->odp_data->work);
  214. }
  215. }
  216. void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
  217. {
  218. struct ib_odp_caps *caps = &dev->odp_caps;
  219. memset(caps, 0, sizeof(*caps));
  220. if (!MLX5_CAP_GEN(dev->mdev, pg))
  221. return;
  222. caps->general_caps = IB_ODP_SUPPORT;
  223. if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  224. dev->odp_max_size = U64_MAX;
  225. else
  226. dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
  227. if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
  228. caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
  229. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
  230. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
  231. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
  232. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
  233. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
  234. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
  235. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
  236. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
  237. if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
  238. caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
  239. if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
  240. MLX5_CAP_GEN(dev->mdev, null_mkey) &&
  241. MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
  242. caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
  243. return;
  244. }
  245. static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
  246. struct mlx5_pagefault *pfault,
  247. int error)
  248. {
  249. int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
  250. pfault->wqe.wq_num : pfault->token;
  251. int ret = mlx5_core_page_fault_resume(dev->mdev,
  252. pfault->token,
  253. wq_num,
  254. pfault->type,
  255. error);
  256. if (ret)
  257. mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n",
  258. wq_num);
  259. }
  260. static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
  261. struct ib_umem *umem,
  262. bool ksm, int access_flags)
  263. {
  264. struct mlx5_ib_dev *dev = to_mdev(pd->device);
  265. struct mlx5_ib_mr *mr;
  266. int err;
  267. mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
  268. MLX5_IMR_MTT_CACHE_ENTRY);
  269. if (IS_ERR(mr))
  270. return mr;
  271. mr->ibmr.pd = pd;
  272. mr->dev = dev;
  273. mr->access_flags = access_flags;
  274. mr->mmkey.iova = 0;
  275. mr->umem = umem;
  276. if (ksm) {
  277. err = mlx5_ib_update_xlt(mr, 0,
  278. mlx5_imr_ksm_entries,
  279. MLX5_KSM_PAGE_SHIFT,
  280. MLX5_IB_UPD_XLT_INDIRECT |
  281. MLX5_IB_UPD_XLT_ZAP |
  282. MLX5_IB_UPD_XLT_ENABLE);
  283. } else {
  284. err = mlx5_ib_update_xlt(mr, 0,
  285. MLX5_IMR_MTT_ENTRIES,
  286. PAGE_SHIFT,
  287. MLX5_IB_UPD_XLT_ZAP |
  288. MLX5_IB_UPD_XLT_ENABLE |
  289. MLX5_IB_UPD_XLT_ATOMIC);
  290. }
  291. if (err)
  292. goto fail;
  293. mr->ibmr.lkey = mr->mmkey.key;
  294. mr->ibmr.rkey = mr->mmkey.key;
  295. mr->live = 1;
  296. mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
  297. mr->mmkey.key, dev->mdev, mr);
  298. return mr;
  299. fail:
  300. mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
  301. mlx5_mr_cache_free(dev, mr);
  302. return ERR_PTR(err);
  303. }
  304. static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
  305. u64 io_virt, size_t bcnt)
  306. {
  307. struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context;
  308. struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
  309. struct ib_umem_odp *odp, *result = NULL;
  310. u64 addr = io_virt & MLX5_IMR_MTT_MASK;
  311. int nentries = 0, start_idx = 0, ret;
  312. struct mlx5_ib_mr *mtt;
  313. struct ib_umem *umem;
  314. mutex_lock(&mr->umem->odp_data->umem_mutex);
  315. odp = odp_lookup(ctx, addr, 1, mr);
  316. mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
  317. io_virt, bcnt, addr, odp);
  318. next_mr:
  319. if (likely(odp)) {
  320. if (nentries)
  321. nentries++;
  322. } else {
  323. umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE);
  324. if (IS_ERR(umem)) {
  325. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  326. return ERR_CAST(umem);
  327. }
  328. mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags);
  329. if (IS_ERR(mtt)) {
  330. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  331. ib_umem_release(umem);
  332. return ERR_CAST(mtt);
  333. }
  334. odp = umem->odp_data;
  335. odp->private = mtt;
  336. mtt->umem = umem;
  337. mtt->mmkey.iova = addr;
  338. mtt->parent = mr;
  339. INIT_WORK(&odp->work, mr_leaf_free_action);
  340. if (!nentries)
  341. start_idx = addr >> MLX5_IMR_MTT_SHIFT;
  342. nentries++;
  343. }
  344. /* Return first odp if region not covered by single one */
  345. if (likely(!result))
  346. result = odp;
  347. addr += MLX5_IMR_MTT_SIZE;
  348. if (unlikely(addr < io_virt + bcnt)) {
  349. odp = odp_next(odp);
  350. if (odp && odp->umem->address != addr)
  351. odp = NULL;
  352. goto next_mr;
  353. }
  354. if (unlikely(nentries)) {
  355. ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
  356. MLX5_IB_UPD_XLT_INDIRECT |
  357. MLX5_IB_UPD_XLT_ATOMIC);
  358. if (ret) {
  359. mlx5_ib_err(dev, "Failed to update PAS\n");
  360. result = ERR_PTR(ret);
  361. }
  362. }
  363. mutex_unlock(&mr->umem->odp_data->umem_mutex);
  364. return result;
  365. }
  366. struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
  367. int access_flags)
  368. {
  369. struct ib_ucontext *ctx = pd->ibpd.uobject->context;
  370. struct mlx5_ib_mr *imr;
  371. struct ib_umem *umem;
  372. umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0);
  373. if (IS_ERR(umem))
  374. return ERR_CAST(umem);
  375. imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
  376. if (IS_ERR(imr)) {
  377. ib_umem_release(umem);
  378. return ERR_CAST(imr);
  379. }
  380. imr->umem = umem;
  381. init_waitqueue_head(&imr->q_leaf_free);
  382. atomic_set(&imr->num_leaf_free, 0);
  383. return imr;
  384. }
  385. static int mr_leaf_free(struct ib_umem *umem, u64 start,
  386. u64 end, void *cookie)
  387. {
  388. struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie;
  389. if (mr->parent != imr)
  390. return 0;
  391. ib_umem_odp_unmap_dma_pages(umem,
  392. ib_umem_start(umem),
  393. ib_umem_end(umem));
  394. if (umem->odp_data->dying)
  395. return 0;
  396. WRITE_ONCE(umem->odp_data->dying, 1);
  397. atomic_inc(&imr->num_leaf_free);
  398. schedule_work(&umem->odp_data->work);
  399. return 0;
  400. }
  401. void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
  402. {
  403. struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context;
  404. down_read(&ctx->umem_rwsem);
  405. rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX,
  406. mr_leaf_free, imr);
  407. up_read(&ctx->umem_rwsem);
  408. wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
  409. }
  410. static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
  411. u64 io_virt, size_t bcnt, u32 *bytes_mapped)
  412. {
  413. u64 access_mask = ODP_READ_ALLOWED_BIT;
  414. int npages = 0, page_shift, np;
  415. u64 start_idx, page_mask;
  416. struct ib_umem_odp *odp;
  417. int current_seq;
  418. size_t size;
  419. int ret;
  420. if (!mr->umem->odp_data->page_list) {
  421. odp = implicit_mr_get_data(mr, io_virt, bcnt);
  422. if (IS_ERR(odp))
  423. return PTR_ERR(odp);
  424. mr = odp->private;
  425. } else {
  426. odp = mr->umem->odp_data;
  427. }
  428. next_mr:
  429. size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt);
  430. page_shift = mr->umem->page_shift;
  431. page_mask = ~(BIT(page_shift) - 1);
  432. start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
  433. if (mr->umem->writable)
  434. access_mask |= ODP_WRITE_ALLOWED_BIT;
  435. current_seq = READ_ONCE(odp->notifiers_seq);
  436. /*
  437. * Ensure the sequence number is valid for some time before we call
  438. * gup.
  439. */
  440. smp_rmb();
  441. ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size,
  442. access_mask, current_seq);
  443. if (ret < 0)
  444. goto out;
  445. np = ret;
  446. mutex_lock(&odp->umem_mutex);
  447. if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) {
  448. /*
  449. * No need to check whether the MTTs really belong to
  450. * this MR, since ib_umem_odp_map_dma_pages already
  451. * checks this.
  452. */
  453. ret = mlx5_ib_update_xlt(mr, start_idx, np,
  454. page_shift, MLX5_IB_UPD_XLT_ATOMIC);
  455. } else {
  456. ret = -EAGAIN;
  457. }
  458. mutex_unlock(&odp->umem_mutex);
  459. if (ret < 0) {
  460. if (ret != -EAGAIN)
  461. mlx5_ib_err(dev, "Failed to update mkey page tables\n");
  462. goto out;
  463. }
  464. if (bytes_mapped) {
  465. u32 new_mappings = (np << page_shift) -
  466. (io_virt - round_down(io_virt, 1 << page_shift));
  467. *bytes_mapped += min_t(u32, new_mappings, size);
  468. }
  469. npages += np << (page_shift - PAGE_SHIFT);
  470. bcnt -= size;
  471. if (unlikely(bcnt)) {
  472. struct ib_umem_odp *next;
  473. io_virt += size;
  474. next = odp_next(odp);
  475. if (unlikely(!next || next->umem->address != io_virt)) {
  476. mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
  477. io_virt, next);
  478. return -EAGAIN;
  479. }
  480. odp = next;
  481. mr = odp->private;
  482. goto next_mr;
  483. }
  484. return npages;
  485. out:
  486. if (ret == -EAGAIN) {
  487. if (mr->parent || !odp->dying) {
  488. unsigned long timeout =
  489. msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
  490. if (!wait_for_completion_timeout(
  491. &odp->notifier_completion,
  492. timeout)) {
  493. mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n",
  494. current_seq, odp->notifiers_seq);
  495. }
  496. } else {
  497. /* The MR is being killed, kill the QP as well. */
  498. ret = -EFAULT;
  499. }
  500. }
  501. return ret;
  502. }
  503. struct pf_frame {
  504. struct pf_frame *next;
  505. u32 key;
  506. u64 io_virt;
  507. size_t bcnt;
  508. int depth;
  509. };
  510. /*
  511. * Handle a single data segment in a page-fault WQE or RDMA region.
  512. *
  513. * Returns number of OS pages retrieved on success. The caller may continue to
  514. * the next data segment.
  515. * Can return the following error codes:
  516. * -EAGAIN to designate a temporary error. The caller will abort handling the
  517. * page fault and resolve it.
  518. * -EFAULT when there's an error mapping the requested pages. The caller will
  519. * abort the page fault handling.
  520. */
  521. static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
  522. u32 key, u64 io_virt, size_t bcnt,
  523. u32 *bytes_committed,
  524. u32 *bytes_mapped)
  525. {
  526. int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
  527. struct pf_frame *head = NULL, *frame;
  528. struct mlx5_core_mkey *mmkey;
  529. struct mlx5_ib_mw *mw;
  530. struct mlx5_ib_mr *mr;
  531. struct mlx5_klm *pklm;
  532. u32 *out = NULL;
  533. size_t offset;
  534. srcu_key = srcu_read_lock(&dev->mr_srcu);
  535. io_virt += *bytes_committed;
  536. bcnt -= *bytes_committed;
  537. next_mr:
  538. mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key));
  539. if (!mmkey || mmkey->key != key) {
  540. mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
  541. ret = -EFAULT;
  542. goto srcu_unlock;
  543. }
  544. switch (mmkey->type) {
  545. case MLX5_MKEY_MR:
  546. mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
  547. if (!mr->live || !mr->ibmr.pd) {
  548. mlx5_ib_dbg(dev, "got dead MR\n");
  549. ret = -EFAULT;
  550. goto srcu_unlock;
  551. }
  552. ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped);
  553. if (ret < 0)
  554. goto srcu_unlock;
  555. npages += ret;
  556. ret = 0;
  557. break;
  558. case MLX5_MKEY_MW:
  559. mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
  560. if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
  561. mlx5_ib_dbg(dev, "indirection level exceeded\n");
  562. ret = -EFAULT;
  563. goto srcu_unlock;
  564. }
  565. outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
  566. sizeof(*pklm) * (mw->ndescs - 2);
  567. if (outlen > cur_outlen) {
  568. kfree(out);
  569. out = kzalloc(outlen, GFP_KERNEL);
  570. if (!out) {
  571. ret = -ENOMEM;
  572. goto srcu_unlock;
  573. }
  574. cur_outlen = outlen;
  575. }
  576. pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
  577. bsf0_klm0_pas_mtt0_1);
  578. ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen);
  579. if (ret)
  580. goto srcu_unlock;
  581. offset = io_virt - MLX5_GET64(query_mkey_out, out,
  582. memory_key_mkey_entry.start_addr);
  583. for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) {
  584. if (offset >= be32_to_cpu(pklm->bcount)) {
  585. offset -= be32_to_cpu(pklm->bcount);
  586. continue;
  587. }
  588. frame = kzalloc(sizeof(*frame), GFP_KERNEL);
  589. if (!frame) {
  590. ret = -ENOMEM;
  591. goto srcu_unlock;
  592. }
  593. frame->key = be32_to_cpu(pklm->key);
  594. frame->io_virt = be64_to_cpu(pklm->va) + offset;
  595. frame->bcnt = min_t(size_t, bcnt,
  596. be32_to_cpu(pklm->bcount) - offset);
  597. frame->depth = depth + 1;
  598. frame->next = head;
  599. head = frame;
  600. bcnt -= frame->bcnt;
  601. }
  602. break;
  603. default:
  604. mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
  605. ret = -EFAULT;
  606. goto srcu_unlock;
  607. }
  608. if (head) {
  609. frame = head;
  610. head = frame->next;
  611. key = frame->key;
  612. io_virt = frame->io_virt;
  613. bcnt = frame->bcnt;
  614. depth = frame->depth;
  615. kfree(frame);
  616. goto next_mr;
  617. }
  618. srcu_unlock:
  619. while (head) {
  620. frame = head;
  621. head = frame->next;
  622. kfree(frame);
  623. }
  624. kfree(out);
  625. srcu_read_unlock(&dev->mr_srcu, srcu_key);
  626. *bytes_committed = 0;
  627. return ret ? ret : npages;
  628. }
  629. /**
  630. * Parse a series of data segments for page fault handling.
  631. *
  632. * @qp the QP on which the fault occurred.
  633. * @pfault contains page fault information.
  634. * @wqe points at the first data segment in the WQE.
  635. * @wqe_end points after the end of the WQE.
  636. * @bytes_mapped receives the number of bytes that the function was able to
  637. * map. This allows the caller to decide intelligently whether
  638. * enough memory was mapped to resolve the page fault
  639. * successfully (e.g. enough for the next MTU, or the entire
  640. * WQE).
  641. * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
  642. * the committed bytes).
  643. *
  644. * Returns the number of pages loaded if positive, zero for an empty WQE, or a
  645. * negative error code.
  646. */
  647. static int pagefault_data_segments(struct mlx5_ib_dev *dev,
  648. struct mlx5_pagefault *pfault,
  649. struct mlx5_ib_qp *qp, void *wqe,
  650. void *wqe_end, u32 *bytes_mapped,
  651. u32 *total_wqe_bytes, int receive_queue)
  652. {
  653. int ret = 0, npages = 0;
  654. u64 io_virt;
  655. u32 key;
  656. u32 byte_count;
  657. size_t bcnt;
  658. int inline_segment;
  659. /* Skip SRQ next-WQE segment. */
  660. if (receive_queue && qp->ibqp.srq)
  661. wqe += sizeof(struct mlx5_wqe_srq_next_seg);
  662. if (bytes_mapped)
  663. *bytes_mapped = 0;
  664. if (total_wqe_bytes)
  665. *total_wqe_bytes = 0;
  666. while (wqe < wqe_end) {
  667. struct mlx5_wqe_data_seg *dseg = wqe;
  668. io_virt = be64_to_cpu(dseg->addr);
  669. key = be32_to_cpu(dseg->lkey);
  670. byte_count = be32_to_cpu(dseg->byte_count);
  671. inline_segment = !!(byte_count & MLX5_INLINE_SEG);
  672. bcnt = byte_count & ~MLX5_INLINE_SEG;
  673. if (inline_segment) {
  674. bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
  675. wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
  676. 16);
  677. } else {
  678. wqe += sizeof(*dseg);
  679. }
  680. /* receive WQE end of sg list. */
  681. if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
  682. io_virt == 0)
  683. break;
  684. if (!inline_segment && total_wqe_bytes) {
  685. *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
  686. pfault->bytes_committed);
  687. }
  688. /* A zero length data segment designates a length of 2GB. */
  689. if (bcnt == 0)
  690. bcnt = 1U << 31;
  691. if (inline_segment || bcnt <= pfault->bytes_committed) {
  692. pfault->bytes_committed -=
  693. min_t(size_t, bcnt,
  694. pfault->bytes_committed);
  695. continue;
  696. }
  697. ret = pagefault_single_data_segment(dev, key, io_virt, bcnt,
  698. &pfault->bytes_committed,
  699. bytes_mapped);
  700. if (ret < 0)
  701. break;
  702. npages += ret;
  703. }
  704. return ret < 0 ? ret : npages;
  705. }
  706. static const u32 mlx5_ib_odp_opcode_cap[] = {
  707. [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
  708. [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
  709. [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
  710. [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
  711. [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
  712. [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
  713. [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
  714. [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
  715. };
  716. /*
  717. * Parse initiator WQE. Advances the wqe pointer to point at the
  718. * scatter-gather list, and set wqe_end to the end of the WQE.
  719. */
  720. static int mlx5_ib_mr_initiator_pfault_handler(
  721. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  722. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  723. {
  724. struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
  725. u16 wqe_index = pfault->wqe.wqe_index;
  726. u32 transport_caps;
  727. struct mlx5_base_av *av;
  728. unsigned ds, opcode;
  729. #if defined(DEBUG)
  730. u32 ctrl_wqe_index, ctrl_qpn;
  731. #endif
  732. u32 qpn = qp->trans_qp.base.mqp.qpn;
  733. ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
  734. if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
  735. mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
  736. ds, wqe_length);
  737. return -EFAULT;
  738. }
  739. if (ds == 0) {
  740. mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
  741. wqe_index, qpn);
  742. return -EFAULT;
  743. }
  744. #if defined(DEBUG)
  745. ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
  746. MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
  747. MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
  748. if (wqe_index != ctrl_wqe_index) {
  749. mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
  750. wqe_index, qpn,
  751. ctrl_wqe_index);
  752. return -EFAULT;
  753. }
  754. ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
  755. MLX5_WQE_CTRL_QPN_SHIFT;
  756. if (qpn != ctrl_qpn) {
  757. mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
  758. wqe_index, qpn,
  759. ctrl_qpn);
  760. return -EFAULT;
  761. }
  762. #endif /* DEBUG */
  763. *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
  764. *wqe += sizeof(*ctrl);
  765. opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
  766. MLX5_WQE_CTRL_OPCODE_MASK;
  767. switch (qp->ibqp.qp_type) {
  768. case IB_QPT_RC:
  769. transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
  770. break;
  771. case IB_QPT_UD:
  772. transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
  773. break;
  774. default:
  775. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
  776. qp->ibqp.qp_type);
  777. return -EFAULT;
  778. }
  779. if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
  780. !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
  781. mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
  782. opcode);
  783. return -EFAULT;
  784. }
  785. if (qp->ibqp.qp_type != IB_QPT_RC) {
  786. av = *wqe;
  787. if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
  788. *wqe += sizeof(struct mlx5_av);
  789. else
  790. *wqe += sizeof(struct mlx5_base_av);
  791. }
  792. switch (opcode) {
  793. case MLX5_OPCODE_RDMA_WRITE:
  794. case MLX5_OPCODE_RDMA_WRITE_IMM:
  795. case MLX5_OPCODE_RDMA_READ:
  796. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  797. break;
  798. case MLX5_OPCODE_ATOMIC_CS:
  799. case MLX5_OPCODE_ATOMIC_FA:
  800. *wqe += sizeof(struct mlx5_wqe_raddr_seg);
  801. *wqe += sizeof(struct mlx5_wqe_atomic_seg);
  802. break;
  803. }
  804. return 0;
  805. }
  806. /*
  807. * Parse responder WQE. Advances the wqe pointer to point at the
  808. * scatter-gather list, and set wqe_end to the end of the WQE.
  809. */
  810. static int mlx5_ib_mr_responder_pfault_handler(
  811. struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
  812. struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
  813. {
  814. struct mlx5_ib_wq *wq = &qp->rq;
  815. int wqe_size = 1 << wq->wqe_shift;
  816. if (qp->ibqp.srq) {
  817. mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n");
  818. return -EFAULT;
  819. }
  820. if (qp->wq_sig) {
  821. mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
  822. return -EFAULT;
  823. }
  824. if (wqe_size > wqe_length) {
  825. mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
  826. return -EFAULT;
  827. }
  828. switch (qp->ibqp.qp_type) {
  829. case IB_QPT_RC:
  830. if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
  831. IB_ODP_SUPPORT_RECV))
  832. goto invalid_transport_or_opcode;
  833. break;
  834. default:
  835. invalid_transport_or_opcode:
  836. mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
  837. qp->ibqp.qp_type);
  838. return -EFAULT;
  839. }
  840. *wqe_end = *wqe + wqe_size;
  841. return 0;
  842. }
  843. static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev,
  844. u32 wq_num)
  845. {
  846. struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num);
  847. if (!mqp) {
  848. mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num);
  849. return NULL;
  850. }
  851. return to_mibqp(mqp);
  852. }
  853. static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
  854. struct mlx5_pagefault *pfault)
  855. {
  856. int ret;
  857. void *wqe, *wqe_end;
  858. u32 bytes_mapped, total_wqe_bytes;
  859. char *buffer = NULL;
  860. int resume_with_error = 1;
  861. u16 wqe_index = pfault->wqe.wqe_index;
  862. int requestor = pfault->type & MLX5_PFAULT_REQUESTOR;
  863. struct mlx5_ib_qp *qp;
  864. buffer = (char *)__get_free_page(GFP_KERNEL);
  865. if (!buffer) {
  866. mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
  867. goto resolve_page_fault;
  868. }
  869. qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num);
  870. if (!qp)
  871. goto resolve_page_fault;
  872. ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer,
  873. PAGE_SIZE, &qp->trans_qp.base);
  874. if (ret < 0) {
  875. mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n",
  876. ret, wqe_index, pfault->token);
  877. goto resolve_page_fault;
  878. }
  879. wqe = buffer;
  880. if (requestor)
  881. ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe,
  882. &wqe_end, ret);
  883. else
  884. ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe,
  885. &wqe_end, ret);
  886. if (ret < 0)
  887. goto resolve_page_fault;
  888. if (wqe >= wqe_end) {
  889. mlx5_ib_err(dev, "ODP fault on invalid WQE.\n");
  890. goto resolve_page_fault;
  891. }
  892. ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end,
  893. &bytes_mapped, &total_wqe_bytes,
  894. !requestor);
  895. if (ret == -EAGAIN) {
  896. resume_with_error = 0;
  897. goto resolve_page_fault;
  898. } else if (ret < 0 || total_wqe_bytes > bytes_mapped) {
  899. goto resolve_page_fault;
  900. }
  901. resume_with_error = 0;
  902. resolve_page_fault:
  903. mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
  904. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
  905. pfault->wqe.wq_num, resume_with_error,
  906. pfault->type);
  907. free_page((unsigned long)buffer);
  908. }
  909. static int pages_in_range(u64 address, u32 length)
  910. {
  911. return (ALIGN(address + length, PAGE_SIZE) -
  912. (address & PAGE_MASK)) >> PAGE_SHIFT;
  913. }
  914. static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
  915. struct mlx5_pagefault *pfault)
  916. {
  917. u64 address;
  918. u32 length;
  919. u32 prefetch_len = pfault->bytes_committed;
  920. int prefetch_activated = 0;
  921. u32 rkey = pfault->rdma.r_key;
  922. int ret;
  923. /* The RDMA responder handler handles the page fault in two parts.
  924. * First it brings the necessary pages for the current packet
  925. * (and uses the pfault context), and then (after resuming the QP)
  926. * prefetches more pages. The second operation cannot use the pfault
  927. * context and therefore uses the dummy_pfault context allocated on
  928. * the stack */
  929. pfault->rdma.rdma_va += pfault->bytes_committed;
  930. pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
  931. pfault->rdma.rdma_op_len);
  932. pfault->bytes_committed = 0;
  933. address = pfault->rdma.rdma_va;
  934. length = pfault->rdma.rdma_op_len;
  935. /* For some operations, the hardware cannot tell the exact message
  936. * length, and in those cases it reports zero. Use prefetch
  937. * logic. */
  938. if (length == 0) {
  939. prefetch_activated = 1;
  940. length = pfault->rdma.packet_size;
  941. prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
  942. }
  943. ret = pagefault_single_data_segment(dev, rkey, address, length,
  944. &pfault->bytes_committed, NULL);
  945. if (ret == -EAGAIN) {
  946. /* We're racing with an invalidation, don't prefetch */
  947. prefetch_activated = 0;
  948. } else if (ret < 0 || pages_in_range(address, length) > ret) {
  949. mlx5_ib_page_fault_resume(dev, pfault, 1);
  950. if (ret != -ENOENT)
  951. mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
  952. ret, pfault->token, pfault->type);
  953. return;
  954. }
  955. mlx5_ib_page_fault_resume(dev, pfault, 0);
  956. mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
  957. pfault->token, pfault->type,
  958. prefetch_activated);
  959. /* At this point, there might be a new pagefault already arriving in
  960. * the eq, switch to the dummy pagefault for the rest of the
  961. * processing. We're still OK with the objects being alive as the
  962. * work-queue is being fenced. */
  963. if (prefetch_activated) {
  964. u32 bytes_committed = 0;
  965. ret = pagefault_single_data_segment(dev, rkey, address,
  966. prefetch_len,
  967. &bytes_committed, NULL);
  968. if (ret < 0 && ret != -EAGAIN) {
  969. mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
  970. ret, pfault->token, address, prefetch_len);
  971. }
  972. }
  973. }
  974. void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context,
  975. struct mlx5_pagefault *pfault)
  976. {
  977. struct mlx5_ib_dev *dev = context;
  978. u8 event_subtype = pfault->event_subtype;
  979. switch (event_subtype) {
  980. case MLX5_PFAULT_SUBTYPE_WQE:
  981. mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
  982. break;
  983. case MLX5_PFAULT_SUBTYPE_RDMA:
  984. mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
  985. break;
  986. default:
  987. mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
  988. event_subtype);
  989. mlx5_ib_page_fault_resume(dev, pfault, 1);
  990. }
  991. }
  992. void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
  993. {
  994. if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
  995. return;
  996. switch (ent->order - 2) {
  997. case MLX5_IMR_MTT_CACHE_ENTRY:
  998. ent->page = PAGE_SHIFT;
  999. ent->xlt = MLX5_IMR_MTT_ENTRIES *
  1000. sizeof(struct mlx5_mtt) /
  1001. MLX5_IB_UMR_OCTOWORD;
  1002. ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
  1003. ent->limit = 0;
  1004. break;
  1005. case MLX5_IMR_KSM_CACHE_ENTRY:
  1006. ent->page = MLX5_KSM_PAGE_SHIFT;
  1007. ent->xlt = mlx5_imr_ksm_entries *
  1008. sizeof(struct mlx5_klm) /
  1009. MLX5_IB_UMR_OCTOWORD;
  1010. ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
  1011. ent->limit = 0;
  1012. break;
  1013. }
  1014. }
  1015. int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
  1016. {
  1017. int ret;
  1018. if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
  1019. ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
  1020. if (ret) {
  1021. mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
  1022. return ret;
  1023. }
  1024. }
  1025. return 0;
  1026. }
  1027. int mlx5_ib_odp_init(void)
  1028. {
  1029. mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
  1030. MLX5_IMR_MTT_BITS);
  1031. return 0;
  1032. }